A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources

Random forests (RF) is a supervised machine learning algorithm, which has recently started to gain prominence in water resources applications. However, existing applications are generally restricted to the implementation of Breiman’s original algorithm for regression and classification problems, whi...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) Vol. 11; no. 5; p. 910
Main Authors: Tyralis, Hristos, Papacharalampous, Georgia, Langousis, Andreas
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.05.2019
Subjects:
ISSN:2073-4441, 2073-4441
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Random forests (RF) is a supervised machine learning algorithm, which has recently started to gain prominence in water resources applications. However, existing applications are generally restricted to the implementation of Breiman’s original algorithm for regression and classification problems, while numerous developments could be also useful in solving diverse practical problems in the water sector. Here we popularize RF and their variants for the practicing water scientist, and discuss related concepts and techniques, which have received less attention from the water science and hydrologic communities. In doing so, we review RF applications in water resources, highlight the potential of the original algorithm and its variants, and assess the degree of RF exploitation in a diverse range of applications. Relevant implementations of random forests, as well as related concepts and techniques in the R programming language, are also covered.
AbstractList Random forests (RF) is a supervised machine learning algorithm, which has recently started to gain prominence in water resources applications. However, existing applications are generally restricted to the implementation of Breiman’s original algorithm for regression and classification problems, while numerous developments could be also useful in solving diverse practical problems in the water sector. Here we popularize RF and their variants for the practicing water scientist, and discuss related concepts and techniques, which have received less attention from the water science and hydrologic communities. In doing so, we review RF applications in water resources, highlight the potential of the original algorithm and its variants, and assess the degree of RF exploitation in a diverse range of applications. Relevant implementations of random forests, as well as related concepts and techniques in the R programming language, are also covered.
Author Langousis, Andreas
Tyralis, Hristos
Papacharalampous, Georgia
Author_xml – sequence: 1
  givenname: Hristos
  orcidid: 0000-0002-8932-4997
  surname: Tyralis
  fullname: Tyralis, Hristos
– sequence: 2
  givenname: Georgia
  orcidid: 0000-0001-5446-954X
  surname: Papacharalampous
  fullname: Papacharalampous, Georgia
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0002-0643-2520
  surname: Langousis
  fullname: Langousis, Andreas
BookMark eNptkd9LAkEQx5cwyMyH_oOFXurhcn96t48mmYFQmNHjsbvO0Yre2u6Z-N-3okRI8zLD8PkO35m5RK3a14DQNSX3nCvS21JKJFGUnKE2IznPhBC09ae-QN0YFySFUEUhSRvFAX4IDio8hW8HW-xTpeu5X-GRDxCbiCsf8IduIOA366Bu3L6ZEPwatG1c45KHcOjMPsGFNMkmDI8T6MMOu_oon0L0m2AhXqHzSi8jdI-5g95Hj7PhOJu8PD0PB5PMciabjBol5NyoQhAtlJmTimtLiOVGFkwYq_vCSjCybySrlNWsMLYAnQPklqrK8A66PcxdB_-1ScuUKxctLJe6Br-JJeNUsr6iVCX05gRdJK91clcyKYmQkud5onoHygYfY4CqtK7R-ws0QbtlSUm5_0P5-4ekuDtRrINb6bD7h_0BBkmJyg
CitedBy_id crossref_primary_10_1088_2515_7620_acabb7
crossref_primary_10_1016_j_jclepro_2025_145615
crossref_primary_10_1016_j_envsoft_2025_106433
crossref_primary_10_1016_j_watres_2020_115490
crossref_primary_10_1007_s44288_024_00089_z
crossref_primary_10_1016_j_jhydrol_2025_133033
crossref_primary_10_1080_01431161_2021_2022239
crossref_primary_10_5194_tc_14_1763_2020
crossref_primary_10_3390_w14152416
crossref_primary_10_3390_atmos12020238
crossref_primary_10_3390_w12030713
crossref_primary_10_3390_w14233851
crossref_primary_10_1029_2023JG007827
crossref_primary_10_3390_math11081878
crossref_primary_10_1016_j_jhydrol_2024_131708
crossref_primary_10_1029_2020WR029121
crossref_primary_10_3390_w11081540
crossref_primary_10_1109_JSTARS_2024_3507853
crossref_primary_10_3390_hydrology9120226
crossref_primary_10_1016_j_scitotenv_2020_144612
crossref_primary_10_1007_s11600_022_00749_z
crossref_primary_10_1016_j_biosystemseng_2021_09_013
crossref_primary_10_1016_j_watres_2021_116997
crossref_primary_10_1007_s41939_023_00153_0
crossref_primary_10_1016_j_agwat_2021_107281
crossref_primary_10_3390_rs15194659
crossref_primary_10_1080_15732479_2023_2165118
crossref_primary_10_3390_rs14132976
crossref_primary_10_1016_j_envsoft_2023_105919
crossref_primary_10_1016_j_scitotenv_2023_169623
crossref_primary_10_1080_02626667_2021_1889557
crossref_primary_10_1186_s40488_020_00112_x
crossref_primary_10_3390_app12083874
crossref_primary_10_1016_j_jhydrol_2020_125359
crossref_primary_10_1016_j_jhydrol_2025_133172
crossref_primary_10_1016_j_jhydrol_2019_123957
crossref_primary_10_1007_s00521_020_05172_3
crossref_primary_10_3390_agriengineering7070219
crossref_primary_10_1016_j_jclepro_2020_124868
crossref_primary_10_1061__ASCE_WR_1943_5452_0001310
crossref_primary_10_1029_2024EF004479
crossref_primary_10_1177_0959683620913924
crossref_primary_10_1186_s13321_024_00891_4
crossref_primary_10_1051_e3sconf_202455201074
crossref_primary_10_1061_JWRMD5_WRENG_6840
crossref_primary_10_1111_gcb_14845
crossref_primary_10_1002_hyp_15280
crossref_primary_10_1016_j_scitotenv_2024_178314
crossref_primary_10_1007_s11356_024_35662_z
crossref_primary_10_1007_s10457_023_00833_3
crossref_primary_10_3390_w15142572
crossref_primary_10_1016_j_marenvres_2025_107170
crossref_primary_10_3390_hydrology8010006
crossref_primary_10_1002_wer_11136
crossref_primary_10_1016_j_jhydrol_2022_128177
crossref_primary_10_1111_ejss_13123
crossref_primary_10_1088_1748_9326_ad4e4b
crossref_primary_10_3390_w15173096
crossref_primary_10_3390_w12051342
crossref_primary_10_1007_s11356_021_18081_2
crossref_primary_10_1155_2022_5425618
crossref_primary_10_1080_02626667_2021_2001471
crossref_primary_10_1007_s40899_023_00978_0
crossref_primary_10_1002_gch2_202400137
crossref_primary_10_2166_hydro_2022_171
crossref_primary_10_1007_s12665_025_12417_8
crossref_primary_10_5194_nhess_21_203_2021
crossref_primary_10_1016_j_advwatres_2025_104955
crossref_primary_10_1029_2023WR036900
crossref_primary_10_1016_j_rse_2025_114693
crossref_primary_10_1016_j_scitotenv_2023_167128
crossref_primary_10_1080_02626667_2021_1962884
crossref_primary_10_1029_2021WR031260
crossref_primary_10_1016_j_ecolind_2024_112799
crossref_primary_10_3390_rs15041144
crossref_primary_10_3390_w16020247
crossref_primary_10_5194_hess_26_5859_2022
crossref_primary_10_3390_rs15194761
crossref_primary_10_3390_rs13204072
crossref_primary_10_1080_02626667_2024_2321332
crossref_primary_10_1007_s10661_021_09333_2
crossref_primary_10_1016_j_watres_2021_116858
crossref_primary_10_3390_environments10050075
crossref_primary_10_5194_hess_29_2393_2025
crossref_primary_10_1016_j_jhydrol_2020_125205
crossref_primary_10_1109_ACCESS_2021_3094735
crossref_primary_10_3390_hydrology10020050
crossref_primary_10_3390_w13213022
crossref_primary_10_1002_joc_8458
crossref_primary_10_1080_02626667_2024_2423050
crossref_primary_10_3390_metabo10040135
crossref_primary_10_1016_j_jhydrol_2025_132908
crossref_primary_10_1038_s41598_023_36333_8
crossref_primary_10_3390_w15040634
crossref_primary_10_1007_s40996_024_01374_0
crossref_primary_10_3390_s21216971
crossref_primary_10_1371_journal_pone_0281869
crossref_primary_10_1016_j_heliyon_2025_e41765
crossref_primary_10_1002_lom3_10523
crossref_primary_10_1016_j_jhydrol_2021_127423
crossref_primary_10_1029_2024WR037212
crossref_primary_10_1029_2020WR029409
crossref_primary_10_1016_j_watres_2025_124657
crossref_primary_10_1016_j_atmosres_2020_105026
crossref_primary_10_1016_j_jhydrol_2023_129160
crossref_primary_10_1088_1748_9326_acea34
crossref_primary_10_1016_j_envsoft_2022_105474
crossref_primary_10_3390_ijerph18031023
crossref_primary_10_3390_w13091237
crossref_primary_10_1080_23311916_2022_2143051
crossref_primary_10_1007_s00704_021_03760_4
crossref_primary_10_1016_j_jhydrol_2022_127728
crossref_primary_10_1080_02626667_2022_2083511
crossref_primary_10_1016_j_jenvman_2023_118664
crossref_primary_10_2166_hydro_2023_217
crossref_primary_10_1029_2021WR031215
crossref_primary_10_1016_j_agwat_2020_106090
crossref_primary_10_1016_j_jhydrol_2024_131755
crossref_primary_10_1016_j_geoderma_2023_116692
crossref_primary_10_1016_j_jenvman_2025_126729
crossref_primary_10_7717_peerj_cs_1775
crossref_primary_10_1016_j_agee_2021_107787
crossref_primary_10_1016_j_agwat_2023_108625
crossref_primary_10_1007_s11269_022_03341_8
crossref_primary_10_5194_hess_28_851_2024
crossref_primary_10_1016_j_jhydrol_2024_131406
crossref_primary_10_1029_2020WR027562
crossref_primary_10_1140_epjds_s13688_022_00356_4
crossref_primary_10_3390_hydrology7030059
crossref_primary_10_3390_w15163005
crossref_primary_10_1016_j_envsoft_2022_105326
crossref_primary_10_1016_j_jhydrol_2024_130678
crossref_primary_10_1007_s10661_022_09867_z
crossref_primary_10_1016_j_agwat_2024_108935
crossref_primary_10_1016_j_jhydrol_2021_126358
crossref_primary_10_1029_2021WR030263
crossref_primary_10_5194_tc_17_5317_2023
crossref_primary_10_3390_earth2010011
crossref_primary_10_1007_s12145_024_01437_w
crossref_primary_10_1016_j_pce_2024_103691
crossref_primary_10_1016_j_enganabound_2025_106277
crossref_primary_10_1016_j_watres_2023_119650
crossref_primary_10_1016_j_yofte_2024_103775
crossref_primary_10_1002_lom3_10556
crossref_primary_10_1007_s40003_025_00849_4
crossref_primary_10_1016_j_ifacol_2022_09_564
crossref_primary_10_1080_13416979_2024_2436748
crossref_primary_10_3390_fire5010023
crossref_primary_10_1061__ASCE_WR_1943_5452_0001414
crossref_primary_10_3390_su17135882
