On the computational complexity of the virtual network embedding problem

Given a graph representing a substrate (or physical) network with node and edge capacities and a set of virtual networks with node capacity demands and node-to-node traffic demands, the Virtual Network Embedding problem (VNE) calls for an embedding of (a subset of) the virtual networks onto the subs...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronic notes in discrete mathematics Ročník 52; s. 213 - 220
Hlavní autori: Amaldi, Edoardo, Coniglio, Stefano, Koster, Arie M.C.A., Tieves, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.06.2016
Predmet:
ISSN:1571-0653, 1571-0653
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given a graph representing a substrate (or physical) network with node and edge capacities and a set of virtual networks with node capacity demands and node-to-node traffic demands, the Virtual Network Embedding problem (VNE) calls for an embedding of (a subset of) the virtual networks onto the substrate network which maximizes the total profit while respecting the physical node and edge capacities. In this work, we investigate the computational complexity of VNE. In particular, we present a polynomial-time reduction from the maximum stable set problem which implies strong NP-hardness for VNE even for very special subclasses of graphs and yields a strong inapproximability result for general graphs. We also consider the special cases obtained when fixing one of the dimensions of the problem to one. We show that VNE is still strongly NP-hard when a single virtual network request is present or when each virtual network request consists of a single virtual node and that it is weakly NP-hard for the case with a single physical node.
AbstractList Given a graph representing a substrate (or physical) network with node and edge capacities and a set of virtual networks with node capacity demands and node-to-node traffic demands, the Virtual Network Embedding problem (VNE) calls for an embedding of (a subset of) the virtual networks onto the substrate network which maximizes the total profit while respecting the physical node and edge capacities. In this work, we investigate the computational complexity of VNE. In particular, we present a polynomial-time reduction from the maximum stable set problem which implies strong NP-hardness for VNE even for very special subclasses of graphs and yields a strong inapproximability result for general graphs. We also consider the special cases obtained when fixing one of the dimensions of the problem to one. We show that VNE is still strongly NP-hard when a single virtual network request is present or when each virtual network request consists of a single virtual node and that it is weakly NP-hard for the case with a single physical node.
Author Amaldi, Edoardo
Coniglio, Stefano
Tieves, Martin
Koster, Arie M.C.A.
Author_xml – sequence: 1
  givenname: Edoardo
  surname: Amaldi
  fullname: Amaldi, Edoardo
  email: edoardo.amaldi@polimi.it
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
– sequence: 2
  givenname: Stefano
  surname: Coniglio
  fullname: Coniglio, Stefano
  email: coniglio@math2.rwth-aachen.de
– sequence: 3
  givenname: Arie M.C.A.
  surname: Koster
  fullname: Koster, Arie M.C.A.
  email: koster@math2.rwth-aachen.de
– sequence: 4
  givenname: Martin
  surname: Tieves
  fullname: Tieves, Martin
  email: tieves@math2.rwth-aachen.de
BookMark eNp9kE1OwzAQhS1UJNrCBVjlAgn-wYktsUEV0EqVuoG15TgTcEnsynELvT1JwwKx6GbmjZ6-0cyboYnzDhC6JTgjmOR32wxc1Wa01xlmGabiAk0JL0iKc84mf_QVmnXdFmMmSMGnaLlxSfyAxPh2t486Wu90c5oa-LbxmPj65B9siPvecRC_fPhMoC2hqqx7T3bBlw201-iy1k0HN799jt6en14Xy3S9eVktHtepYZSLFBijspZEa2I0rgHzoryXOaGGF0KKUjJMZM7KnPCcCU00k0OhGmRVS6bZHIlxrwm-6wLUytjx7hi0bRTBakhEbdWQiBoSUZipPpEepf_QXbCtDsfz0MMIQf_UwUJQnbHgDFQ2gImq8vYc_gOCpXzN
CitedBy_id crossref_primary_10_1109_TNSM_2023_3243435
crossref_primary_10_1016_j_comcom_2017_01_007
crossref_primary_10_1007_s11277_021_08517_w
