An RNA evolutionary algorithm based on gradient descent for function optimization

The optimization of numerical functions with multiple independent variables was a significant challenge with numerous practical applications in process control systems, data fitting, and engineering designs. Although RNA genetic algorithms offer clear benefits in function optimization, including rap...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational design and engineering Vol. 11; no. 4; pp. 332 - 357
Main Authors: Wu, Qiuxuan, Zhao, Zikai, Chen, Mingming, Chi, Xiaoni, Zhang, Botao, Wang, Jian, Zhilenkov, Anton A, Chepinskiy, Sergey A
Format: Journal Article
Language:English
Published: Oxford Oxford University Press 01.08.2024
한국CDE학회
Subjects:
ISSN:2288-5048, 2288-4300, 2288-5048
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The optimization of numerical functions with multiple independent variables was a significant challenge with numerous practical applications in process control systems, data fitting, and engineering designs. Although RNA genetic algorithms offer clear benefits in function optimization, including rapid convergence, they have low accuracy and can easily become trapped in local optima. To address these issues, a new heuristic algorithm was proposed, a gradient descent-based RNA genetic algorithm. Specifically, adaptive moment estimation (Adam) was employed as a mutation operator to improve the local development ability of the algorithm. Additionally, two new operators inspired by the inner-loop structure of RNA molecules were introduced: an inner-loop crossover operator and an inner-loop mutation operator. These operators enhance the global exploration ability of the algorithm in the early stages of evolution and enable it to escape from local optima. The algorithm consists of two stages: a pre-evolutionary stage that employs RNA genetic algorithms to identify individuals in the vicinity of the optimal region and a post-evolutionary stage that applies a adaptive gradient descent mutation to further enhance the solution’s quality. When compared with the current advanced algorithms for solving function optimization problems, Adam RNA Genetic Algorithm (RNA-GA) produced better optimal solutions. In comparison with RNA-GA and Genetic Algorithm (GA) across 17 benchmark functions, Adam RNA-GA ranked first with the best result of an average rank of 1.58 according to the Friedman test. In the set of 29 functions of the CEC2017 suite, compared with heuristic algorithms such as African Vulture Optimization Algorithm, Dung Beetle Optimization, Whale Optimization Algorithm, and Grey Wolf Optimizer, Adam RNA-GA ranked first with the best result of an average rank of 1.724 according to the Friedman test. Our algorithm not only achieved significant improvements over RNA-GA but also performed excellently among various current advanced algorithms for solving function optimization problems, achieving high precision in function optimization. Graphical Abstract Graphical Abstract
AbstractList The optimization of numerical functions with multiple independent variables was a significant challenge with numerous practical applications in process control systems, data fitting, and engineering designs. Although RNA genetic algorithms offer clear benefits in function optimization, including rapid convergence, they have low accuracy and can easily become trapped in local optima. To address these issues, a new heuristic algorithm was proposed, a gradient descent-based RNA genetic algorithm. Specifically, adaptive moment estimation (Adam) was employed as a mutation operator to improve the local development ability of the algorithm. Additionally, two new operators inspired by the inner-loop structure of RNA molecules were introduced: an inner-loop crossover operator and an inner-loop mutation operator. These operators enhance the global exploration ability of the algorithm in the early stages of evolution and enable it to escape from local optima. The algorithm consists of two stages: a pre-evolutionary stage that employs RNA genetic algorithms to identify individuals in the vicinity of the optimal region and a post-evolutionary stage that applies a adaptive gradient descent mutation to further enhance the solution’s quality. When compared with the current advanced algorithms for solving function optimization problems, Adam RNA Genetic Algorithm (RNA-GA) produced better optimal solutions. In comparison with RNA-GA and Genetic Algorithm (GA) across 17 benchmark functions, Adam RNA-GA ranked first with the best result of an average rank of 1.58 according to the Friedman test. In the set of 29 functions of the CEC2017 suite, compared with heuristic algorithms such as African Vulture Optimization Algorithm, Dung Beetle Optimization, Whale Optimization Algorithm, and Grey Wolf Optimizer, Adam RNA-GA ranked first with the best result of an average rank of 1.724 according to the Friedman test. Our algorithm not only achieved significant improvements over RNA-GA but also performed excellently among various current advanced algorithms for solving function optimization problems, achieving high precision in function optimization.