crossref_primary_10_1007_s00521_021_05995_8
crossref_primary_10_1002_hyp_14463
crossref_primary_10_1002_hyp_15310
crossref_primary_10_3390_w17010128
crossref_primary_10_1109_ACCESS_2024_3516697
crossref_primary_10_1016_j_biortech_2023_129223
crossref_primary_10_1002_esp_4930
crossref_primary_10_3390_w12061546
crossref_primary_10_3390_w14244029
crossref_primary_10_1016_j_seppur_2025_133494
crossref_primary_10_1016_j_jhydrol_2024_131225
crossref_primary_10_1016_j_scitotenv_2023_166206
crossref_primary_10_3390_en13225992
crossref_primary_10_1016_j_scitotenv_2023_167534
crossref_primary_10_1016_j_jhydrol_2024_131583
crossref_primary_10_3390_rs13030333
crossref_primary_10_1029_2023GL105297
crossref_primary_10_1109_TGRS_2022_3228638
crossref_primary_10_1016_j_rsase_2021_100638
crossref_primary_10_1016_j_scitotenv_2024_175424
crossref_primary_10_3390_w17152301
crossref_primary_10_3390_w16233465
crossref_primary_10_1007_s10661_023_11519_9
crossref_primary_10_1016_j_ijdrr_2023_104192
crossref_primary_10_1007_s00767_022_00534_1
crossref_primary_10_1016_j_biombioe_2024_107527
crossref_primary_10_1007_s10661_020_08731_2
crossref_primary_10_3390_risks11040071
crossref_primary_10_1007_s00704_025_05758_8
crossref_primary_10_1016_j_foodres_2022_112192
crossref_primary_10_1007_s42452_020_03625_x
crossref_primary_10_5194_nhess_25_1139_2025
crossref_primary_10_1007_s41101_025_00403_x
crossref_primary_10_1007_s12601_024_00163_0
crossref_primary_10_1029_2021WR030216
crossref_primary_10_1111_1752_1688_13186
crossref_primary_10_3389_frwa_2021_701726
crossref_primary_10_1109_JSTARS_2023_3297013
crossref_primary_10_1111_gcb_15667
crossref_primary_10_1007_s43621_025_01832_3
crossref_primary_10_2166_hydro_2024_153
crossref_primary_10_1088_1748_9326_aba7e5
crossref_primary_10_1016_j_envpol_2024_125336
crossref_primary_10_1016_j_watres_2023_120876
crossref_primary_10_3389_fpls_2023_1131778
crossref_primary_10_1007_s10666_024_09999_1
crossref_primary_10_3390_w13091256
crossref_primary_10_1016_j_scitotenv_2023_165456
crossref_primary_10_1007_s10291_024_01807_3
crossref_primary_10_3390_w14121971
crossref_primary_10_1007_s12145_023_01078_5
crossref_primary_10_1016_j_watres_2022_118764
crossref_primary_10_3390_w16233488
crossref_primary_10_3390_su14073797
crossref_primary_10_2166_hydro_2024_205
crossref_primary_10_1007_s00477_019_01732_9
crossref_primary_10_1007_s10653_025_02425_9
crossref_primary_10_1038_s41597_023_02828_2
crossref_primary_10_1002_eco_70050
crossref_primary_10_1016_j_chemolab_2025_105318
crossref_primary_10_1016_j_scitotenv_2024_170241
crossref_primary_10_1016_j_acags_2025_100273
crossref_primary_10_1016_j_ejrh_2025_102774
crossref_primary_10_1016_j_jhydrol_2025_132731
crossref_primary_10_3390_w16223328
crossref_primary_10_1016_j_aej_2025_01_067
crossref_primary_10_1016_j_ecoinf_2023_102019
crossref_primary_10_3390_app132212147
crossref_primary_10_1002_hyp_14676
crossref_primary_10_1002_hyp_14673
crossref_primary_10_1007_s11356_024_32807_y
crossref_primary_10_1088_1748_9326_ab7d5c
crossref_primary_10_1007_s11356_022_19220_z
crossref_primary_10_1016_j_advwatres_2019_103471
crossref_primary_10_1039_D4EW00111G
crossref_primary_10_1007_s13157_023_01706_2
crossref_primary_10_1016_j_advwatres_2019_103470
crossref_primary_10_1029_2021WR029579
crossref_primary_10_5194_bg_21_3927_2024
crossref_primary_10_1016_j_jenvman_2025_124829
crossref_primary_10_1002_stvr_1870
crossref_primary_10_1590_1807_1929_agriambi_v28n9e276836
crossref_primary_10_1016_j_agrformet_2024_109955
crossref_primary_10_1016_j_gsd_2024_101299
crossref_primary_10_1016_j_cej_2024_158601
crossref_primary_10_1016_j_jhazmat_2024_136869
crossref_primary_10_3390_w15112020
crossref_primary_10_1007_s11356_024_35173_x
crossref_primary_10_2166_wst_2024_142
crossref_primary_10_3390_land12081587
crossref_primary_10_3390_rs12081242
crossref_primary_10_3390_rs12193157
crossref_primary_10_3390_atmos16091008
crossref_primary_10_1038_s41467_025_58234_2
crossref_primary_10_3389_fmars_2020_00260
crossref_primary_10_3390_e25020194
crossref_primary_10_2166_wst_2023_330
crossref_primary_10_1109_ACCESS_2024_3518574
crossref_primary_10_1088_1748_9326_ac10e0
crossref_primary_10_5194_hess_28_4883_2024
crossref_primary_10_1061_JWRMD5_WRENG_6167
crossref_primary_10_3390_su15032754
crossref_primary_10_1007_s40899_025_01273_w
crossref_primary_10_1016_j_bbih_2025_100957
crossref_primary_10_3390_w13162200
crossref_primary_10_5194_hess_26_129_2022
crossref_primary_10_1016_j_jhydrol_2022_128842
crossref_primary_10_1029_2023EF004267
crossref_primary_10_5194_nhess_22_1325_2022
crossref_primary_10_1007_s00521_022_07372_5
crossref_primary_10_1080_07038992_2021_1941823
crossref_primary_10_1016_j_jhydrol_2025_133636
crossref_primary_10_3390_w14101657
crossref_primary_10_1029_2022WR032395
crossref_primary_10_1007_s00024_020_02609_7
crossref_primary_10_1029_2023WR035042
crossref_primary_10_3847_1538_4365_acdace
crossref_primary_10_1021_acs_est_4c13431
crossref_primary_10_3390_rs17142505
crossref_primary_10_1016_j_scitotenv_2022_153486
crossref_primary_10_3389_frwa_2025_1545821
crossref_primary_10_1016_j_jenvman_2025_126910
crossref_primary_10_1007_s11442_025_2316_5
crossref_primary_10_1021_acsestwater_4c00589
crossref_primary_10_3390_en17092137
crossref_primary_10_1016_j_gsd_2023_100927
crossref_primary_10_1016_j_envsoft_2021_105094
crossref_primary_10_2166_hydro_2025_218
crossref_primary_10_1111_risa_13575
crossref_primary_10_1016_j_jenvman_2024_123139
crossref_primary_10_1016_j_jhydrol_2022_128986
crossref_primary_10_3390_agronomy14040719
crossref_primary_10_1080_02626667_2025_2456211
crossref_primary_10_3390_info13040163
crossref_primary_10_1002_lno_12650
crossref_primary_10_3389_frwa_2022_894548
crossref_primary_10_1088_2515_7620_ad0744
crossref_primary_10_3390_w13233420
crossref_primary_10_1002_lno_12426
crossref_primary_10_1016_j_advwatres_2020_103619
crossref_primary_10_1016_j_jhydrol_2022_128511
crossref_primary_10_1088_1748_9326_ac3db2
crossref_primary_10_1016_j_envsoft_2024_105971
crossref_primary_10_3390_rs13040748
crossref_primary_10_1038_s41598_024_81976_w
crossref_primary_10_1007_s11069_024_06939_w
crossref_primary_10_1016_j_saa_2022_121924
crossref_primary_10_5194_cp_20_573_2024
crossref_primary_10_2166_nh_2023_083
crossref_primary_10_3390_data8070121
crossref_primary_10_3390_w17182673
crossref_primary_10_1080_15732479_2023_2218847
crossref_primary_10_3390_w16192805
crossref_primary_10_1016_j_compag_2023_107787
crossref_primary_10_3390_ijgi10100660
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_1007_s12665_024_11618_x
crossref_primary_10_1080_1573062X_2020_1734947
crossref_primary_10_1007_s40899_025_01278_5
crossref_primary_10_21926_aeer_2404020
crossref_primary_10_1016_j_rse_2024_114271
crossref_primary_10_1016_j_jhydrol_2020_125531
crossref_primary_10_1007_s11356_025_36477_2
crossref_primary_10_1007_s40808_023_01717_2
crossref_primary_10_1016_j_ijdrr_2023_103528
crossref_primary_10_1007_s11356_023_25221_3
crossref_primary_10_1016_j_catena_2025_109156
crossref_primary_10_5194_hess_28_1215_2024
crossref_primary_10_5194_tc_17_1225_2023
crossref_primary_10_1016_j_biosystemseng_2021_11_019
crossref_primary_10_1177_23998083221138842
crossref_primary_10_3390_su14031183
crossref_primary_10_1080_1573062X_2022_2155856
crossref_primary_10_1038_s41598_024_69238_1
crossref_primary_10_1029_2023MS003679
crossref_primary_10_3390_w13243629
crossref_primary_10_1016_j_scitotenv_2025_178412
crossref_primary_10_1016_j_jenvman_2022_115412
crossref_primary_10_1016_j_jhydrol_2020_125545
crossref_primary_10_5194_hess_27_703_2023
crossref_primary_10_3389_frwa_2022_961954
crossref_primary_10_1016_j_clwat_2024_100051
crossref_primary_10_3390_rs13224704
crossref_primary_10_1007_s11157_021_09592_y
crossref_primary_10_1016_j_scitotenv_2022_161138
crossref_primary_10_3390_math10244746
crossref_primary_10_1016_j_teadva_2024_200116
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_1007_s10661_022_10110_y
crossref_primary_10_1007_s11269_025_04183_w
crossref_primary_10_1016_j_gsd_2024_101329
crossref_primary_10_3390_rs12040610
crossref_primary_10_1186_s40645_023_00574_y
crossref_primary_10_3389_frwa_2023_1244024
crossref_primary_10_3390_rs12121986
crossref_primary_10_1016_j_jclepro_2023_137246
crossref_primary_10_1016_j_jhydrol_2023_129821
crossref_primary_10_1016_j_jhydrol_2022_128277
crossref_primary_10_1029_2021EF002571
crossref_primary_10_1016_j_ijinfomgt_2020_102104
crossref_primary_10_1007_s41870_023_01483_5
crossref_primary_10_1016_j_gsd_2024_101343
crossref_primary_10_1029_2021WR030936
crossref_primary_10_1016_j_jag_2025_104813
crossref_primary_10_1016_j_jhydrol_2023_129536
crossref_primary_10_1080_19942060_2024_2449124
crossref_primary_10_1061_JHYEFF_HEENG_6180
crossref_primary_10_1007_s12145_023_00987_9
crossref_primary_10_1016_j_gsf_2022_101349
crossref_primary_10_3390_rs12213507
crossref_primary_10_3390_rs13234899
crossref_primary_10_3390_land12101937
crossref_primary_10_1029_2021WR029909
crossref_primary_10_1039_D1EW00739D
crossref_primary_10_3390_hydrology9070117
crossref_primary_10_5194_hess_25_2997_2021
crossref_primary_10_1007_s10661_024_13206_9
crossref_primary_10_3390_w11102126
crossref_primary_10_3390_cli8120139
crossref_primary_10_3390_su15118666
crossref_primary_10_1016_j_atmosres_2022_106159
crossref_primary_10_3390_w15122225
crossref_primary_10_1007_s40808_023_01915_y
crossref_primary_10_1155_2021_9945218
crossref_primary_10_3390_rs15204912
crossref_primary_10_3390_w14203277
crossref_primary_10_1007_s12665_020_09337_0
crossref_primary_10_1016_j_psep_2021_12_006
crossref_primary_10_3390_s21041157
crossref_primary_10_1109_ACCESS_2020_3034127
crossref_primary_10_1515_geo_2022_0487
crossref_primary_10_1029_2024WR038192
crossref_primary_10_1016_j_pedsph_2022_06_009
crossref_primary_10_1029_2024WR039169
crossref_primary_10_1016_j_scitotenv_2023_161543
crossref_primary_10_3390_w17030434
crossref_primary_10_1007_s00704_025_05422_1