crossref_primary_10_1016_j_comnet_2020_107420
crossref_primary_10_1016_j_engappai_2025_111083
crossref_primary_10_1007_s00607_025_01474_3
crossref_primary_10_1155_2021_5542670
crossref_primary_10_1002_nem_2066
crossref_primary_10_1016_j_comnet_2019_106952
crossref_primary_10_1109_TSP_2023_3244671
crossref_primary_10_1109_JIOT_2024_3356750
crossref_primary_10_1002_dac_4098
crossref_primary_10_3390_telecom5040057
crossref_primary_10_1109_TPDS_2023_3310013
crossref_primary_10_1007_s10922_016_9376_x
crossref_primary_10_1016_j_future_2017_09_065
crossref_primary_10_1109_LWC_2020_2974198
crossref_primary_10_1109_TGCN_2024_3454190
crossref_primary_10_1109_TNSM_2020_3029108
crossref_primary_10_1007_s11036_020_01714_0
crossref_primary_10_1016_j_iot_2023_100761
crossref_primary_10_1109_JSAC_2018_2815318
crossref_primary_10_1109_TNET_2022_3200853
crossref_primary_10_1109_TMC_2021_3061613
crossref_primary_10_1109_TNSM_2022_3152309
crossref_primary_10_1109_ACCESS_2019_2940971
crossref_primary_10_1109_TNSM_2023_3303388
crossref_primary_10_1109_TNSE_2021_3132556
crossref_primary_10_1109_TNSM_2018_2865204
crossref_primary_10_1109_TNET_2020_2975646
crossref_primary_10_1007_s10270_020_00852_z
crossref_primary_10_1109_TVT_2021_3093588
crossref_primary_10_1007_s12243_024_01040_6
crossref_primary_10_1016_j_future_2023_09_018
crossref_primary_10_1051_matecconf_201823201019
crossref_primary_10_1109_TNSM_2020_3023011
crossref_primary_10_1109_TNSM_2016_2598420
crossref_primary_10_1109_TNET_2019_2958367
crossref_primary_10_1109_ACCESS_2021_3068342
crossref_primary_10_1109_JSAC_2020_2999684
crossref_primary_10_1016_j_future_2018_11_048
crossref_primary_10_1016_j_comcom_2018_07_017
crossref_primary_10_1109_TNSM_2021_3120297
crossref_primary_10_1109_TPDS_2020_3030920
crossref_primary_10_1109_TNSM_2021_3132103
crossref_primary_10_1007_s11036_020_01661_w
crossref_primary_10_1109_ACCESS_2018_2883251
crossref_primary_10_1109_ACCESS_2018_2847910
crossref_primary_10_1016_j_jnca_2020_102785
crossref_primary_10_3390_e20120941
crossref_primary_10_3390_sym11091173
crossref_primary_10_1007_s10922_022_09654_8
crossref_primary_10_1109_ACCESS_2023_3308492
crossref_primary_10_1109_JIOT_2024_3364152
crossref_primary_10_7717_peerj_cs_1716
crossref_primary_10_3390_telecom2040023
crossref_primary_10_1109_JSYST_2021_3111972
crossref_primary_10_1016_j_comcom_2021_01_014
crossref_primary_10_1016_j_comcom_2023_02_012
crossref_primary_10_1109_TNSM_2022_3149243
crossref_primary_10_1109_TGCN_2023_3266301
crossref_primary_10_1002_dac_3573
crossref_primary_10_1109_TNSM_2020_3019248
crossref_primary_10_1007_s10922_023_09771_y
crossref_primary_10_1155_2023_6683900
Cites_doi 10.1007/BF02392825
10.1016/j.comnet.2010.12.011
10.1145/1355734.1355737
10.1016/0304-3975(76)90059-1
10.1007/BF02943300
10.7155/jgaa.00183
10.1016/j.comnet.2009.10.017
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.endm.2016.03.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1571-0653
EndPage 220
ExternalDocumentID 10_1016_j_endm_2016_03_028
S1571065316300336
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACXMD
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJMQA
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
M41
MHUIS
MO0
M~E
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c3258-e3329f91aa1ca0fe057b49612c57898b9301963b615638a1a39a1a32ae9df93a3
ISSN 1571-0653
IngestDate Tue Nov 18 22:12:47 EST 2025
Sat Nov 29 01:47:08 EST 2025
Fri Feb 23 02:23:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords combinatorial optimization
inapproximability
Virtual network embedding
computational complexity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3258-e3329f91aa1ca0fe057b49612c57898b9301963b615638a1a39a1a32ae9df93a3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1571065316300336
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_endm_2016_03_028
crossref_primary_10_1016_j_endm_2016_03_028
elsevier_sciencedirect_doi_10_1016_j_endm_2016_03_028
PublicationCentury 2000
