Deterministic sublinear-time approximations for metric 1-median selection

Given oracle access to an n-point metric space (M,d), let metric 1-median be the problem of finding argminx∈M∑y∈Md(x,y), breaking ties arbitrarily. We show that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm. ► Metric 1-median asks for a point x in a metric sp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information processing letters Ročník 113; číslo 8; s. 288 - 292
Hlavní autor: Chang, Ching-Lueh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 30.04.2013
Elsevier Sequoia S.A
Témata:
ISSN:0020-0190, 1872-6119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given oracle access to an n-point metric space (M,d), let metric 1-median be the problem of finding argminx∈M∑y∈Md(x,y), breaking ties arbitrarily. We show that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm. ► Metric 1-median asks for a point x in a metric space (M,d) minimizing ∑y∈Md(x,y). ► This paper shows that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm. ► Our result, which concerns deterministic algorithms, is not subsumed by that of Indyk (1999, 2000). ► Our result is not subsumed by those of Guha et al. (2003) because our algorithm is nonadaptive and 4-approximate.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2013.02.003