crossref_primary_10_1016_j_apenergy_2022_119063
crossref_primary_10_3390_w17030433
crossref_primary_10_1016_j_sasc_2023_200049
crossref_primary_10_1007_s13201_022_01846_6
crossref_primary_10_1016_j_advwatres_2019_103483
crossref_primary_10_3390_w16101426
crossref_primary_10_1007_s11831_023_10017_y
crossref_primary_10_1007_s10668_022_02670_3
crossref_primary_10_3390_su12187508
crossref_primary_10_1007_s00521_024_10877_w
crossref_primary_10_3390_e21050537
crossref_primary_10_3389_frai_2023_1339988
crossref_primary_10_2166_hydro_2021_093
crossref_primary_10_3389_frsen_2025_1631403
crossref_primary_10_1016_j_jenvman_2020_111713
crossref_primary_10_1016_j_jhydrol_2020_125840
crossref_primary_10_1016_j_chemosphere_2021_130265
crossref_primary_10_1007_s11831_025_10276_x
crossref_primary_10_5194_os_20_21_2024
crossref_primary_10_3390_atmos11090987
crossref_primary_10_1007_s11270_023_06198_8
Cites_doi 10.1016/j.csda.2006.12.030
10.1016/j.jhydrol.2018.10.044
10.1002/hyp.11298
10.1016/j.jhydrol.2018.02.009
10.1007/s11269-014-0872-z
10.1007/s10533-015-0163-7
10.1016/j.jhydrol.2012.01.039
10.1007/s11269-014-0796-7
10.3390/w10081049
10.1109/ITA.2012.6181810
10.1029/2018JG004613
10.5194/hess-20-4605-2016
10.1007/s11069-018-3246-7
10.1002/2017JG003856
10.1023/A:1010933404324
10.1002/2016JG003503
10.1016/j.isprsjprs.2016.01.011
10.1029/2018WR022643
10.1002/2016WR019034
10.1002/rra.1534
10.1002/2014JD022507
10.1016/j.envsoft.2011.06.004
10.1002/jgrc.20102
10.3390/w7073531
10.1080/02626667.2018.1425802
10.1016/j.patcog.2013.05.018
10.3389/fmars.2017.00141
10.3389/fmars.2018.00317
10.1007/s00477-018-1519-z
10.1016/j.jhydrol.2018.04.038
10.2134/jeq2016.07.0261
10.1016/j.jhydrol.2018.06.081
10.1080/1573062X.2018.1424211
10.1007/s11634-016-0270-x
10.1002/2013WR014203
10.1007/s00477-018-1638-6
10.5194/hess-16-3699-2012
10.1002/hyp.7110
10.5194/hess-19-2409-2015
10.1080/01431161.2018.1433343
10.1038/s41598-017-03011-5
10.1214/ss/1009213290
10.1080/10618600.2019.1677243
10.1016/j.jhydrol.2016.02.017
10.1016/j.advwatres.2017.11.010
10.1016/j.jhydrol.2016.04.049
10.1214/09-AOAS285
10.1016/j.jhydrol.2014.05.029
10.1007/s11222-012-9349-1
10.1007/s00477-018-1523-3
10.3390/w10101372
10.1002/rra.3019
10.5194/hess-20-2611-2016
10.1002/sam.10103
10.3389/fmars.2017.00184
10.1007/s11069-015-1908-2
10.2134/jeq2016.03.0076
10.1016/j.jhydrol.2017.11.026
10.2134/jeq2017.07.0300
10.1002/bimj.201700243
10.1080/10485252.2012.677843
10.1016/j.jhydrol.2004.06.021
10.1016/j.jhydrol.2015.12.012
10.1016/j.jhydrol.2014.03.057
10.1890/11-0252.1
10.3389/fmars.2015.00008
10.3389/fmars.2018.00149
10.1002/widm.1114
10.18637/jss.v077.i01
10.3390/w7084088
10.1007/s11269-017-1589-6
10.1007/s11269-017-1774-7
10.3390/w10091123
10.1051/proc/201760144
10.1007/s11069-017-2934-z
10.5194/tc-12-3617-2018
10.1016/j.watres.2017.10.032
10.5194/tc-12-1307-2018
10.3390/w10091155
10.1029/2017JD027992
10.1162/neco.1996.8.7.1341
10.1016/j.csda.2013.04.010
10.1029/2017JD027824
10.1029/2011JG001708
10.3390/w10070894
10.1007/s11749-016-0481-7
10.1007/s11269-016-1423-6
10.1002/rra.1247
10.1002/widm.1072
10.1016/j.watres.2017.07.035
10.1162/neco.1997.9.7.1545
10.1016/j.datak.2013.07.002
10.1007/s00027-017-0557-9
10.1002/sam.11196
10.3390/w10050599
10.1002/2017JC013631
10.1002/widm.8
10.5194/hess-22-1371-2018
10.1093/bioinformatics/btn356
10.1002/bimj.201700129
10.1214/10-STS330
10.1016/j.desal.2017.11.044
10.1051/kmae/2011031
10.1007/s00027-013-0306-7
10.1126/sciadv.1700768
10.1080/00031305.2015.1005128
10.1029/2017JC013638
10.5194/hess-21-1611-2017
10.1029/2018WR022606
10.1017/S0376892916000576
10.1002/rra.2838
10.1016/j.jhydrol.2015.10.038
10.1186/1471-2105-11-110
10.1093/bib/bbu012
10.1007/s11269-015-1034-7
10.1002/jgrd.50304
10.1016/j.watres.2014.01.013
10.1186/1471-2105-8-25
10.1016/j.advwatres.2018.01.003
10.1016/j.ejrh.2018.04.002
10.1016/j.jhydrol.2016.06.027
10.1029/2017WR022216
10.1007/978-1-4614-6849-3
10.1214/15-AOS1321
10.3390/w10101347
10.1007/s00477-016-1369-5
10.1002/2014WR015634
10.5194/hess-12-603-2008
10.1029/2018WR022681
10.1198/106186006X133933
10.1073/pnas.1800256115
10.1016/j.jhydrol.2011.12.016
10.3390/w10091239
10.3390/w10070824
10.1080/01621459.2017.1319839
10.1177/0309133312444943
10.5194/tc-12-343-2018
10.1002/2016WR020301
10.1007/s10533-017-0310-4
10.1016/j.jmva.2015.06.009
10.1016/j.jhydrol.2014.08.053
10.2134/jeq2017.08.0329
10.3389/fmars.2017.00335
10.1016/j.jhydrol.2017.04.035
10.1002/rra.2656
10.1002/2017WR021119
10.3390/w9110833
10.7287/peerj.preprints.26693v3
10.1007/BF00058655
10.3390/w10060676
10.1007/s11269-017-1660-3
10.1007/978-0-387-84858-7
10.5194/tc-12-2437-2018
10.1002/rra.3153
10.1080/1573062X.2016.1148178
10.1109/ICCV.2011.6126429
10.1016/j.watres.2005.01.001
10.1080/20964471.2018.1435072
10.1016/j.watres.2016.08.035
10.1073/pnas.1711236115
10.1890/07-0539.1
10.1016/j.envsoft.2016.08.006
10.1214/19-AOAS1247
10.3389/fmars.2016.00252
10.5194/adgeo-45-201-2018
10.1016/j.ygeno.2012.04.003
10.1016/j.patrec.2012.04.003
10.1007/s11269-018-1977-6
10.1007/s11269-017-1865-5
10.1080/02626667.2018.1469756
10.1016/j.jhydrol.2014.05.049
10.1109/TPAMI.2009.23
10.1016/j.envsoft.2006.06.008
10.1002/2017WR020482
10.1007/s11069-016-2579-3
10.1002/wrcr.20339
10.5194/hess-18-3393-2014
10.1002/wrcr.20308
10.1007/s11069-015-1842-3
10.3390/w10070888
10.1186/s40562-018-0111-1
10.1214/18-AOS1709
10.1016/j.jhydrol.2015.10.039
10.1002/2017WR020784
10.1111/1752-1688.12555
10.1016/j.jhydrol.2018.04.042
10.1126/science.aal4321
10.1016/j.jhydrol.2016.03.017
10.2202/1544-6115.1691
10.2166/hydro.2008.015
10.1029/2009WR008898
10.1080/1573062X.2018.1459748
10.1029/2018JD028447
10.1109/TCBB.2011.46
10.1002/widm.14
10.1109/ICCVW.2011.6130407
10.1016/j.agwat.2016.11.003
10.3390/w10111519
10.1002/wics.1346
10.1029/2018WR023378
10.3390/w7041437
10.1017/S0376892913000428
10.1029/2017JD027623
10.1561/0600000035
10.1016/j.jhydrol.2012.02.031
10.1016/j.jhydrol.2004.06.020
10.5194/hess-15-1895-2011
10.1002/2016WR019831
10.1002/rra.2581
10.1002/9781119960003
10.1016/j.csda.2015.10.005
10.1016/j.jhydrol.2018.09.043
10.1016/j.jhydrol.2018.07.004
10.1080/15481603.2017.1419602
10.3390/s18082674
10.5194/hess-17-2685-2013
10.1016/j.agwat.2012.07.003
10.1007/s11269-015-1016-9
10.1016/j.advwatres.2017.12.009
10.1029/2017JC013404
10.1007/s11069-014-1270-9
10.1002/2012WR012660
10.1109/TPAMI.2006.211
10.1002/hyp.13224
10.1016/j.jhydrol.2018.04.024
10.1016/j.jhydrol.2015.02.025
10.1007/s10653-013-9510-6
10.1007/s11069-015-1893-5
10.1002/widm.12
10.1002/2017WR020390
10.1016/j.spl.2018.02.015
10.1016/j.jhydrol.2013.07.009
10.1016/j.patrec.2005.08.011
10.1002/rra.3029
10.1002/2017JG003968
10.3390/w10081019
10.1186/1471-2105-7-3
10.1016/j.jhydrol.2018.07.015
10.1016/j.jhydrol.2011.08.002
10.1002/bimj.201700067
10.1016/j.bdr.2017.07.003
10.3390/w10121765
10.5194/hess-22-4097-2018
10.1002/widm.1249
10.1002/2017WR020630
10.1007/s11069-018-3427-4
10.1093/bioinformatics/btw765
10.1093/bib/bbr053
10.5194/hess-20-2589-2016
10.1002/2016WR020197
10.1007/s13171-018-0133-y
10.1002/bimj.201300226
10.1016/j.agwat.2017.08.003
10.1109/ICCVW.2009.5457447
10.1111/1752-1688.12685
10.1023/A:1007607513941
10.1016/j.asoc.2014.02.002
10.1109/TIT.2009.2025558
10.1007/s11269-018-1944-2
10.1177/030913330102500104
10.1016/j.jhydrol.2016.07.048
10.1016/j.patcog.2010.08.011
10.1029/2018JD028422
10.1007/s00027-011-0194-7
10.3391/ai.2018.13.4.09
10.1214/10-AOAS367
10.1007/s11069-017-3104-z
10.1007/s11069-017-3043-8
10.1016/j.jhydrol.2013.11.007
10.1017/S0376892911000658
10.1080/09715010.2009.10514968
10.1016/j.jhydrol.2014.11.012
10.1016/j.envsoft.2010.02.003
10.1109/34.709601
10.1002/2016JD025154
10.3390/a10040114
10.1198/tast.2009.08199
10.1002/rra.2906
10.1016/j.watres.2010.05.019
10.5194/tc-10-257-2016
10.5194/hess-17-2669-2013
10.1080/10618600.2017.1384734
10.1029/2004WR003094
10.5194/hess-18-4467-2014
10.1029/2018JG004727
10.1007/s10994-006-6226-1
10.1016/j.jhydrol.2017.06.020
10.1214/ss/1009213726
10.1017/CBO9781316576533
10.1037/a0016973
10.1029/2011WR011088
10.1016/j.jhydrol.2015.11.009
10.1016/j.jhydrol.2018.09.055
10.1061/(ASCE)WR.1943-5452.0000969
10.1016/j.jhydrol.2017.08.013
10.1016/j.jhydrol.2015.06.008
10.1016/j.ymeth.2016.08.014
10.3390/w10010056
10.3390/w7126656
10.1016/j.jhydrol.2018.01.044
10.1002/2015WR017394
10.1016/j.jhydrol.2010.04.005
10.5194/hess-19-2859-2015
10.1029/2017WR021749
10.1029/2008WR007474
10.1002/rra.2917
10.1051/kmae/2017032
10.1002/2016JF004180
10.1016/j.patrec.2010.03.014
10.5268/IW-5.2.808
10.3390/w10040391
10.3390/w10101460
10.1007/s10040-018-1767-5
10.1007/978-1-4614-7138-7
10.1016/j.jhydrol.2016.04.025
10.1186/1471-2105-9-307
10.1021/jm4004285
10.1002/rra.2998
10.1007/s00027-018-0592-1
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.3390/w11050910
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10_3390_w11050910
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BANNL
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c325t-1b945db9840a49bd0f3ac00c3b5824bca64c5eb56b52f9ca28bc8ea7ee7c19fb3
IEDL.DBID BENPR
ISICitedReferencesCount 471
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472680400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4441
IngestDate Mon Sep 08 05:59:19 EDT 2025
Mon Jun 30 07:27:21 EDT 2025
Sat Nov 29 07:13:20 EST 2025
Tue Nov 18 21:44:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1b945db9840a49bd0f3ac00c3b5824bca64c5eb56b52f9ca28bc8ea7ee7c19fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0643-2520
0000-0002-8932-4997
0000-0001-5446-954X
OpenAccessLink https://www.proquest.com/docview/2550455377?pq-origsite=%requestingapplication%
PQID 2550455377
PQPubID 2032318
ParticipantIDs proquest_miscellaneous_2315269119
proquest_journals_2550455377
crossref_citationtrail_10_3390_w11050910
crossref_primary_10_3390_w11050910
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Redo (ref_262) 2012; 39
Segal (ref_97) 2011; 1
Brentan (ref_157) 2018; 15