PublicationDate June 2016
2016-06-00
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationTitle Electronic notes in discrete mathematics
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Poljak (br0100) 1974; 15
Yu, Yi, Rexford, Chiang (br0110) 2008; 38
Geng, Zhang (br0070) 1986; 1
Andersen (br0010) 2002
Chowdhury, Boutaba (br0020) 2010; 54
Coniglio, Koster, Tieves (br0040) 2015
Eppstein (br0050) 2009; 13
Hastad (br0080) 1999; 182
Houidi, Louati, Ben-Ameur, Zeghlache (br0090) 2011; 55
Zhu, Ammar (br0120) 2006
Coniglio, Grimm, Koster, Tieves, Werner (br0030) 2015
Garey, Johnson, Stockmeyer (br0060) 1976; 1
Geng (10.1016/j.endm.2016.03.028_br0070) 1986; 1
Zhu (10.1016/j.endm.2016.03.028_br0120) 2006
Coniglio (10.1016/j.endm.2016.03.028_br0030)
Hastad (10.1016/j.endm.2016.03.028_br0080) 1999; 182
Coniglio (10.1016/j.endm.2016.03.028_br0040) 2015
Yu (10.1016/j.endm.2016.03.028_br0110) 2008; 38
Andersen (10.1016/j.endm.2016.03.028_br0010) 2002
Houidi (10.1016/j.endm.2016.03.028_br0090) 2011; 55
Eppstein (10.1016/j.endm.2016.03.028_br0050) 2009; 13
Garey (10.1016/j.endm.2016.03.028_br0060) 1976; 1
Poljak (10.1016/j.endm.2016.03.028_br0100) 1974; 15
Chowdhury (10.1016/j.endm.2016.03.028_br0020) 2010; 54
References_xml – start-page: 1
  year: 2006
  end-page: 12
  ident: br0120
  article-title: Algorithms for assigning substrate network resources to virtual network components
  publication-title: INFOCOM 2006
– year: 2015
  ident: br0040
  article-title: Virtual network embedding under uncertainty: exact and heuristic approaches
  publication-title: DRCN 2015
– volume: 182
  start-page: 105
  year: 1999
  end-page: 142
  ident: br0080
  article-title: Clique is hard to approximate within
  publication-title: Acta Mathematica
– year: 2002
  ident: br0010
  article-title: Theoretical approaches to node assignment
– volume: 55
  start-page: 1011
  year: 2011
  end-page: 1023
  ident: br0090
  article-title: Virtual network provisioning across multiple substrate networks
  publication-title: Computer Networks
– volume: 38
  start-page: 17
  year: 2008
  end-page: 29
  ident: br0110
  article-title: Rethinking virtual network embedding: substrate support for path splitting and migration
  publication-title: ACM SIGCOMM Computer Communication Review
– volume: 15
  start-page: 307
  year: 1974
  end-page: 309
  ident: br0100
  article-title: A note on stable sets and coloring of graphs
  publication-title: Commentationes Mathematicae Universitatis Carolinae
– year: 2015
  ident: br0030
  article-title: Optimal offline virtual network embedding with rent-at-bulk aspects
– volume: 1
  start-page: 237
  year: 1976
  end-page: 267
  ident: br0060
  article-title: Some simplified
  publication-title: Theoretical computer science
– volume: 1
  start-page: 46
  year: 1986
  end-page: 50
  ident: br0070
  article-title: The complexity of the 0-1 multi-knapsack problem
  publication-title: Journal of Computer Science and Technology
– volume: 54
  start-page: 862
  year: 2010
  end-page: 876
  ident: br0020
  article-title: A survey of network virtualization
  publication-title: Computer Networks
– volume: 13
  start-page: 197
  year: 2009
  end-page: 204
  ident: br0050
  article-title: Finding large clique minors is hard
  publication-title: Journal of Graph Algorithms and Applications
– volume: 182
  start-page: 105
  year: 1999
  ident: 10.1016/j.endm.2016.03.028_br0080
  article-title: Clique is hard to approximate within n1−ϵ
  publication-title: Acta Mathematica
  doi: 10.1007/BF02392825
– volume: 55
  start-page: 1011
  issue: 4
  year: 2011
  ident: 10.1016/j.endm.2016.03.028_br0090
  article-title: Virtual network provisioning across multiple substrate networks
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2010.12.011
– volume: 38
  start-page: 17
  issue: 2
  year: 2008
  ident: 10.1016/j.endm.2016.03.028_br0110
  article-title: Rethinking virtual network embedding: substrate support for path splitting and migration