The optimization of numerical functions with multiple independent variables was a significant challenge with numerous practical applications in process control systems, data fitting, and engineering designs. Although RNA genetic algorithms offer clear benefits in function optimization, including rapid convergence, they have low accuracy and can easily become trapped in local optima. To address these issues, a new heuristic algorithm was proposed, a gradient descent-based RNA genetic algorithm. Specifically, adaptive moment estimation (Adam) was employed as a mutation operator to improve the local development ability of the algorithm. Additionally, two new operators inspired by the inner-loop structure of RNA molecules were introduced: an inner-loop crossover operator and an inner-loop mutation operator. These operators enhance the global exploration ability of the algorithm in the early stages of evolution and enable it to escape from local optima. The algorithm consists of two stages: a pre-evolutionary stage that employs RNA genetic algorithms to identify individuals in the vicinity of the optimal region and a post-evolutionary stage that applies a adaptive gradient descent mutation to further enhance the solution’s quality. When compared with the current advanced algorithms for solving function optimization problems, Adam RNA Genetic Algorithm (RNA-GA) produced better optimal solutions. In comparison with RNA-GA and Genetic Algorithm (GA) across 17 benchmark functions, Adam RNA-GA ranked first with the best result of an average rank of 1.58 according to the Friedman test. In the set of 29 functions of the CEC2017 suite, compared with heuristic algorithms such as African Vulture Optimization Algorithm, Dung Beetle Optimization, Whale Optimization Algorithm, and Grey Wolf Optimizer, Adam RNA-GA ranked first with the best result of an average rank of 1.724 according to the Friedman test. Our algorithm not only achieved significant improvements over RNA-GA but also performed excellently among various current advanced algorithms for solving function optimization problems, achieving high precision in function optimization. Graphical Abstract Graphical Abstract
The optimization of numerical functions with multiple independent variables was a significant challenge with numerous practical applications in process control systems, data fitting, and engineering designs. Although RNA genetic algorithms offer clear benefits in function optimization, including rapid convergence, they have low accuracy and can easily become trapped in local optima. To address these issues, a new heuristic algorithm was proposed, a gradient descent-based RNA genetic algorithm. Specifically, adaptive moment estimation (Adam) was employed as a mutation operator to improve the local development ability of the algorithm. Additionally, two new operators inspired by the inner-loop structure of RNA molecules were introduced: an inner-loop crossover operator and an inner-loop mutation operator. These operators enhance the global exploration ability of the algorithm in the early stages of evolution and enable it to escape from local optima. The algorithm consists of two stages: a pre-evolutionary stage that employs RNA genetic algorithms to identify individuals in the vicinity of the optimal region and a post-evolutionary stage that applies a adaptive gradient descent mutation to further enhance the solution’s quality. When compared with the current advanced algorithms for solving function optimization problems, Adam RNA Genetic Algorithm (RNA-GA) produced better optimal solutions. In comparison with RNA-GA and Genetic Algorithm (GA) across 17 benchmark functions, Adam RNA-GA ranked first with the best result of an average rank of 1.58 according to the Friedman test. In the set of 29 functions of the CEC2017 suite, compared with heuristic algorithms such as African Vulture Optimization Algorithm, Dung Beetle Optimization, Whale Optimization Algorithm, and Grey Wolf Optimizer, Adam RNA-GA ranked first with the best result of an average rank of 1.724 according to the Friedman test. Our algorithm not only achieved significant improvements over RNA-GA but also performed excellently among various current advanced algorithms for solving function optimization problems, achieving high precision in function optimization. KCI Citation Count: 0