Meinshausen (ref_85) 2006; 7
Genuer (ref_82) 2010; 31
(ref_193) 2017; 53
ref_99
ref_130
Kohestani (ref_212) 2015; 79
Biau (ref_68) 2012; 13
Boulesteix (ref_52) 2015; 69
ref_96
Basu (ref_102) 2018; 115
ref_135
ref_95
ref_134
Zhao (ref_332) 2018; 563
Nelson (ref_242) 2018; 123
Brunner (ref_158) 2018; 32
Phan (ref_34) 2016; 85
Zhao (ref_330) 2012; 420–421
Schnier (ref_277) 2014; 517
Wager (ref_92) 2018; 113
Papacharalampous (ref_132) 2018; 45
Roubeix (ref_269) 2017; 418
Chenar (ref_167) 2018; 128
Leasure (ref_214) 2016; 32
Berryman (ref_148) 2018; 123
Cox (ref_49) 2018; 136
Winham (ref_126) 2013; 6
Tesoriero (ref_300) 2017; 53
ref_248
Yamazaki (ref_323) 2013; 118
ref_129
Dubinsky (ref_172) 2016; 105
ref_120
ref_123
Snelder (ref_252) 2014; 18
Schwarz (ref_278) 2013; 35
Rowden (ref_270) 2017; 4
Markonis (ref_228) 2018; 113
Athey (ref_89) 2019; 47
Giglio (ref_190) 2018; 123
Loos (ref_221) 2011; 409
Zscheischler (ref_338) 2016; 121
Thielen (ref_263) 2014; 18
Castelletti (ref_164) 2010; 46
Singh (ref_288) 2018; 54
Erechtchoukova (ref_173) 2016; 30
Wang (ref_314) 2015; 527
Kasiviswanathan (ref_35) 2017; 31
Rossi (ref_268) 2015; 531
Wright (ref_131) 2017; 77
Gudmundsson (ref_194) 2015; 19
Boulesteix (ref_83) 2015; 16
Yaseen (ref_32) 2015; 530
ref_77
ref_75
Dawson (ref_21) 2001; 25
Nourani (ref_28) 2014; 514
Schnieders (ref_276) 2013; 118
Shiri (ref_282) 2017; 549
Mahdavi (ref_9) 2018; 55
Sahoo (ref_273) 2018; 32
Zhao (ref_331) 2018; 26
Zimmermann (ref_337) 2014; 50
Bernard (ref_121) 2012; 33
Zhu (ref_335) 2016; 533
Papacharalampous (ref_87) 2018; 5
Snelder (ref_291) 2013; 29
Breiman (ref_1) 2001; 45
Vaughan (ref_309) 2017; 122
ref_147
Maxwell (ref_8) 2018; 39
Seibert (ref_279) 2017; 21
ref_80
Shmueli (ref_44) 2010; 25
Geurts (ref_103) 2006; 63
Gong (ref_192) 2015; 19
Gerlitz (ref_189) 2016; 20
Boulesteix (ref_74) 2012; 13
Olshen (ref_41) 2001; 16
ref_86
ref_143
Trancoso (ref_303) 2016; 535
Menberu (ref_232) 2017; 53
Goodall (ref_247) 2018; 559
Gao (ref_187) 2018; 567
Waugh (ref_317) 2018; 123
Biau (ref_2) 2016; 25
Jain (ref_24) 2009; 15
Boulesteix (ref_45) 2014; 56
Robinson (ref_266) 2018; 32
Miller (ref_235) 2018; 54
ref_213
Lorenz (ref_223) 2018; 123
Hamel (ref_195) 2017; 31
ref_215
ref_218
Afan (ref_33) 2016; 541
Cancela (ref_161) 2017; 183
Thompson (ref_151) 2018; 112
Chen (ref_10) 2011; 1
Heinze (ref_81) 2018; 60
Shchur (ref_280) 2017; 44
McManamay (ref_230) 2014; 519
Verikas (ref_70) 2011; 44
Ellis (ref_122) 2012; 93
Addor (ref_137) 2018; 54
Wang (ref_312) 2018; 54
Ishwaran (ref_110) 2011; 4
Zhang (ref_329) 2016; 121
Biau (ref_64) 2008; 9
Maier (ref_25) 2010; 25
Scornet (ref_66) 2016; 146
ref_207
Ishwaran (ref_98) 2008; 3
Ho (ref_61) 1998; 20
Reynolds (ref_265) 2015; 523
ref_201
Wolpert (ref_90) 1996; 8
Shen (ref_37) 2018; 54
Vezza (ref_311) 2014; 76
McGrath (ref_229) 2018; 12
Bui (ref_159) 2016; 540
Lima (ref_219) 2016; 537
Cherkasov (ref_13) 2014; 57
Yang (ref_325) 2017; 53
ref_114
ref_237
ref_119
ref_239
Smith (ref_289) 2010; 44
Rahman (ref_127) 2017; 33
Cabrera (ref_160) 2018; 435
Naghibi (ref_238) 2017; 31
ref_111
Parkhurst (ref_250) 2005; 39
ref_112
Belgiu (ref_7) 2016; 114
Zhou (ref_334) 2015; 79
Zimmermann (ref_336) 2012; 428–429
Aguilera (ref_26) 2011; 26
Bachmair (ref_141) 2016; 20
Scornet (ref_65) 2015; 43
Shah (ref_101) 2014; 15
Reed (ref_168) 2015; 126
Vezza (ref_245) 2013; 409
Afshar (ref_30) 2015; 29
Chen (ref_14) 2011; 8
Qi (ref_259) 2018; 92
Cutler (ref_5) 2007; 88
Lin (ref_220) 2015; 7
Breiman (ref_40) 2001; 16
Olson (ref_246) 2012; 48
Shiri (ref_281) 2018; 561
Umar (ref_306) 2018; 556
Deng (ref_124) 2013; 46
Rodriguez (ref_105) 2006; 28
Loh (ref_19) 2011; 1
ref_108
Booker (ref_155) 2014; 508
ref_107
Santos (ref_275) 2017; 14
Yang (ref_324) 2017; 53
Wanik (ref_315) 2015; 79
ref_109
Wright (ref_318) 2018; 12
Sadler (ref_272) 2018; 559
Francke (ref_180) 2008; 22
Ziegler (ref_17) 2014; 4
Raghavendra (ref_29) 2014; 19
Booker (ref_153) 2012; 434–435
Cadena (ref_243) 2016; 538
Piniewski (ref_256) 2017; 33
Keto (ref_209) 2018; 80
Solomatine (ref_20) 2008; 10
Anderson (ref_138) 2018; 123
Shortridge (ref_283) 2014; 53
Dhungel (ref_170) 2016; 32
Oczkowski (ref_244) 2016; 3
Probst (ref_79) 2018; 18
Ada (ref_136) 2018; 90
Li (ref_217) 2018; 123
Baudron (ref_145) 2013; 499
Boyle (ref_156) 2015; 120
Genuer (ref_48) 2017; 9
Povak (ref_258) 2013; 49
Schubach (ref_91) 2017; 7
Chen (ref_12) 2012; 99
Xiao (ref_320) 2018; 94
Wager (ref_84) 2014; 15
Fullerton (ref_182) 2018; 80
Denil (ref_113) 2013; 28
Tongal (ref_302) 2018; 564
Chipman (ref_94) 2010; 4
Bhuiyan (ref_149) 2018; 22
Bowden (ref_22) 2005; 301
Ozuysal (ref_117) 2010; 32
Behnia (ref_146) 2018; 90
Meador (ref_231) 2012; 28
Amit (ref_60) 1997; 9
Winowiecki (ref_307) 2018; 47
Meinshausen (ref_118) 2010; 4
Yang (ref_326) 2016; 52
Feng (ref_177) 2015; 7
Yan (ref_125) 2013; 66
Diesing (ref_171) 2017; 135
Gmur (ref_191) 2014; 41
Midekisa (ref_234) 2014; 50
Jing (ref_208) 2018; 32
(ref_73) 2009; 63
Fukuda (ref_181) 2013; 116
Tesfa (ref_299) 2009; 45
Snelder (ref_290) 2012; 74
Wang (ref_54) 2016; 111
Salo (ref_274) 2016; 32
Herrera (ref_199) 2010; 387
ref_313
Bond (ref_152) 2017; 53
Fang (ref_174) 2017; 122
Abrahart (ref_27) 2012; 36
ref_319
Hyrenbach (ref_184) 2018; 5
Sidibe (ref_285) 2018; 561
Genuer (ref_67) 2012; 24
Janitza (ref_72) 2016; 96
Wanyama (ref_316) 2018; 123
Donoho (ref_46) 2017; 26
Gage (ref_183) 2015; 29
Sieg (ref_286) 2017; 53
Li (ref_216) 2018; 46
Booker (ref_154) 2018; 54
Strobl (ref_106) 2007; 52
Asim (ref_140) 2017; 85
Hoshino (ref_200) 2017; 4
Taormina (ref_298) 2018; 144
Meyers (ref_233) 2017; 124
Carvalho (ref_163) 2018; 15
Loosvelt (ref_222) 2014; 517
Depecker (ref_116) 2013; 14
Forkuor (ref_139) 2015; 7
Tripoliti (ref_93) 2013; 87
ref_301
Navares (ref_241) 2018; 32
ref_304
Papacharalampous (ref_88) 2019; 33
Rahmati (ref_260) 2017; 31
Fang (ref_175) 2018; 561
Shortridge (ref_284) 2016; 20
Galelli (ref_186) 2013; 49
Galelli (ref_185) 2013; 17
Feng (ref_178) 2017; 193
Jacoby (ref_205) 2015; 5
Lu (ref_224) 2018; 566
Vayatis (ref_115) 2009; 55
Fouad (ref_179) 2018; 17
Gegiuc (ref_188) 2018; 12
Goldstein (ref_11) 2011; 10
(ref_251) 2016; 538
Sagi (ref_18) 2018; 8
Chen (ref_50) 2018; 2
ref_58
Breiman (ref_63) 1996; 24
Denisko (ref_128) 2018; 115
Petty (ref_255) 2018; 54
ref_56
ref_296
Nateghi (ref_240) 2014; 74
ref_53
ref_297
Feng (ref_176) 2014; 519
Amaratunga (ref_104) 2008; 24
Snelder (ref_292) 2013; 17
Veettil (ref_310) 2018; 564
Iorgulescu (ref_42) 2004; 40
Simard (ref_287) 2011; 116
Mehr (ref_36) 2018; 566
ref_59
(ref_206) 2018; 13
Hothorn (ref_100) 2006; 15
Lal (ref_169) 2014; 28
Dyke (ref_144) 2018; 63
Xu (ref_322) 2017; 53
Yu (ref_328) 2017; 552
Athey (ref_55) 2017; 355
Maheu (ref_226) 2016; 32
Zheng (ref_333) 2016; 10
Zhang (ref_38) 2018; 63
ref_166
Carlisle (ref_162) 2010; 26
Mosquera (ref_253) 2018; 32
Boulesteix (ref_51) 2018; 60
Scornet (ref_78) 2017; 60
He (ref_197) 2016; 52
Birkel (ref_150) 2014; 30
Dietterich (ref_62) 2000; 40
Speich (ref_293) 2018; 22
Gislason (ref_6) 2006; 27
Rozema (ref_271) 2017; 4
(ref_203) 2017; 122
Povak (ref_257) 2014; 50
Huang (ref_202) 2018; 123
Ezcurra (ref_204) 2011; 15
Bowden (ref_23) 2005; 301
(ref_69) 2015; 7
Su (ref_295) 2018; 123
Criminisi (ref_15) 2011; 7
ref_196
ref_198
Tyralis (ref_305) 2018; 111
Maloney (ref_227) 2016; 32
Liaw (ref_57) 2002; 2
Dawson (ref_133) 2007; 22
Kim (ref_211) 2016; 45
Parker (ref_249) 2016; 32
Strobl (ref_71) 2009; 14
Bachmair (ref_142) 2012; 16
ref_39
Rossel (ref_267) 2018; 5
Boulesteix (ref_16) 2012; 2
Hapfelmeier (ref_76) 2014; 24
Peters (ref_254) 2008; 12
Kim (ref_210) 2015; 7
Adhikari (ref_264) 2018; 47
Haberlandt (ref_308) 2015; 531
Lutz (ref_225) 2018; 54
ref_47
Xu (ref_321) 2018; 123
ref_43
Stephan (ref_294) 2018; 12
ref_3
Choong (ref_31) 2015; 29
Yao (ref_327) 2017; 553
ref_4
Chen (ref_165) 2017; 31
Mitsopoulos (ref_236) 2017; 88
Rattray (ref_261) 2015; 2
References_xml – volume: 52
  start-page: 483
  year: 2007
  ident: ref_106
  article-title: Unbiased split selection for classification trees based on the Gini index
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.12.030
– volume: 3
  start-page: 841
  year: 2008
  ident: ref_98
  article-title: Random survival forests
  publication-title: Ann. Appl. Stat.
– volume: 567
  start-page: 590
  year: 2018
  ident: ref_187
  article-title: Identifying the dominant controls on macropore flow velocity in soils: A meta-analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.044
– volume: 31
  start-page: 3844
  year: 2017
  ident: ref_195
  article-title: Predicting dry-season flows with a monthly rainfall–runoff model: Performance for gauged and ungauged catchments
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11298
– volume: 559
  start-page: 192
  year: 2018
  ident: ref_247
  article-title: Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using random forest classification
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.009
– volume: 29
  start-page: 1267
  year: 2015
  ident: ref_31
  article-title: State-of-the-art for modelling reservoir inflows and management optimization
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0872-z
– volume: 126
  start-page: 363
  year: 2015
  ident: ref_168
  article-title: Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-015-0163-7
– volume: 428–429
  start-page: 170
  year: 2012
  ident: ref_336
  article-title: Forests and erosion: Insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.01.039
– volume: 28
  start-page: 5091
  year: 2014
  ident: ref_169
  article-title: Assessing the accuracy of soil and water quality characterization using remote sensing
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0796-7
– ident: ref_297
  doi: 10.3390/w10081049
– volume: 15
  start-page: 1625
  year: 2014
  ident: ref_84
  article-title: Confidence intervals for random forests: The Jackknife and the infinitesimal Jackknife
  publication-title: J. Mach. Learn. Res.