  publication-title: ACM SIGCOMM Computer Communication Review
  doi: 10.1145/1355734.1355737
– year: 2002
  ident: 10.1016/j.endm.2016.03.028_br0010
– volume: 15
  start-page: 307
  year: 1974
  ident: 10.1016/j.endm.2016.03.028_br0100
  article-title: A note on stable sets and coloring of graphs
  publication-title: Commentationes Mathematicae Universitatis Carolinae
– volume: 1
  start-page: 237
  issue: 3
  year: 1976
  ident: 10.1016/j.endm.2016.03.028_br0060
  article-title: Some simplified NP-complete graph problems
  publication-title: Theoretical computer science
  doi: 10.1016/0304-3975(76)90059-1
– volume: 1
  start-page: 46
  issue: 1
  year: 1986
  ident: 10.1016/j.endm.2016.03.028_br0070
  article-title: The complexity of the 0-1 multi-knapsack problem
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/BF02943300
– year: 2015
  ident: 10.1016/j.endm.2016.03.028_br0040
  article-title: Virtual network embedding under uncertainty: exact and heuristic approaches
– start-page: 1
  year: 2006
  ident: 10.1016/j.endm.2016.03.028_br0120
  article-title: Algorithms for assigning substrate network resources to virtual network components
– ident: 10.1016/j.endm.2016.03.028_br0030
– volume: 13
  start-page: 197
  issue: 2
  year: 2009
  ident: 10.1016/j.endm.2016.03.028_br0050
  article-title: Finding large clique minors is hard
  publication-title: Journal of Graph Algorithms and Applications
  doi: 10.7155/jgaa.00183
– volume: 54
  start-page: 862
  issue: 5
  year: 2010
  ident: 10.1016/j.endm.2016.03.028_br0020
  article-title: A survey of network virtualization
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2009.10.017
SSID ssj0038175
Score 2.4286792
Snippet Given a graph representing a substrate (or physical) network with node and edge capacities and a set of virtual networks with node capacity demands and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 213
SubjectTerms combinatorial optimization
computational complexity
inapproximability
Virtual network embedding
Title On the computational complexity of the virtual network embedding problem
URI https://dx.doi.org/10.1016/j.endm.2016.03.028
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1571-0653
  dateEnd: 20190331
  omitProxy: false
  ssIdentifier: ssj0038175
  issn: 1571-0653
  databaseCode: AIEXJ
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1571-0653
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0038175
  issn: 1571-0653
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbctEOXvou8WnDoZkiQROvB0QhcBEiTdEiLbAJFUoUCmwpc1_DUv5K_muPTdpoGzdCFMEiLtnUfTsfzd98h9AlgkQkxKqIqF2WkayWjJilYRKoqTQiTZWNyut-_lGdn1eUl_ToY3PhamOW0VKparej1fzU1zIGxdensI8wdNoUJeA1GhxHMDuM_Gf7cEhe5adfgU32GOS5Xjn-h15fd3JSOKMsDH8pZI4Wwtemmx8xWzn7dLEf1C2k5tB14HAi5h7Og_Bri8_GMTYXhCUxEDxjsw18dsMePadc7glnLVFg66X2TkDEc34en8VE8jkNioZNL69Cs7sFmsiIt1qQq719LTbSy-sCxvGfOOWUraxu8Ktl4QGemeu5P32_TEFexVEJLDKSFUa91pedbQtt3HoCBlugZb1e13qPWe9QJqWGPJ-hpVuZUcwZPf0_8o16rG-ZGkNf9AleVZQmEd7_H_ZHPRjRz8Qq9cMcQPLbweY0GUr1BL32LD-w8_lt0fK4wWBdvoQmv0YT71qw7NGGHJhzQhB2a3qFvnycXR8eRa74RcZLlVSQJyWhLU8ZSzpJWQlzfjCjEwxx8PK0aSrSyEmkgIgYXzlJGqB4yJqloKWHkPdpRvZK7CMOhuSSFLHNekBHnompaIhqa5JyyvEnzPZT6G1Nzp0yvG6RM678bZA8NwzXXVpflwXfn_n7XLrK0EWMN4Hnguv1HfcoBep7p4hiD-UO0s5j_kh_QM75cdD_nHw1ybgFfhJnx
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+computational+complexity+of+the+virtual+network+embedding+problem&rft.jtitle=Electronic+notes+in+discrete+mathematics&rft.au=Amaldi%2C+Edoardo&rft.au=Coniglio%2C+Stefano&rft.au=Koster%2C+Arie+M.C.A.&rft.au=Tieves%2C+Martin&rft.date=2016-06-01&rft.issn=1571-0653&rft.eissn=1571-0653&rft.volume=52&rft.spage=213&rft.epage=220&rft_id=info:doi/10.1016%2Fj.endm.2016.03.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_endm_2016_03_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1571-0653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1571-0653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1571-0653&client=summon