Author Zhilenkov, Anton A
Zhang, Botao
Wang, Jian
Zhao, Zikai
Wu, Qiuxuan
Chen, Mingming
Chepinskiy, Sergey A
Chi, Xiaoni
Author_xml – sequence: 1
  givenname: Qiuxuan
  orcidid: 0000-0001-5153-6524
  surname: Wu
  fullname: Wu, Qiuxuan
– sequence: 2
  givenname: Zikai
  surname: Zhao
  fullname: Zhao, Zikai
– sequence: 3
  givenname: Mingming
  surname: Chen
  fullname: Chen, Mingming
– sequence: 4
  givenname: Xiaoni
  surname: Chi
  fullname: Chi, Xiaoni
  email: 3794580@qq.com
– sequence: 5
  givenname: Botao
  surname: Zhang
  fullname: Zhang, Botao
– sequence: 6
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
– sequence: 7
  givenname: Anton A
  surname: Zhilenkov
  fullname: Zhilenkov, Anton A
– sequence: 8
  givenname: Sergey A
  surname: Chepinskiy
  fullname: Chepinskiy, Sergey A
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003114440$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kF1LwzAUhoNMcM7d-QMCXghi3UnSrtnlGH4MhuKY1yFNk5l9JF3aKvrrbe0uvPLqPQee83J4zlHPeacRuiRwR2DCRhuV69HhU2oY8xPUp5TzKIGY9_7MZ2hYlhsAICllQCZ99Dp1ePk8xfrD7-rKeifDF5a7tQ-2et_jTJY6x97hdZC51a7CuS5Vm8YHbGqn2hvsi8ru7bdslwt0auSu1MNjDtDbw_1q9hQtXh7ns-kiUowmVUQkUSAzDZLFLKdaAk9oariKtaGQcA0sBxVPjOGUkXgMaZJmQMdcxlRniWIDdNP1umDEVlnhpf3NtRfbIKbL1VwQSEnMgTTwVQcXwR9qXVZi4-vgmv8EoxA3HEDaULcdpYIvy6CNKILdN0aaItFKFq1kcZTc4Ncd7uvif_IH89d_Hg
Cites_doi 10.1016/j.eswa.2017.02.012
10.1016/j.cherd.2010.03.005
10.1093/jcde/qwac048
10.1093/jcde/qwad053
10.1093/jcde/qwae004
10.1093/jcde/qwae008
10.1016/j.asoc.2015.09.036
10.1016/j.advengsoft.2016.01.008
10.1093/jcde/qwae046
10.1109/MCI.2006.329691
10.1016/j.compchemeng.2007.01.012
10.1093/jcde/qwac072
10.1016/j.cie.2021.107408
10.1016/j.asoc.2021.108357
10.1007/s11227-022-04959-6
10.1016/S0045-7825(99)00389-8
10.1016/j.advengsoft.2013.12.007
10.1007/s12065-023-00822-6
10.1142/S1469026819500202
10.1016/j.amc.2010.12.053
10.1016/j.ins.2009.03.004
10.1007/s00366-020-00951-x
10.1007/s42979-022-01607-x
10.1016/j.ijhydene.2012.10.026
10.1093/jcde/qwad095
10.1016/j.ins.2023.119164
10.1007/s12559-020-09730-8
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Computational Design and Engineering. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
7XB
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M0N
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ACYCR
DOI 10.1093/jcde/qwae068
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Computing Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Korean Citation Index
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Computing
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2288-5048
EndPage 357
ExternalDocumentID oai_kci_go_kr_ARTI_10714801
10_1093_jcde_qwae068
10.1093/jcde/qwae068
GroupedDBID 0R~
4.4
457
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAPXW
AAVAP
AAXUO
AAYWO
ABEJV
ABGNP
ABJCF
ABMAC
ABPTD
ABXVV
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADMLS
ADVLN
AEUPX
AEXQZ
AFKRA
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMRAJ
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
EJD
FDB
FRF
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
IGS
IPNFZ
ITC
JDI
KQ8
KSI
M41
M7S
ML0
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
RIG
ROL
SSZ
TOX
AAYXX
AFFHD
CITATION
PQGLB
7XB
8FE
8FG
ABUWG
L6V
M0N
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ACYCR
PMFND
ID FETCH-LOGICAL-c325t-1a1c0abe0a343d2ea08527f8c4ef2058e03d0c49ff8231460757b0268a42eb5c3
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001298170100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2288-5048
2288-4300
IngestDate Thu Jun 12 03:20:27 EDT 2025
Fri Sep 19 20:56:59 EDT 2025
Sat Nov 29 03:52:55 EST 2025
Mon Jun 30 08:34:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords RNA-inspired operations
heuristic algorithm
function optimization
adaptive gradient descent mutation operator
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1a1c0abe0a343d2ea08527f8c4ef2058e03d0c49ff8231460757b0268a42eb5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5153-6524
OpenAccessLink https://www.proquest.com/docview/3204107007?pq-origsite=%requestingapplication%
PQID 3204107007
PQPubID 7217057