– ident: ref_112
  doi: 10.1109/ITA.2012.6181810
– volume: 123
  start-page: 3231
  year: 2018
  ident: ref_148
  article-title: Estimating soil respiration in a subalpine landscape using point, terrain, climate, and greenness data
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2018JG004613
– volume: 20
  start-page: 4605
  year: 2016
  ident: ref_189
  article-title: A statistically based seasonal precipitation forecast model with automatic predictor selection and its application to central and south Asia
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-4605-2016
– volume: 92
  start-page: 1179
  year: 2018
  ident: ref_259
  article-title: Prediction of open stope hangingwall stability using random forests
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3246-7
– volume: 123
  start-page: 976
  year: 2018
  ident: ref_316
  article-title: Land-use, land-use history and soil type affect soil greenhouse gas fluxes from agricultural landscapes of the East African highlands
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2017JG003856
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_1
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 121
  start-page: 2186
  year: 2016
  ident: ref_338
  article-title: Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2016JG003503
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_7
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 54
  start-page: 8558
  year: 2018
  ident: ref_37
  article-title: A trans-disciplinary review of deep learning research and its relevance for water resources scientists
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022643
– volume: 52
  start-page: 8217
  year: 2016
  ident: ref_197
  article-title: Spatial downscaling of precipitation using adaptable random forests
  publication-title: Water Res. Res.
  doi: 10.1002/2016WR019034
– volume: 28
  start-page: 1359
  year: 2012
  ident: ref_231
  article-title: Relations between altered streamflow variability and fish assemblages in Eastern USA streams
  publication-title: River Res. Appl.
  doi: 10.1002/rra.1534
– volume: 120
  start-page: 1424
  year: 2015
  ident: ref_156
  article-title: The parametric sensitivity of CAM5′s MJO
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2014JD022507
– volume: 26
  start-page: 1376
  year: 2011
  ident: ref_26
  article-title: Bayesian networks in environmental modelling
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.06.004
– volume: 118
  start-page: 1272
  year: 2013
  ident: ref_276
  article-title: Analyzing the footprints of near-surface aqueous turbulence: An image processing-based approach
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/jgrc.20102
– volume: 7
  start-page: 3531
  year: 2015
  ident: ref_139
  article-title: Modeling flood hazard zones at the sub-district level with the rational model integrated with GIS and remote sensing approaches
  publication-title: Water
  doi: 10.3390/w7073531
– volume: 63
  start-page: 269
  year: 2018
  ident: ref_144
  article-title: Extracting water-related features using reflectance data and principal component analysis of Landsat images
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2018.1425802
– volume: 46
  start-page: 3483
  year: 2013
  ident: ref_124
  article-title: Gene selection with guided regularized random forest
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.05.018
– volume: 4
  start-page: 141
  year: 2017
  ident: ref_200
  article-title: Fishers’ perceived objectives of community-based coastal resource management in the Kei Islands, Indonesia
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2017.00141
– volume: 5
  start-page: 317
  year: 2018
  ident: ref_184
  article-title: Seabird trophic position across three ocean regions tracks ecosystem differences
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2018.00317
– ident: ref_114
– volume: 32
  start-page: 2849
  year: 2018
  ident: ref_241
  article-title: Comparing ARIMA and computational intelligence methods to forecast daily hospital admissions due to circulatory and respiratory causes in Madrid
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1519-z
– volume: 561
  start-page: 764
  year: 2018
  ident: ref_175
  article-title: Reference evapotranspiration forecasting based on local meteorological and global climate information screened by partial mutual information
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.038
– volume: 46
  start-page: 64
  year: 2018
  ident: ref_216
  article-title: Spatiotemporal assessment of forest biomass carbon sinks: The relative roles of forest expansion and growth in Sichuan Province, China
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.07.0261
– volume: 563
  start-page: 1009
  year: 2018
  ident: ref_332
  article-title: A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.06.081
– volume: 15
  start-page: 150
  year: 2018
  ident: ref_157
  article-title: Water demand time series generation for distribution network modeling and water demand forecasting
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2018.1424211
– ident: ref_77
  doi: 10.1007/s11634-016-0270-x
– volume: 50
  start-page: 2798
  year: 2014
  ident: ref_257
  article-title: Machine learning and linear regression models to predict catchment-level base cation weathering rates across the southern Appalachian Mountain region, USA
  publication-title: Water Res. Res.
  doi: 10.1002/2013WR014203
– volume: 33
  start-page: 481
  year: 2019
  ident: ref_88
  article-title: Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1638-6
– volume: 16
  start-page: 3699
  year: 2012
  ident: ref_142
  article-title: Hillslope characteristics as controls of subsurface flow variability
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-3699-2012
– volume: 22
  start-page: 4892
  year: 2008
  ident: ref_180
  article-title: Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7110
– volume: 19
  start-page: 2409
  year: 2015
  ident: ref_192
  article-title: Multi-objective parameter optimization of common land model using adaptive surrogate modeling
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-2409-2015
– volume: 39
  start-page: 2784
  year: 2018
  ident: ref_8
  article-title: Implementation of machine-learning classification in remote sensing: An applied review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1433343
– volume: 7
  start-page: 2959
  year: 2017
  ident: ref_91
  article-title: Imbalance-aware machine learning for predicting rare and common disease-associated non-coding variants
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03011-5
– volume: 16
  start-page: 184
  year: 2001
  ident: ref_41
  article-title: A conversation with Leo Breiman
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213290
– ident: ref_95
  doi: 10.1080/10618600.2019.1677243
– volume: 535
  start-page: 581
  year: 2016
  ident: ref_303
  article-title: Linking the Budyko framework and the Dunne diagram
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.017
– volume: 111
  start-page: 301
  year: 2018
  ident: ref_305
  article-title: On the long-range dependence properties of annual precipitation using a global network of instrumental measurements
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.11.010
– volume: 538
  start-page: 487
  year: 2016
  ident: ref_251
  article-title: Sources of variation in hydrological classifications: Time scale, flow series origin and classification procedure
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.04.049
– volume: 4
  start-page: 266
  year: 2010
  ident: ref_94
  article-title: BART: Bayesian Additive Regression Trees
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/09-AOAS285
– volume: 517
  start-page: 298
  year: 2014
  ident: ref_277
  article-title: Prediction of regional streamflow frequency using model tree ensembles
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.05.029
– volume: 24
  start-page: 21
  year: 2014
  ident: ref_76
  article-title: A new variable importance measure for random forests with missing data
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9349-1
– volume: 32
  start-page: 1993
  year: 2018
  ident: ref_158
  article-title: Synthetic design hydrographs for ungauged catchments: A comparison of regionalization methods
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1523-3
– ident: ref_166
  doi: 10.3390/w10101372
– volume: 32
  start-page: 1709
  year: 2016
  ident: ref_274
  article-title: A multi-scale, hierarchical model to map riparian zones
  publication-title: River Res. Appl.
  doi: 10.1002/rra.3019
– volume: 20
  start-page: 2611
  year: 2016
  ident: ref_284
  article-title: Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-2611-2016
– volume: 4
  start-page: 115
  year: 2011
  ident: ref_110
  article-title: Random survival forests for high-dimensional data
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.10103
– volume: 4
  start-page: 184
  year: 2017
  ident: ref_271
  article-title: Assessing drivers of coastal primary production in Northern Marguerite Bay, Antarctica
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2017.00184
– volume: 79
  start-page: 1359
  year: 2015
  ident: ref_315
  article-title: Storm outage modeling for an electric distribution network in Northeastern USA
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1908-2
– volume: 45
  start-page: 1910
  year: 2016
  ident: ref_211
  article-title: Assessment of carbon stocks in the topsoil using random forest and remote sensing images
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.03.0076
– volume: 556
  start-page: 325
  year: 2018
  ident: ref_306
  article-title: Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.11.026
– volume: 47
  start-page: 746
  year: 2018
  ident: ref_307
  article-title: Spatial gradients of ecosystem health indicators across a human-impacted semiarid savanna
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.07.0300
– ident: ref_53
  doi: 10.1002/bimj.201700243
– volume: 24
  start-page: 543
  year: 2012
  ident: ref_67
  article-title: Variance reduction in purely random forests
  publication-title: J. Nonparametric Stat.
  doi: 10.1080/10485252.2012.677843
– volume: 301
  start-page: 75
  year: 2005
  ident: ref_22
  article-title: Input determination for neural network models in water resources applications. Part 1—Background and methodology
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.06.021
– volume: 533
  start-page: 343
  year: 2016
  ident: ref_335
  article-title: Applying a weighted random forests method to extract karst sinkholes from LiDAR data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.12.012
– volume: 514
  start-page: 358
  year: 2014
  ident: ref_28
  article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 93
  start-page: 156
  year: 2012
  ident: ref_122
  article-title: Gradient forests: Calculating importance gradients on physical predictors
  publication-title: Ecology
  doi: 10.1890/11-0252.1
– volume: 2
  start-page: 8
  year: 2015
  ident: ref_261
  article-title: Wave exposure as a predictor of benthic habitat distribution on high energy temperate reefs
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2015.00008
– volume: 5
  start-page: 149
  year: 2018
  ident: ref_267
  article-title: Effects of sample fixation on specimen identification in biodiversity assemblies based on proteomic data (MALDI-TOF)
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2018.00149
– volume: 15
  start-page: 629
  year: 2014
  ident: ref_101
  article-title: Random intersection trees
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 55
  year: 2014
  ident: ref_17
  article-title: Mining data with random forests: Current options for real-world applications
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1114
– volume: 77
  start-page: 1
  year: 2017
  ident: ref_131
  article-title: Ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v077.i01
– volume: 7
  start-page: 4088
  year: 2015
  ident: ref_220
  article-title: Uncertainty in various habitat suitability models and its impact on habitat suitability estimates for fish
  publication-title: Water
  doi: 10.3390/w7084088
– volume: 31
  start-page: 1473
  year: 2017
  ident: ref_260
  article-title: Identification of critical flood prone areas in data-scarce and ungauged regions: A comparison of three data mining models
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1589-6
– volume: 31
  start-page: 4715
  year: 2017
  ident: ref_165
  article-title: Multiple random forests modelling for urban water consumption forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1774-7
– ident: ref_207
  doi: 10.3390/w10091123
– volume: 60
  start-page: 144
  year: 2017
  ident: ref_78
  article-title: Tuning parameters in random forests
  publication-title: ESAIM Proc. Surv.
  doi: 10.1051/proc/201760144
– volume: 88
  start-page: 1591
  year: 2017
  ident: ref_236
  article-title: A data-driven approach to assess large fire size generation in Greece
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2934-z
– volume: 12
  start-page: 3617
  year: 2018
  ident: ref_229
  article-title: Interannual snow accumulation variability on glaciers derived from repeat, spatially extensive ground-penetrating radar surveys
  publication-title: Cryosphere
  doi: 10.5194/tc-12-3617-2018
– volume: 7
  start-page: 983
  year: 2006
  ident: ref_85
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 128
  start-page: 20
  year: 2018
  ident: ref_167
  article-title: Development of genetic programming-based model for predicting oyster norovirus outbreak risks
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.10.032
– volume: 12
  start-page: 1307
  year: 2018
  ident: ref_318
  article-title: Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery
  publication-title: Cryosphere
  doi: 10.5194/tc-12-1307-2018
– ident: ref_319
  doi: 10.3390/w10091155
– volume: 123
  start-page: 4509
  year: 2018
  ident: ref_223
  article-title: Prospects and caveats of weighting climate models for summer maximum temperature projections over North America
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2017JD027992
– volume: 8
  start-page: 1341
  year: 1996
  ident: ref_90
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.7.1341
– volume: 66
  start-page: 178
  year: 2013
  ident: ref_125
  article-title: Cluster forests
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.04.010
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_57
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 123
  start-page: 13219
  year: 2018
  ident: ref_138
  article-title: Uncertainty analysis of simulations of the turn-of-the-century drought in the Western United States
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2017JD027824
– ident: ref_109
– volume: 116
  start-page: G04021
  year: 2011
  ident: ref_287
  article-title: Mapping forest canopy height globally with spaceborne lidar
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2011JG001708
– ident: ref_218
  doi: 10.3390/w10070894
– volume: 25
  start-page: 197
  year: 2016
  ident: ref_2
  article-title: A random forest guided tour
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
– volume: 30
  start-page: 4329
  year: 2016
  ident: ref_173
  article-title: Short-term predictions of hydrological events on an urbanized watershed using supervised classification
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1423-6
– volume: 409
  start-page: 7
  year: 2013
  ident: ref_245
  article-title: A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers
  publication-title: Knowl. Manag. Aquat. Syst.
– volume: 26
  start-page: 118
  year: 2010
  ident: ref_162
  article-title: Predicting the natural flow regime: Models for assessing hydrological alteration in streams
  publication-title: River Res. Appl.
  doi: 10.1002/rra.1247
– volume: 2
  start-page: 493
  year: 2012
  ident: ref_16
  article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1072
– volume: 124
  start-page: 67
  year: 2017
  ident: ref_233
  article-title: Short-term forecasting of turbidity in trunk main networks
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.07.035
– volume: 9
  start-page: 1545
  year: 1997
  ident: ref_60
  article-title: Shape quantization and recognition with randomized trees
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.7.1545
– volume: 87
  start-page: 41
  year: 2013
  ident: ref_93
  article-title: Modifications of the construction and voting mechanisms of the Random Forests Algorithm
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2013.07.002
– volume: 80
  start-page: 3
  year: 2018
  ident: ref_182
  article-title: Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-017-0557-9
– volume: 6
  start-page: 496
  year: 2013
  ident: ref_126
  article-title: A weighted random forests approach to improve predictive performance
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.11196
– ident: ref_239
  doi: 10.3390/w10050599
– volume: 123
  start-page: 399
  year: 2018
  ident: ref_295
  article-title: Retrieving temperature anomaly in the global subsurface and deeper ocean from satellite observations
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2017JC013631
– volume: 1
  start-page: 14
  year: 2011
  ident: ref_19
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.8
– volume: 22
  start-page: 1371
  year: 2018
  ident: ref_149
  article-title: A nonparametric statistical technique for combining global precipitation datasets: Development and hydrological evaluation over the Iberian Peninsula
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-1371-2018
– volume: 24
  start-page: 2010
  year: 2008
  ident: ref_104
  article-title: Enriched random forests
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn356
– volume: 60
  start-page: 216
  year: 2018
  ident: ref_51
  article-title: On the necessity and design of studies comparing statistical methods
  publication-title: Biom. J.
  doi: 10.1002/bimj.201700129
– volume: 25
  start-page: 289
  year: 2010
  ident: ref_44
  article-title: To explain or to predict?
  publication-title: Stat. Sci.
