Deterministic sublinear-time approximations for metric 1-median selection

Given oracle access to an n-point metric space (M,d), let metric 1-median be the problem of finding argminx∈M∑y∈Md(x,y), breaking ties arbitrarily. We show that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm. ► Metric 1-median asks for a point x in a metric sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters Jg. 113; H. 8; S. 288 - 292
1. Verfasser: Chang, Ching-Lueh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 30.04.2013
Elsevier Sequoia S.A
Schlagworte:
ISSN:0020-0190, 1872-6119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given oracle access to an n-point metric space (M,d), let metric 1-median be the problem of finding argminx∈M∑y∈Md(x,y), breaking ties arbitrarily. We show that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm. ► Metric 1-median asks for a point x in a metric space (M,d) minimizing ∑y∈Md(x,y). ► This paper shows that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm. ► Our result, which concerns deterministic algorithms, is not subsumed by that of Indyk (1999, 2000). ► Our result is not subsumed by those of Guha et al. (2003) because our algorithm is nonadaptive and 4-approximate.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2013.02.003