PageCount 26
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10714801
proquest_journals_3204107007
crossref_primary_10_1093_jcde_qwae068
oup_primary_10_1093_jcde_qwae068
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of computational design and engineering
PublicationYear 2024
Publisher Oxford University Press
한국CDE학회
Publisher_xml – name: Oxford University Press
– name: 한국CDE학회
References Mirjalili (2024082710544546100_bib31) 2016
Zhang (2024082710544546100_bib56) 2013; 38
Molina (2024082710544546100_bib35) 2020; 12
Chuang (2024082710544546100_bib6) 2016; 38
Vidyashree (2024082710544546100_bib48) 2023; 4
Soares (2024082710544546100_bib42) 2017; 78
Umbarkar (2024082710544546100_bib47) 2015; 6
Haupt (2024082710544546100_bib18) 2004
Qian (2024082710544546100_bib36) 2023
Tieleman (2024082710544546100_bib46) 2012; 4
Wang (2024082710544546100_bib49) 2018; 1
Choze (2024082710544546100_bib5) 2022; 1
El-Mihoub (2024082710544546100_bib14) 2006; 13
Rechenberg (2024082710544546100_bib39) 1978; 8
Abdollahzadeh (2024082710544546100_bib1) 2021; 158
Tian (2024082710544546100_bib45) 2021; 54
Lemaréchal (2024082710544546100_bib24) 2012; 251
Tao (2024082710544546100_bib43) 2007; 31
Wang (2024082710544546100_bib51) 2010; 88
Liu (2024082710544546100_bib27) 2022; 117
Lu (2024082710544546100_bib29) 2024; 11
Sattar (2024082710544546100_bib40) 2021; 37
Deb (2024082710544546100_bib7) 2000; 186
Lameesa (2024082710544546100_bib23) 2024; 11
Liu (2024082710544546100_bib28) 2023; 642
Deb (2024082710544546100_bib8) 1995; 9
Dorigo (2024082710544546100_bib12) 2006; 1
Duchi (2024082710544546100_bib13) 2011; 12
Xue (2024082710544546100_bib54) 2023; 79
Gandomi (2024082710544546100_bib16) 2014; 1
Shukla (2024082710544546100_bib41) 2019; 18
Jia (2024082710544546100_bib20) 2023; 10
Rashedi (2024082710544546100_bib38) 2009; 179
Wang (2024082710544546100_bib52) 2024; 11
Dhiman (2024082710544546100_bib9) 2017
Kim (2024082710544546100_bib21) 2022; 9
Wang (2024082710544546100_bib50) 2019; 1
Mirjalili (2024082710544546100_bib33) 2016; 95
Mirjalili (2024082710544546100_bib34) 2014; 69
Hussein (2024082710544546100_bib19) 2023; 10
Zhu (2024082710544546100_bib57) 2022
Liang (2024082710544546100_bib26) 2006; 41
Wu (2024082710544546100_bib53) 2017
Mirjalili (2024082710544546100_bib32) 2017
Alhijawi (2024082710544546100_bib2) 2023; 17
Domala (2024082710544546100_bib10) 2022; 9
Kingma (2024082710544546100_bib22) 2014
Thangaraj (2024082710544546100_bib44) 2011; 217
References_xml – volume-title: Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-parameter Optimization
  year: 2017
  ident: 2024082710544546100_bib53
– start-page: 163
  volume-title: Advances in Engineering Software
  year: 2017
  ident: 2024082710544546100_bib32
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
– volume: 78
  start-page: 32
  year: 2017
  ident: 2024082710544546100_bib42
  article-title: Optimization based on phylogram analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.02.012
– volume: 88
  start-page: 1485
  year: 2010
  ident: 2024082710544546100_bib51
  article-title: A novel RNA genetic algorithm for parameter estimation of dynamic systems
  publication-title: Chemical Engineering Research and Design
  doi: 10.1016/j.cherd.2010.03.005
– volume: 9
  start-page: 1107
  year: 2022
  ident: 2024082710544546100_bib10
  article-title: Wave data prediction with optimized machine learning and deep learning techniques
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwac048
– volume: 10
  start-page: 1363
  year: 2023
  ident: 2024082710544546100_bib19
  article-title: Enhancing feature selection with GMSMFO: A global optimization algorithm for machine learning with application to intrusion detection
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwad053
– volume: 11
  start-page: 37
  year: 2024
  ident: 2024082710544546100_bib52
  article-title: Boosting Aquila optimizer by marine predators algorithm for combinatorial optimization
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwae004
– volume: 11
  start-page: 212
  year: 2024
  ident: 2024082710544546100_bib29
  article-title: Conceptual design and optimization of polymer gear system for low-thrust turbofan aeroengine accessory transmission