  doi: 10.1214/10-STS330
– volume: 435
  start-page: 77
  year: 2018
  ident: ref_160
  article-title: Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.11.044
– ident: ref_304
  doi: 10.1051/kmae/2011031
– volume: 76
  start-page: 1
  year: 2014
  ident: ref_311
  article-title: Modelling habitat requirements of bullhead (Cottus gobio) in Alpine streams
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-013-0306-7
– ident: ref_43
  doi: 10.1126/sciadv.1700768
– volume: 69
  start-page: 201
  year: 2015
  ident: ref_52
  article-title: A statistical framework for hypothesis testing in real data comparison studies
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2015.1005128
– volume: 123
  start-page: 4649
  year: 2018
  ident: ref_202
  article-title: Using multibeam backscatter data to investigate sediment-acoustic relationships
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2017JC013638
– volume: 21
  start-page: 1611
  year: 2017
  ident: ref_279
  article-title: Seasonal forecasting of hydrological drought in the Limpopo basin: A comparison of statistical methods
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-1611-2017
– volume: 54
  start-page: 8792
  year: 2018
  ident: ref_137
  article-title: A ranking of hydrological signatures based on their predictability in space
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022606
– volume: 44
  start-page: 191
  year: 2017
  ident: ref_280
  article-title: Monitoring selective logging with Landsat satellite imagery reveals that protected forests in Western Siberia experience greater harvest than non-protected forests
  publication-title: Environ. Conserv.
  doi: 10.1017/S0376892916000576
– volume: 32
  start-page: 18
  year: 2016
  ident: ref_214
  article-title: Natural flow regimes of the Ozark-Ouachita interior highlands region
  publication-title: River Res. Appl.
  doi: 10.1002/rra.2838
– volume: 530
  start-page: 829
  year: 2015
  ident: ref_32
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.038
– ident: ref_75
  doi: 10.1186/1471-2105-11-110
– volume: 16
  start-page: 338
  year: 2015
  ident: ref_83
  article-title: Letter to the Editor: On the term ‘interaction’ and related phrases in the literature on Random Forests
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbu012
– volume: 29
  start-page: 3877
  year: 2015
  ident: ref_183
  article-title: The influence of land cover, vertical structure, and socioeconomic factors on outdoor water use in a western US city
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1034-7
– volume: 118
  start-page: 2781
  year: 2013
  ident: ref_323
  article-title: Obtaining diverse behaviors in a climate model without the use of flux adjustments
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50304
– volume: 53
  start-page: 26
  year: 2014
  ident: ref_283
  article-title: Public health and pipe breaks in water distribution systems: Analysis with internet search volume as a proxy
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.01.013
– ident: ref_107
  doi: 10.1186/1471-2105-8-25
– volume: 113
  start-page: 1
  year: 2018
  ident: ref_228
  article-title: Global estimation of long-term persistence in annual river runoff
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.01.003
– volume: 17
  start-page: 64
  year: 2018
  ident: ref_179
  article-title: Regional regression models of percentile flows for the contiguous United States: Expert versus data-driven independent variable selection
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2018.04.002
– volume: 540
  start-page: 317
  year: 2016
  ident: ref_159
  article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.027
– volume: 54
  start-page: 4767
  year: 2018
  ident: ref_225
  article-title: Spatial patterns of water age: Using young water fractions to improve the characterization of transit times in contrasting catchments
  publication-title: Water Res. Res.
  doi: 10.1029/2017WR022216
– ident: ref_59
  doi: 10.1007/978-1-4614-6849-3
– volume: 43
  start-page: 1716
  year: 2015
  ident: ref_65
  article-title: Consistency of random forests
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1321
– ident: ref_248
  doi: 10.3390/w10101347
– volume: 31
  start-page: 1659
  year: 2017
  ident: ref_35
  article-title: Methods used for quantifying the prediction uncertainty of artificial neural network based hydrologic models
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-016-1369-5
– volume: 50
  start-page: 8791
  year: 2014
  ident: ref_234
  article-title: Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia
  publication-title: Water Res. Res.
  doi: 10.1002/2014WR015634
– volume: 12
  start-page: 603
  year: 2008
  ident: ref_254
  article-title: Modelling groundwater-dependent vegetation patterns using ensemble learning
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-12-603-2008
– volume: 54
  start-page: 9883
  year: 2018
  ident: ref_288
  article-title: The relative influence of storm and landscape characteristics on shallow groundwater responses in forested headwater catchments
  publication-title: Water Res. Res.
  doi: 10.1029/2018WR022681
– volume: 15
  start-page: 651
  year: 2006
  ident: ref_100
  article-title: Unbiased recursive partitioning: A conditional inference framework
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X133933
– volume: 115
  start-page: 1690
  year: 2018
  ident: ref_128
  article-title: Classification and interaction in random forests
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1800256115
– volume: 420–421
  start-page: 292
  year: 2012
  ident: ref_330
  article-title: Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.12.016
– ident: ref_213
  doi: 10.3390/w10091239
– ident: ref_296
  doi: 10.3390/w10070824
– volume: 113
  start-page: 1228
  year: 2018
  ident: ref_92
  article-title: Estimation and inference of heterogeneous treatment effects using random forests
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1319839
– volume: 36
  start-page: 480
  year: 2012
  ident: ref_27
  article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
  publication-title: Prog. Phys. Geogr. Earth Environ.
  doi: 10.1177/0309133312444943
– volume: 12
  start-page: 343
  year: 2018
  ident: ref_188
  article-title: Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data
  publication-title: Cryosphere
  doi: 10.5194/tc-12-343-2018
– volume: 53
  start-page: 3446
  year: 2017
  ident: ref_324
  article-title: Multiobjective reservoir operating rules based on cascade reservoir input variable selection method
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR020301
– volume: 135
  start-page: 183
  year: 2017
  ident: ref_171
  article-title: Predicting the standing stock of organic carbon in surface sediments of the North–West European continental shelf
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0310-4
– volume: 146
  start-page: 72
  year: 2016
  ident: ref_66
  article-title: On the asymptotics of random forests
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2015.06.009
– volume: 28
  start-page: 1256
  year: 2013
  ident: ref_113
  article-title: Consistency of online random forests
  publication-title: Proc. Mach. Learn. Res.
– volume: 519
  start-page: 1278
  year: 2014
  ident: ref_230
  article-title: Quantifying and generalizing hydrologic responses to dam regulation using a statistical modeling approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.08.053
– volume: 47
  start-page: 735
  year: 2018
  ident: ref_264
  article-title: Projecting soil organic carbon distribution in central Chile under future climate scenarios
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.08.0329
– volume: 4
  start-page: 335
  year: 2017
  ident: ref_270
  article-title: High-resolution habitat suitability models for the conservation and management of vulnerable marine ecosystems on the Louisville seamount chain, South Pacific Ocean
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2017.00335
– volume: 549
  start-page: 592
  year: 2017
  ident: ref_282
  article-title: Modeling soil bulk density through a complete data scanning procedure: Heuristic alternatives
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.04.035
– volume: 30
  start-page: 456
  year: 2014
  ident: ref_150
  article-title: Assessing the cumulative impacts of hydropower regulation on the flow characteristics of a large Atlantic salmon river system
  publication-title: River Res. Appl.
  doi: 10.1002/rra.2656
– volume: 53
  start-page: 8781
  year: 2017
  ident: ref_152
  article-title: Prediction of hydrologic characteristics for ungauged catchments to support hydroecological modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021119
– ident: ref_143
  doi: 10.3390/w9110833
– ident: ref_47
  doi: 10.7287/peerj.preprints.26693v3
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_63
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– ident: ref_301
  doi: 10.3390/w10060676
– volume: 31
  start-page: 2761
  year: 2017
  ident: ref_238
  article-title: Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1660-3
– ident: ref_58
  doi: 10.1007/978-0-387-84858-7
– volume: 12
  start-page: 2437
  year: 2018
  ident: ref_294
  article-title: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: Progress in the ESA climate change initiative
  publication-title: Cryosphere
  doi: 10.5194/tc-12-2437-2018
– volume: 33
  start-page: 1205
  year: 2017
  ident: ref_256
  article-title: Classification of natural flow regimes in Poland
  publication-title: River Res. Appl.
  doi: 10.1002/rra.3153
– volume: 14
  start-page: 343
  year: 2017
  ident: ref_275
  article-title: Stochastic data mining tools for pipe blockage failure prediction
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2016.1148178
– ident: ref_99
  doi: 10.1109/ICCV.2011.6126429
– volume: 39
  start-page: 1354
  year: 2005
  ident: ref_250
  article-title: Indicator bacteria at five swimming beaches—analysis using random forests
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.01.001
– volume: 2
  start-page: 86
  year: 2018
  ident: ref_50
  article-title: Recent advance in earth observation big data for hydrology
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2018.1435072
– volume: 105
  start-page: 56
  year: 2016
  ident: ref_172
  article-title: Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.08.035
– volume: 115
  start-page: 1943
  year: 2018
  ident: ref_102
  article-title: Iterative random forests to discover predictive and stable high-order interactions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1711236115
– volume: 88
  start-page: 2783
  year: 2007
  ident: ref_5
  article-title: Random forests for classification in ecology
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– volume: 85
  start-page: 98
  year: 2016
  ident: ref_34
  article-title: Applications of Bayesian belief networks in water resource management: A systematic review
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.08.006
– ident: ref_96
  doi: 10.1214/19-AOAS1247
– volume: 3
  start-page: 252
  year: 2016
  ident: ref_244
  article-title: Patterns in stable isotope values of nitrogen and carbon in particulate matter from the Northwest Atlantic continental shelf, from the Gulf of Maine to Cape Hatteras
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2016.00252
– volume: 45
  start-page: 201
  year: 2018
  ident: ref_132
  article-title: Evaluation of random forests and Prophet for daily streamflow forecasting
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-45-201-2018
– volume: 99
  start-page: 323
  year: 2012
  ident: ref_12
  article-title: Random forests for genomic data analysis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2012.04.003
– volume: 33
  start-page: 1580
  year: 2012
  ident: ref_121
  article-title: Dynamic random forests
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.04.003
– volume: 32
  start-page: 3087
  year: 2018
  ident: ref_266
  article-title: An advanced calibration method for image analysis in laboratory-scale seawater intrusion problems
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-1977-6
– volume: 32
  start-page: 1225
  year: 2018
  ident: ref_273
  article-title: On Predictability of groundwater level in Shallow Wells using satellite observations
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1865-5
– volume: 63
  start-page: 1091
  year: 2018
  ident: ref_38
  article-title: Univariate streamflow forecasting using commonly used data-driven models: Literature review and case study
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2018.1469756
– volume: 517
  start-page: 411
  year: 2014
  ident: ref_222
  article-title: Assessing hydrologic prediction uncertainty resulting from soft land cover classification
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.05.049
– volume: 32
  start-page: 448
  year: 2010
  ident: ref_117
  article-title: Fast keypoint recognition using random ferns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.23
– volume: 22
  start-page: 1034
  year: 2007
  ident: ref_133
  article-title: HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2006.06.008
– volume: 18
  start-page: 1
  year: 2018
  ident: ref_79
  article-title: To tune or not to tune the number of trees in random forest
  publication-title: J. Mach. Learn. Res.
– volume: 53
  start-page: 2786
  year: 2017
  ident: ref_325
  article-title: Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR020482
– volume: 85
  start-page: 471
  year: 2017
  ident: ref_140
  article-title: Earthquake magnitude prediction in Hindukush region using machine learning techniques
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2579-3
– volume: 49
  start-page: 4295
  year: 2013
  ident: ref_186
  article-title: Tree-based iterative input variable selection for hydrological modeling
  publication-title: Water Res. Res.
  doi: 10.1002/wrcr.20339
– volume: 18
  start-page: 3393
  year: 2014
  ident: ref_252
  article-title: The influence of methodological procedures on hydrological classification performance
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-3393-2014
– volume: 49
  start-page: 3531
  year: 2013
  ident: ref_258
  article-title: Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity
  publication-title: Water Res. Res.
  doi: 10.1002/wrcr.20308
– volume: 79
  start-page: 291
  year: 2015
  ident: ref_334
  article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1842-3
– ident: ref_198
  doi: 10.3390/w10070888
– volume: 5
  start-page: 12
  year: 2018
  ident: ref_87
  article-title: One-step ahead forecasting of geophysical processes within a purely statistical framework
  publication-title: Geosci. Lett.
  doi: 10.1186/s40562-018-0111-1
– volume: 47
  start-page: 1148
  year: 2019
  ident: ref_89
  article-title: Generalized random forests
  publication-title: Ann. Stat.
  doi: 10.1214/18-AOS1709
– volume: 531
  start-page: 863
  year: 2015
  ident: ref_308
  article-title: A fuzzy rule based metamodel for monthly catchment nitrate fate simulations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.039
– volume: 53
  start-page: 6050
  year: 2017
  ident: ref_286
  article-title: Tree-based flood damage modeling of companies: Damage processes and model performance
  publication-title: Water Res. Res.
  doi: 10.1002/2017WR020784
– volume: 54
  start-page: 55
  year: 2018
  ident: ref_255
  article-title: Streamflow Hydrology Estimate using Machine Learning (SHEM)
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12555
– volume: 561
  start-page: 737
  year: 2018
  ident: ref_281
  article-title: Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.042
– ident: ref_123
– volume: 355
  start-page: 483
  year: 2017
  ident: ref_55
  article-title: Beyond prediction: Using big data for policy problems
  publication-title: Science
  doi: 10.1126/science.aal4321
– volume: 537
  start-page: 431
  year: 2016
  ident: ref_219
  article-title: Forecasting daily streamflow using online sequential extreme learning machines
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.017
– volume: 10
  start-page: 32
  year: 2011
  ident: ref_11
  article-title: Random forests for genetic association studies
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1691
– volume: 10
  start-page: 3
  year: 2008
  ident: ref_20
  article-title: Data-driven modelling: Some past experiences and new approaches
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2008.015
– volume: 46
  start-page: W09507
  year: 2010
  ident: ref_164
  article-title: Tree-based reinforcement learning for optimal water reservoir operation
  publication-title: Water Res. Res.
  doi: 10.1029/2009WR008898
– volume: 15
  start-page: 338
  year: 2018
  ident: ref_163
  article-title: Analysing the importance of variables for sewer failure prediction
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2018.1459748
– volume: 123
  start-page: 8674
  year: 2018
  ident: ref_321
  article-title: Evaluating different machine learning methods for upscaling evapotranspiration from Flux Towers to the regional scale
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD028447
– volume: 8
  start-page: 1580
  year: 2011
  ident: ref_14
  article-title: Methods for identifying SNP interactions: A review on variations of logic regression, random forest and Bayesian logistic regression
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2011.46
– ident: ref_56
– volume: 1
  start-page: 55
  year: 2011
  ident: ref_10
  article-title: The use of classification trees for bioinformatics
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.14
– ident: ref_120
  doi: 10.1109/ICCVW.2011.6130407
– volume: 183
  start-page: 70
  year: 2017
  ident: ref_161
  article-title: Discrimination of irrigation water management effects in pergola trellis system vineyards using a vegetation and soil index
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.11.003
– ident: ref_237
  doi: 10.3390/w10111519
– ident: ref_135
– volume: 7
  start-page: 137
  year: 2015
  ident: ref_69
  article-title: Variable importance in regression models
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.1346
– volume: 54
  start-page: 6983
  year: 2018
  ident: ref_154
  article-title: Inside or outside: Quantifying extrapolation across river networks
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023378
– volume: 7
  start-page: 1437
  year: 2015
  ident: ref_177
  article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China
  publication-title: Water
  doi: 10.3390/w7041437
– volume: 41
  start-page: 187
  year: 2014
  ident: ref_191
  article-title: Effects of different sampling scales and selection criteria on modelling net primary productivity of Indonesian tropical forests
  publication-title: Environ. Conserv.
  doi: 10.1017/S0376892913000428
– volume: 123
  start-page: 5618
  year: 2018
  ident: ref_317
  article-title: In situ microphysical observations of the 29–30 May 2012 Kingfisher, OK, Supercell with a balloon-borne video disdrometer
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2017JD027623
– volume: 7
  start-page: 81
  year: 2011
  ident: ref_15
  article-title: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
  publication-title: Found. Trends Comput. Graph. Vis.
  doi: 10.1561/0600000035
– volume: 434–435
  start-page: 78
  year: 2012
  ident: ref_153
  article-title: Comparing methods for estimating flow duration curves at ungauged sites
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.02.031
– volume: 301
  start-page: 93
  year: 2005
  ident: ref_23
  article-title: Input determination for neural network models in water resources applications. Part 2. Case study: forecasting salinity in a river
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.06.020
– volume: 14
  start-page: 39
  year: 2013
  ident: ref_116
  article-title: Ranking forests
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 1895
  year: 2011
  ident: ref_204
  article-title: Downscaling of surface moisture flux and precipitation in the Ebro Valley (Spain) using analogues and analogues followed by random forests and multiple linear regression
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-1895-2011
– volume: 53
  start-page: 4084
  year: 2017
  ident: ref_322
  article-title: Quantifying model structural error: Efficient Bayesian calibration of a regional groundwater flow model using surrogates and a data-driven error model
  publication-title: Water Res. Res.
  doi: 10.1002/2016WR019831
– volume: 29
  start-page: 822
  year: 2013
  ident: ref_291
  article-title: Natural Flow Regime classifications are sensitive to definition processes
  publication-title: River Res. Appl.
  doi: 10.1002/rra.2581
– volume: 9
  start-page: 2015
  year: 2008
  ident: ref_64
  article-title: Consistency of random forests and other averaging classifiers
  publication-title: J. Mach. Learn. Res.
– ident: ref_134
  doi: 10.1002/9781119960003
– volume: 96
  start-page: 57
  year: 2016
  ident: ref_72
  article-title: Random forest for ordinal responses: Prediction and variable selection
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2015.10.005
– volume: 566
  start-page: 643
  year: 2018
  ident: ref_36
  article-title: Genetic programming in water resources engineering: A state-of-the-art review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.043
– volume: 564
  start-page: 266
  year: 2018
  ident: ref_302
  article-title: Simulation and forecasting of streamflows using machine learning models coupled with base flow separation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.07.004
– volume: 55
  start-page: 623
  year: 2018
  ident: ref_9
  article-title: Remote sensing for wetland classification: A comprehensive review
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2017.1419602
– ident: ref_4
  doi: 10.3390/s18082674
– volume: 17
  start-page: 2685
  year: 2013
  ident: ref_292
  article-title: Regionalization of patterns of flow intermittence from gauging station records
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-2685-2013
– volume: 116
  start-page: 142
  year: 2013
  ident: ref_181
  article-title: Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2012.07.003
– volume: 29
  start-page: 3891
  year: 2015
  ident: ref_30
  article-title: State of the art review of ant colony optimization applications in water resource management
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1016-9
– volume: 112
  start-page: 124
  year: 2018
  ident: ref_151
  article-title: Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.12.009
– volume: 123
  start-page: 4280
  year: 2018
  ident: ref_190
  article-title: Estimating oxygen in the Southern Ocean using argo temperature and salinity
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2017JC013404
– volume: 74
  start-page: 1795
  year: 2014
  ident: ref_240
  article-title: Forecasting hurricane-induced power outage durations
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1270-9
– volume: 50
  start-page: 1457
  year: 2014
  ident: ref_337
  article-title: Connectivity of overland flow by drainage network expansion in a rain forest catchment
  publication-title: Water Resour. Res.
  doi: 10.1002/2012WR012660
– ident: ref_129
– volume: 28
  start-page: 1619
  year: 2006
  ident: ref_105
  article-title: Rotation forest: A new classifier ensemble method
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.211
– volume: 32
  start-page: 2624
  year: 2018
  ident: ref_253
  article-title: Effect of land cover and hydro-meteorological controls on soil water DOC concentrations in a high-elevation tropical environment
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13224
– volume: 561
  start-page: 478
  year: 2018
  ident: ref_285
  article-title: Trend and variability in a new, reconstructed streamflow dataset for West and Central Africa, and climatic interactions, 1950–2005
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.024
– volume: 523
  start-page: 768
  year: 2015
  ident: ref_265
  article-title: Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.02.025
– volume: 35
  start-page: 495
  year: 2013
  ident: ref_278
  article-title: A comparison of three empirically based, spatially explicit predictive models of residential soil Pb concentrations in Baltimore, Maryland, USA: Understanding the variability within cities
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-013-9510-6
– volume: 79
  start-page: 1079
  year: 2015
  ident: ref_212
  article-title: Evaluation of liquefaction potential based on CPT data using random forest
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1893-5
– volume: 1
  start-page: 80
  year: 2011
  ident: ref_97
  article-title: Multivariate random forests
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.12
– volume: 53
  start-page: 6709
  year: 2017
  ident: ref_193
  article-title: Mapping the temporary and perennial character of whole river networks
  publication-title: Water Res. Res.
  doi: 10.1002/2017WR020390
– volume: 136
  start-page: 111
  year: 2018
  ident: ref_49
  article-title: Big data: Some statistical issues
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2018.02.015
– volume: 499
  start-page: 303
  year: 2013
  ident: ref_145
  article-title: Identifying the origin of groundwater samples in a multi-layer aquifer system with random forest classification
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.07.009
– volume: 27
  start-page: 294
  year: 2006
  ident: ref_6
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 32
  start-page: 1827
  year: 2016
  ident: ref_170
  article-title: Potential effects of climate change on ecologically relevant streamflow regimes
  publication-title: River Res. Appl.
  doi: 10.1002/rra.3029
– volume: 122
  start-page: 3088
  year: 2017
  ident: ref_174
  article-title: Decreased soil cation exchange capacity across Northern China’s grasslands over the last three decades
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2017JG003968
– ident: ref_313
  doi: 10.3390/w10081019
– ident: ref_80
  doi: 10.1186/1471-2105-7-3
– volume: 564
  start-page: 294
  year: 2018
  ident: ref_310
  article-title: Sensitivity of drought resilience-vulnerability- exposure to hydrologic ratios in contiguous United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.07.015
– volume: 409
  start-page: 94
  year: 2011
  ident: ref_221
  article-title: Topographic controls on overland flow generation in a forest – An ensemble tree approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.08.002
– volume: 60
  start-page: 431
  year: 2018
  ident: ref_81
  article-title: Variable selection—A review and recommendations for the practicing statistician
  publication-title: Biom. J.
  doi: 10.1002/bimj.201700067
– volume: 9
  start-page: 28
  year: 2017
  ident: ref_48
  article-title: Random forests for big data
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2017.07.003
– ident: ref_201
  doi: 10.3390/w10121765
– volume: 22
  start-page: 4097
  year: 2018
  ident: ref_293
  article-title: Testing an optimality-based model of rooting zone water storage capacity in temperate forests
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-4097-2018
– volume: 8
  start-page: e1249
  year: 2018
  ident: ref_18
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 53
  start-page: 8327
  year: 2017
  ident: ref_232
  article-title: Changes in pore water quality after peatland restoration: Assessment of a large-scale, replicated before-after-control-impact study in Finland
  publication-title: Water Res. Res.
  doi: 10.1002/2017WR020630
– volume: 94
  start-page: 833
  year: 2018
  ident: ref_320
  article-title: Real-time identification of urban rainstorm waterlogging disasters based on Weibo big data
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3427-4
– volume: 33
  start-page: 1407
  year: 2017
  ident: ref_127
  article-title: IntegratedMRF: Random forest-based framework for integrating prediction from different data types
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw765
– volume: 13
  start-page: 292
  year: 2012
  ident: ref_74
  article-title: Random forest Gini importance favours SNPs with large minor allele frequency: Impact, sources and recommendations
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbr053
– volume: 20
  start-page: 2589
  year: 2016
  ident: ref_141
  article-title: A quantitative analysis to objectively appraise drought indicators and model drought impacts
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-2589-2016
– volume: 53
  start-page: 7316
  year: 2017
  ident: ref_300
  article-title: Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification
  publication-title: Water Res. Res.
  doi: 10.1002/2016WR020197
– ident: ref_130
  doi: 10.1007/s13171-018-0133-y
– volume: 56
  start-page: 588
  year: 2014
  ident: ref_45
  article-title: Machine learning versus statistical modeling
  publication-title: Biom. J.
  doi: 10.1002/bimj.201300226
– volume: 193
  start-page: 163
  year: 2017
  ident: ref_178
  article-title: Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2017.08.003
– ident: ref_111
  doi: 10.1109/ICCVW.2009.5457447
– volume: 54
  start-page: 1258
  year: 2018
  ident: ref_235
  article-title: A database of natural monthly streamflow estimates from 1950 to 2015 for the conterminous United States
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12685
– volume: 40
  start-page: 139
  year: 2000
  ident: ref_62
  article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007607513941
– volume: 19
  start-page: 372
  year: 2014
  ident: ref_29
  article-title: Support vector machine applications in the field of hydrology: A review
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.002
– volume: 55
  start-page: 4316
  year: 2009
  ident: ref_115
  article-title: Tree-based ranking methods
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2025558
– volume: 32
  start-page: 2523
  year: 2018
  ident: ref_208
  article-title: Reconstructing monthly ECV global soil moisture with an improved spatial resolution
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-1944-2
– volume: 25
  start-page: 80
  year: 2001
  ident: ref_21
  article-title: Hydrological modelling using artificial neural networks
  publication-title: Prog. Phys. Geogr. Earth Environ.
  doi: 10.1177/030913330102500104
– volume: 541
  start-page: 902
  year: 2016
  ident: ref_33
  article-title: Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.07.048
– volume: 44
  start-page: 330
  year: 2011
  ident: ref_70
  article-title: Mining data with random forests: A survey and results of new tests
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2010.08.011
– volume: 123
  start-page: 6777
  year: 2018
  ident: ref_217
  article-title: Intercomparison of six upscaling evapotranspiration methods: From site to the satellite pixel
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD028422
– volume: 74
  start-page: 45
  year: 2012
  ident: ref_290
  article-title: Can bottom-up procedures improve the performance of stream classifications?
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-011-0194-7
– volume: 13
  start-page: 513
  year: 2018
  ident: ref_206
  article-title: Distribution patterns and potential for further spread of three invasive fish species (Neogobius melanostomus, Lepomis gibbosus and Pseudorasbora parva) in Slovakia
  publication-title: Aquat. Invasions
  doi: 10.3391/ai.2018.13.4.09
– volume: 4
  start-page: 2049
  year: 2010
  ident: ref_118
  article-title: Node harvest
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/10-AOAS367
– volume: 90
  start-page: 1407
  year: 2018
  ident: ref_146
  article-title: Landslide susceptibility modelling using the quantitative random forest method along the northern portion of the Yukon Alaska Highway Corridor, Canada
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-3104-z
– volume: 90
  start-page: 237
  year: 2018
  ident: ref_136
  article-title: Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir catchment area, Antalya, Turkey
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-3043-8
– volume: 508
  start-page: 227
  year: 2014
  ident: ref_155
  article-title: Comparing and combining physically-based and empirically-based approaches for estimating the hydrology of ungauged catchments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.007
– volume: 39
  start-page: 122
  year: 2012
  ident: ref_262
  article-title: Impacts of internal and external policies on land change in Uruguay, 2001–2009
  publication-title: Environ. Conserv.
  doi: 10.1017/S0376892911000658
– volume: 15
  start-page: 52
  year: 2009
  ident: ref_24
  article-title: Rainfall runoff modelling using neural networks: State-of-the-art and future research needs
  publication-title: ISH J. Hydraul. Eng.
  doi: 10.1080/09715010.2009.10514968
– volume: 519
  start-page: 3591
  year: 2014
  ident: ref_176
  article-title: CUTOFF: A spatio-temporal imputation method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.11.012
– volume: 25
  start-page: 891
  year: 2010
  ident: ref_25
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 20
  start-page: 832
  year: 1998
  ident: ref_61
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 121
  start-page: 11425
  year: 2016
  ident: ref_329
  article-title: Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2016JD025154
– ident: ref_86
  doi: 10.3390/a10040114
– volume: 63
  start-page: 308
  year: 2009
  ident: ref_73
  article-title: Variable importance assessment in regression: Linear regression versus random forest
  publication-title: Am. Stat.
  doi: 10.1198/tast.2009.08199
– volume: 32
  start-page: 896
  year: 2016
  ident: ref_226
  article-title: A classification of stream water temperature regimes in the conterminous USA
  publication-title: River Res. Appl.
  doi: 10.1002/rra.2906
– volume: 44
  start-page: 4067
  year: 2010
  ident: ref_289
  article-title: Novel application of a statistical technique, random forests, in a bacterial source tracking study
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.05.019
– volume: 10
  start-page: 257
  year: 2016
  ident: ref_333
  article-title: Topographic and vegetation effects on snow accumulation in the southern Sierra Nevada: A statistical summary from lidar data
  publication-title: Cryosphere
  doi: 10.5194/tc-10-257-2016
– volume: 17
  start-page: 2669
  year: 2013
  ident: ref_185
  article-title: Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-2669-2013
– volume: 26
  start-page: 745
  year: 2017
  ident: ref_46
  article-title: 50 years of data science
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2017.1384734
– volume: 40
  start-page: W08403
  year: 2004
  ident: ref_42
  article-title: Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling?
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003094
– volume: 18
  start-page: 4467
  year: 2014
  ident: ref_263
  article-title: Evaluation of the satellite-based Global Flood Detection System for measuring river discharge: Influence of local factors
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-4467-2014
– ident: ref_119
– volume: 123
  start-page: 3617
  year: 2018
  ident: ref_242
  article-title: Coupling water and carbon fluxes to constrain estimates of transpiration: The TEA algorithm
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2018JG004727
– volume: 63
  start-page: 3
  year: 2006
  ident: ref_103
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 552
  start-page: 92
  year: 2017
  ident: ref_328
  article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.06.020
– volume: 16
  start-page: 199
  year: 2001
  ident: ref_40
  article-title: Statistical modeling: The two cultures
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213726
– ident: ref_3
  doi: 10.1017/CBO9781316576533
– volume: 14
  start-page: 323
  year: 2009
  ident: ref_71
  article-title: An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests
  publication-title: Psychol. Methods
  doi: 10.1037/a0016973
– volume: 48
  start-page: W02504
  year: 2012
  ident: ref_246
  article-title: Predicting natural base-flow stream water chemistry in the western United States
  publication-title: Water Res. Res.
  doi: 10.1029/2011WR011088
– volume: 531
  start-page: 992
  year: 2015
  ident: ref_268
  article-title: Environmental conditions of boreal springs explained by capture zone characteristics
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.11.009
– volume: 13
  start-page: 1063
  year: 2012
  ident: ref_68
  article-title: Analysis of a random forests model
  publication-title: J. Mach. Learn. Res.
– volume: 566
  start-page: 668
  year: 2018
  ident: ref_224
  article-title: Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.055
– volume: 144
  start-page: 04018048
  year: 2018
  ident: ref_298
  article-title: Battle of the attack detection algorithms: Disclosing cyber attacks on water distribution networks
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000969
– volume: 553
  start-page: 508
  year: 2017
  ident: ref_327
  article-title: Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.08.013
– volume: 527
  start-page: 1130
  year: 2015
  ident: ref_314
  article-title: Flood hazard risk assessment model based on random forest
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.008
– volume: 111
  start-page: 21
  year: 2016
  ident: ref_54
  article-title: Feature selection methods for big data bioinformatics: A survey from the search perspective
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.08.014
– ident: ref_147
  doi: 10.3390/w10010056
– volume: 7
  start-page: 6702
  year: 2015
  ident: ref_210
  article-title: Distribution of epilithic diatoms in estuaries of the Korean Peninsula in relation to environmental variables
  publication-title: Water
  doi: 10.3390/w7126656
– volume: 559
  start-page: 43
  year: 2018
  ident: ref_272
  article-title: Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and random forest
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.01.044
– volume: 52
  start-page: 1626
  year: 2016
  ident: ref_326
  article-title: Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017394
– volume: 387
  start-page: 141
  year: 2010
  ident: ref_199
  article-title: Predictive models for forecasting hourly urban water demand
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.04.005
– volume: 19
  start-page: 2859
  year: 2015
  ident: ref_194
  article-title: Towards observation-based gridded runoff estimates for Europe
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-2859-2015
– volume: 54
  start-page: 4785
  year: 2018
  ident: ref_312
  article-title: The impact of landscape characteristics on groundwater dissolved organic nitrogen: Insights from machine learning methods and sensitivity analysis
  publication-title: Water Res. Res.
  doi: 10.1029/2017WR021749
– volume: 45
  start-page: W10438
  year: 2009
  ident: ref_299
  article-title: Modeling soil depth from topographic and land cover attributes
  publication-title: Water Res. Res.
  doi: 10.1029/2008WR007474
– volume: 32
  start-page: 992
  year: 2016
  ident: ref_249
  article-title: The effects of improved water quality on fish assemblages in a heavily modified large river system
  publication-title: River Res. Appl.
  doi: 10.1002/rra.2917
– volume: 418
  start-page: 41
  year: 2017
  ident: ref_269
  article-title: Physico-chemical thresholds in the distribution of fish species among French lakes
  publication-title: Knowl. Manag. Aquat. Syst.
  doi: 10.1051/kmae/2017032
– volume: 122
  start-page: 1901
  year: 2017
  ident: ref_309
  article-title: Near-channel versus watershed controls on sediment rating curves
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2016JF004180
– volume: 31
  start-page: 2225
  year: 2010
  ident: ref_82
  article-title: Variable selection using random forests
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.03.014
– volume: 5
  start-page: 187
  year: 2015
  ident: ref_205
  article-title: Dominant factors associated with microcystins in nine midlatitude, maritime lakes
  publication-title: Inland Waters
  doi: 10.5268/IW-5.2.808
– ident: ref_215
  doi: 10.3390/w10040391
– ident: ref_196
  doi: 10.3390/w10101460
– volume: 26
  start-page: 2327
  year: 2018
  ident: ref_331
  article-title: Using random forest for the risk assessment of coal-floor water inrush in Panjiayao Coal Mine, northern China
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-018-1767-5
– ident: ref_39
  doi: 10.1007/978-1-4614-7138-7
– volume: 122
  start-page: 11045
  year: 2017
  ident: ref_203
  article-title: Automatic cloud-type classification based on the combined use of a sky camera and a ceilometer
  publication-title: J. Geophys. Res. Atmos.
– volume: 538
  start-page: 515
  year: 2016
  ident: ref_243
  article-title: Resolving regional frequency analysis of precipitation at large and complex scales using a bottom-up approach: The Latin America and the Caribbean drought Atlas
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.04.025
– ident: ref_108
  doi: 10.1186/1471-2105-9-307
– volume: 57
  start-page: 4977
  year: 2014
  ident: ref_13
  article-title: QSAR modeling: Where have you been? Where are you going to?
  publication-title: J. Med. Chem.
  doi: 10.1021/jm4004285
– volume: 32
  start-page: 1428
  year: 2016
  ident: ref_227
  article-title: Predicting thermally events in rivers with a strategy to evaluate management alternatives
  publication-title: River Res. Appl.
  doi: 10.1002/rra.2998
– volume: 80
  start-page: 41
  year: 2018
  ident: ref_209
  article-title: Interactions between environmental factors and vertical extension of helophyte zones in lakes in Finland
  publication-title: Aquat. Sci.
  doi: 10.1007/s00027-018-0592-1
SSID ssj0000498850
Score 2.624744
SecondaryResourceType review_article
Snippet Random forests (RF) is a supervised machine learning algorithm, which has recently started to gain prominence in water resources applications. However,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 910
SubjectTerms Algorithms
Artificial intelligence
Big Data
Classification
computer software
Decision trees
Feature selection
Hydrology
Machine learning
Science
Scientists
Software
Survival analysis
Variables
water resources
water utilities
Title A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources
URI https://www.proquest.com/docview/2550455377
https://www.proquest.com/docview/2315269119
Volume 11
WOSCitedRecordID wos000472680400040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66edCDv8XplCgevJS1TdMmJ9lkQw-OIRPnqSRpCgPt5rop_ve-tNncQLx4aklfS-h7yfte3uN7CF2FKWGhSEx1QyJNgBI6TEGUwqiQkiaRp7gsmk1E3S4bDHjPHrjltqxyvicWG3UyUuaMvAHQF9AHJVF0M353TNcok121LTTWUdUwlYGdV1vtbu9xccoC-Jcx6paUQgTi-8Yn-LvCSa46otV9uHAunZ3_TmsXbVtYiZulHeyhNZ3to60lssEDlDdxC-LiFJfpADyCO5Elozds2nPm0xwDfsXPgD0nuFjx06EZBBG8TGpUjvRNfgG-ZGo7cUk18oWHmX19nhPID9FTp92_vXNsywVHEZ9OHU_ygCaSQ9gnAi4TNyVCua4ikjI_kEqEgaJa0lBSP-VK-EwqpkWkdaQ8nkpyhCoZTOYYYY9pRSLppQFXQaKFIGEkQkBjfgp24Po1dD3__7GyfOSmLcZrDHGJUVW8UFUNXS5ExyUJx29C9bmGYrsO8_hHPTV0sXgMK8ikRUSmRzOQIZ5psw72c_L3J07RJsAlXpY71lFlOpnpM7ShPkAfk3NrenDt3T_0Xr4BdDTnUA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9swDCayZEC7w15tsXTZphUtsItR27Js6TAM2SNI0CbIIUO7kyvJMlCgdbo4WZA_1d84yo8sAYbdetjNkGnBsj6QH0WaBDgOU8pDmdjshkRZByV0uEYvhTOpFEsiTwtVNJuIRiN-eSnGDbiv_4WxaZW1TiwUdTLV9oz8FKkvsg9Go-jT3U_Hdo2y0dW6hUYJizOzWqLLln8cfMX9PfH93rfJl75TdRVwNPXZ3PGUCFiiBHo2MhAqcVMqtetqqhj3A6VlGGhmFAsV81Ohpc-V5kZGxkTaE6miOO8jaAUW7E1ojQfD8Y_1qQ7ybc6ZW5YwolS4p0u0r4VR3jZ823q_MGa9Z__bZ3gOTyvaTLolzl9Aw2Qv4clGMcU9yLvkM_r9KSnDHWSKVzJLprfEth_N5zlBfk4ukFvPSKHR5td2EEXIZtGmcmRi4yc4k81dJWUplRW5zqrH65hHvg_fH2TVB9DM8GVeAfG40TRSXhoIHSRGShpGMkS26aeIc9dvw4d6v2Nd1Vu3bT9uYvS7LDTiNTTacLQWvSuLjPxNqFMjIq70TB7_gUMb3q9vo4awYR-ZmekCZahn28h7njj89xTvYKc_GZ7H54PR2WvYRWooytTODjTns4V5A4_1L9yb2dsK9gSuHhpivwGMkkW7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RBSF64I26LQ9TgdRLtIkdJ_YBVbxWrKCrPVCVnoLtONJKbXa7WYr4a_11HeexBQlx49Bb5EysJP4y841nMgNwEGVMRCp12Q2pdg5K5AmDXorgSmuexoGRumw2Eff74uZGDubgT_MvjEurbHRiqajTkXF75B2kvsg-OIvjTlanRQzOup_HvzzXQcpFWpt2GhVELu3DPbpvxVHvDNf6kNLu-fXphVd3GPAMo3zqBVqGPNUSvRwVSp36GVPG9w3TXNBQGxWFhlvNI81pJo2iQhthVWxtbAKZaYbzvoF5pOQhbcH8oPdl8H22w4PcWwjuV-WMGJN-5x5tbWmgnxrBpzagNGzdlf_5lazCck2nyXGF_zWYs_k6vH1UZHEDimNyMhnajFRhEDLCI5Wno5_EtSUtpgVB3k6-IeeekFLTTYduEEXI42JO1ci1i6vgTC6nlVQlVh7IMK8vb2IhxSZ8fZWn3oJWjjfzDkggrGGxDrJQmjC1SrEoVhGyUJoh_n3ahk_N2iemrsPu2oH8SNAfczBJZjBpw8eZ6LgqPvKc0HaDjqTWP0XyDxpt2J-dRs3hwkEqt6M7lGGBay8fBPL9y1PswSLiKrnq9S8_wBIyRlllfG5Dazq5szuwYH7j0kx26y-AwO1rI-wvyJtOew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Brief+Review+of+Random+Forests+for+Water+Scientists+and+Practitioners+and+Their+Recent+History+in+Water+Resources&rft.jtitle=Water+%28Basel%29&rft.au=Tyralis%2C+Hristos&rft.au=Papacharalampous%2C+Georgia&rft.au=Langousis%2C+Andreas&rft.date=2019-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=11&rft.issue=5&rft.spage=910&rft_id=info:doi/10.3390%2Fw11050910&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon