Deterministic sublinear-time approximations for metric 1-median selection
Given oracle access to an n-point metric space (M,d), let metric 1-median be the problem of finding argminx∈M∑y∈Md(x,y), breaking ties arbitrarily. We show that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm. ► Metric 1-median asks for a point x in a metric sp...
Uloženo v:
| Vydáno v: | Information processing letters Ročník 113; číslo 8; s. 288 - 292 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
30.04.2013
Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given oracle access to an n-point metric space (M,d), let metric 1-median be the problem of finding argminx∈M∑y∈Md(x,y), breaking ties arbitrarily. We show that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm.
► Metric 1-median asks for a point x in a metric space (M,d) minimizing ∑y∈Md(x,y). ► This paper shows that metric 1-median has a deterministic nonadaptive O(n3/2)-time 4-approximation algorithm. ► Our result, which concerns deterministic algorithms, is not subsumed by that of Indyk (1999, 2000). ► Our result is not subsumed by those of Guha et al. (2003) because our algorithm is nonadaptive and 4-approximate. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2013.02.003 |