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwae008
– volume: 54
  start-page: 1
  year: 2021
  ident: 2024082710544546100_bib45
  article-title: Evolutionary large-scale multi-objective optimization: a survey
  publication-title: ACM Computing Surveys (CSUR)
– volume: 12
  start-page: 2121−2159
  year: 2011
  ident: 2024082710544546100_bib13
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: Journal of Machine Learning Research
– volume: 38
  start-page: 87
  year: 2016
  ident: 2024082710544546100_bib6
  article-title: A simple and efficient real-coded genetic algorithm for constrained optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.09.036
– volume: 95
  start-page: 51
  year: 2016
  ident: 2024082710544546100_bib33
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– start-page: 120
  volume-title: Knowledge-based Systems
  year: 2016
  ident: 2024082710544546100_bib31
  article-title: SCA: A sine cosine algorithm for solving optimization problems
– volume: 11
  start-page: 223
  year: 2024
  ident: 2024082710544546100_bib23
  article-title: Role of metaheuristic algorithms in healthcare: a comprehensive investigation across clinical diagnosis, medical imaging, operations management, and public health
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwae046
– start-page: 48
  volume-title: Advances in Engineering Software
  year: 2017
  ident: 2024082710544546100_bib9
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
– volume: 13
  start-page: 124
  year: 2006
  ident: 2024082710544546100_bib14
  article-title: Hybrid genetic algorithms: A
  publication-title: Review. Engineering Letters
– volume: 1
  start-page: 28
  year: 2006
  ident: 2024082710544546100_bib12
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– volume: 31
  start-page: 1602
  year: 2007
  ident: 2024082710544546100_bib43
  article-title: DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2007.01.012
– volume: 6
  start-page: 2121
  year: 2015
  ident: 2024082710544546100_bib47
  article-title: Crossover operators in genetic algorithms: a review
  publication-title: ICTACT Journal on Soft Computing
– volume-title: Practical Genetic Algorithms
  year: 2004
  ident: 2024082710544546100_bib18
– volume: 9
  start-page: 1650
  year: 2022
  ident: 2024082710544546100_bib21
  article-title: Computed tomography vertebral segmentation from multi-vendor scanner data
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwac072
– volume: 158
  start-page: 107408
  year: 2021
  ident: 2024082710544546100_bib1
  article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107408
– volume: 8
  start-page: 973
  year: 1978
  ident: 2024082710544546100_bib39
  article-title: Evolutionsstrategien
  publication-title: Simulationsmethoden in der Medizin und Biologie
– volume: 1
  start-page: 107
  year: 2022
  ident: 2024082710544546100_bib5
  article-title: Overview of traditional and recent heuristic optimization methods. In model-based and signal-based inverse methods
  publication-title: Biblioteca Central Da Universidade De Brasilia
– start-page: 101647
  volume-title: Urban Climate
  year: 2023
  ident: 2024082710544546100_bib36
  article-title: Employing categorical boosting (CatBoost) and meta-heuristic algorithms for predicting the urban gas consumption[J]
– volume: 117
  start-page: 108357
  year: 2022
  ident: 2024082710544546100_bib27
  article-title: A least square support vector machine approach based on bvRNA-GA for modeling photovoltaic systems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108357
– start-page: 108326
  volume-title: Mechanical Systems and Signal Processing
  year: 2022
  ident: 2024082710544546100_bib57
  article-title: Hairpin RNA genetic algorithm based ANFIS for modeling overhead cranes
– volume: 79
  start-page: 7305
  year: 2023
  ident: 2024082710544546100_bib54
  article-title: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-022-04959-6
– volume: 186
  start-page: 311
  year: 2000
  ident: 2024082710544546100_bib7
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 251
  start-page: 10
  year: 2012
  ident: 2024082710544546100_bib24
  article-title: Cauchy and the gradient method
  publication-title: Doc Math Extra
– volume: 4
  start-page: 26
  year: 2012
  ident: 2024082710544546100_bib46
  article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude[J]
  publication-title: COURSERA: Neural Networks for Machine Learning
– volume: 1
  start-page: 1
  year: 2014
  ident: 2024082710544546100_bib16
  article-title: Engineering optimization using interior search algorithm
  publication-title: 2014 IEEE Symposium on Swarm Intelligence
– volume: 69
  start-page: 46
  year: 2014
  ident: 2024082710544546100_bib34
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 17
  start-page: 1245
  year: 2023
  ident: 2024082710544546100_bib2
  article-title: Genetic algorithms: theory, genetic operators, solutions, and applications
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-023-00822-6
– volume: 41
  start-page: 8
  year: 2006
  ident: 2024082710544546100_bib26
  article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization
  publication-title: Journal of Applied Mechanics
– volume: 9
  start-page: 115
  year: 1995
  ident: 2024082710544546100_bib8
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Systems
– volume: 1
  start-page: 1959
  year: 2019
  ident: 2024082710544546100_bib50
  article-title: An improved real-coded genetic algorithm using the heuristical normal distribution and direction-based crossover
  publication-title: Computational Intelligence and Neuroscience
– volume: 18
  start-page: 1950020
  year: 2019
  ident: 2024082710544546100_bib41
  article-title: A new hybrid feature subset selection framework based on binary genetic algorithm and information theory
  publication-title: International Journal of Computational Intelligence and Applications
  doi: 10.1142/S1469026819500202
– volume: 217
  start-page: 5208
  year: 2011
  ident: 2024082710544546100_bib44
  article-title: Particle swarm optimization: hybridization perspectives and experimental illustrations
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2010.12.053
– volume: 179
  start-page: 2232
  year: 2009
  ident: 2024082710544546100_bib38
  article-title: GSA: a gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 37
  start-page: 2389
  year: 2021
  ident: 2024082710544546100_bib40
  article-title: A smart metaheuristic algorithm for solving engineering problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-00951-x
– volume: 4
  start-page: 190
  year: 2023
  ident: 2024082710544546100_bib48
  article-title: An improvised sentiment analysis model on Twitter data using stochastic gradient descent (SGD) optimization algorithm in stochastic gate neural network (SGNN)
  publication-title: SN Computer Science
  doi: 10.1007/s42979-022-01607-x
– volume: 1
  start-page: 1
  year: 2018
  ident: 2024082710544546100_bib49
  article-title: Improvement analysis and application of real-coded genetic algorithm for solving constrained optimization problems
  publication-title: Mathematical Problems in Engineering
– volume: 38
  start-page: 219
  year: 2013
  ident: 2024082710544546100_bib56
  article-title: An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.10.026
– volume: 10
  start-page: 2223
  year: 2023
  ident: 2024082710544546100_bib20
  article-title: Improve coati optimization algorithm for solving constrained engineering optimization problems
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwad095
– volume-title: Proceedings of the 3rd International Conference on Learning Representations (ICLR)
  year: 2014
  ident: 2024082710544546100_bib22
  article-title: Adam: a method for stochastic optimization
– volume: 642
  start-page: 119164
  year: 2023
  ident: 2024082710544546100_bib28
  article-title: A late-mover genetic algorithm for resource-constrained project-scheduling problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.119164
– volume: 12
  start-page: 897
  year: 2020
  ident: 2024082710544546100_bib35
  article-title: Comprehensive taxonomies of nature-and bio-inspired optimization: Inspiration versus algorithmic behavior, critical analysis recommendations
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-020-09730-8
SSID ssj0001723019
ssib053376903
Score 2.270563
Snippet The optimization of numerical functions with multiple independent variables was a significant challenge with numerous practical applications in process control...
SourceID nrf
proquest
crossref
oup
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 332
SubjectTerms Adaptive algorithms
Dung
Evolutionary algorithms
Genetic algorithms
Heuristic methods
Independent variables
Mutation
Operators (mathematics)
Optimization
Optimization algorithms
Process controls
Ribonucleic acid
RNA
기계공학
Title An RNA evolutionary algorithm based on gradient descent for function optimization
URI https://www.proquest.com/docview/3204107007
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003114440
Volume 11
WOSCitedRecordID wos001298170100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computational Design and Engineering , 2024, 11(4), , pp.332-357
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: TOX
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M7S
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: BENPR
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: PIMPY
  dateStart: 20211001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGlh4I8qjsgSMUR07aZoJFQSCgVJeUpksx3bKM4E0gPj3nBNXIAYYmKI4iWXlznffPXwHsEM5C3XII4-xiHqBVMZDPY-mCk-s2yJpM19XzSaiXq8zGMR953AbubTKsUysBLXOlfWRtzijAZoqqNL2nl882zXKRlddC41JmLZVEvwqde_yy8cSIcCuenswhgwRIre63He041v3SpvWy7s01NZZ_aaVJrMi_XHebSygK61zNP_f9S7AnMObpFszyCJMmGwJ5h32JG5nj5bhvJuRi16XmDfHi7L4IPJxiFOWt0_EKjtN8owMiypHrCS6rgNFEPQSqxztNyRHAfTkTnauwPXR4dXBsefaLXgKCVZ6vvQVlYmhkgdcMyMRjbEo7ajApIyGHUO5piqI09SGDoM2go0oQROuIwNmklDxVZjK8sysAZFxwrj021IhHotCEwfG1lLTOk5x2KgG7I5_t3iuq2qIOhrOhSWLcGRpwDbSQjyoO2HLYNvrMBcPhUCwf4KvR76tftMAgrT6Y6LNMZWE26Qj8UWi9d8fb8Asw_XXeX-bMFUWr2YLZtRbeTcqmjC9f9jrXzQrc75ZcSCO9U9O-zd4d3U2-AQ6NuPx
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuQwEC2xSTMXtpnRNNtYAo5RO3bS6RwQarGIFtCaYZG4eRzb6WFLIB1A_BTfSDlxBOLAnDhwipRNcfxc75VdrgJYo5yFOuSRx1hEvUAq4yHPo6vCEzttkXSYr6tiE9Fg0D07i3-PwVOzF8aGVTY2sTLUOld2jrzNGQ3QVUFK27y59WzVKLu62pTQqGGxbx4f0GUbbfS3sX_XGdvdOdna81xVAU_hd5WeL31FZWKo5AHXzEgUHSxKuyowKaNh11CuqQriNLUrZEEHOTVK0FPpyoCZJFQc3zsOkygjWFyFCh6_zOlEKOirWiKMIQBDHB0u1p7GvH2htGnfPkhDbV7XVyw4nhXpm_11DSFULLc789n-zyxMOz1NevUAmIMxk83DjNPWxFmu0Tf408vI0aBHzL0ba7J4JPJqiE0o_10TS-aa5BkZFlUMXEl0neeKoKgnlvztMyRHA3vtdq5-h9MPadgPmMjyzPwEIuOEcel3pEK9GYUmDozNFad1nOJpo1qw3nSvuKmzhoh6tZ8LCwPhYNCCVex7canOhU3zbY_DXFwWAp2ZPt4e-Ta7TwsIYuM_L1pqUCGcERqJF0gsvH_5F3zZOzk8EAf9wf4ifGXYljrGcQkmyuLOLMOUui_PR8VKhXcCfz8aQM-EBTpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+RNA+evolutionary+algorithm+based+on+gradient+descent+for+function+optimization&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Wu%2C+Qiuxuan&rft.au=Zhao%2C+Zikai&rft.au=Chen%2C+Mingming&rft.au=Chi%2C+Xiaoni&rft.date=2024-08-01&rft.pub=Oxford+University+Press&rft.issn=2288-5048&rft.eissn=2288-5048&rft.volume=11&rft.issue=4&rft.spage=332&rft.epage=357&rft_id=info:doi/10.1093%2Fjcde%2Fqwae068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon