Stochastic optimization methods in optimal engineering design under stochastic uncertainty
Problems from optimal plastic design are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic stress (state) vector. Having to take into account, in practice, stochastic variations of the model parameters (e.g. yield stresses, plastic...
Uloženo v:
| Vydáno v: | Zeitschrift für angewandte Mathematik und Mechanik Ročník 83; číslo 12; s. 795 - 811 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin
WILEY-VCH Verlag
01.12.2003
WILEY‐VCH Verlag |
| Témata: | |
| ISSN: | 0044-2267, 1521-4001 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Problems from optimal plastic design are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic stress (state) vector. Having to take into account, in practice, stochastic variations of the model parameters (e.g. yield stresses, plastic capacities) and external loadings, the basic stochastic optimal plastic design problem must be replaced by an appropriate deterministic substitute problem. After considering stochastic optimization methods based on failure/survival probabilities and presenting differentiation techniques and differentiation formulas for probability of failure/survival functions, a direct approach is presented using the construction and failure costs (e.g. costs for damage, repair, compensation for weakness within the structure, etc.). Based on the basic mechanical survival conditions, the failure costs may be represented by the minimum value of a convex and often linear program. Several mathematical properties of this program are shown. Minimizing then the total expected costs subject to the remaining (simple) deterministic constraints, a stochastic optimization problem is obtained which may be represented by a “Stochastic Convex Program (SCP) with recourse”. Working with linearized yield/strength conditions, a “Stochastic Linear Program (SLP) with complete fixed recourse” results. In case of a discretely distributed probability distribution or after the discretization of a more general probability distribution of the random structural parameters and loadings as well as certain random cost factors one has a linear program (LP) with a so‐called “dual decomposition data” structure. For stochastic programs of this type many theoretical results and efficient numerical solution procedures (LP‐solver) are available. The mathematical properties of theses substitute problems are considered, and numerical solution procedures are described. |
|---|---|
| AbstractList | Problems from optimal plastic design are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic stress (state) vector. Having to take into account, in practice, stochastic variations of the model parameters (e.g. yield stresses, plastic capacities) and external loadings, the basic stochastic optimal plastic design problem must be replaced by an appropriate deterministic substitute problem. After considering stochastic optimization methods based on failure/survival probabilities and presenting differentiation techniques and differentiation formulas for probability of failure/survival functions, a direct approach is presented using the construction and failure costs (e.g. costs for damage, repair, compensation for weakness within the structure, etc.). Based on the basic mechanical survival conditions, the failure costs may be represented by the minimum value of a convex and often linear program. Several mathematical properties of this program are shown. Minimizing then the total expected costs subject to the remaining (simple) deterministic constraints, a stochastic optimization problem is obtained which may be represented by a “Stochastic Convex Program (SCP) with recourse”. Working with linearized yield/strength conditions, a “Stochastic Linear Program (SLP) with complete fixed recourse” results. In case of a discretely distributed probability distribution or after the discretization of a more general probability distribution of the random structural parameters and loadings as well as certain random cost factors one has a linear program (LP) with a so‐called “dual decomposition data” structure. For stochastic programs of this type many theoretical results and efficient numerical solution procedures (LP‐solver) are available. The mathematical properties of theses substitute problems are considered, and numerical solution procedures are described. |
| Author | Marti, K. |
| Author_xml | – sequence: 1 givenname: K. surname: Marti fullname: Marti, K. email: kurt.marti@unibw-muenchen.de organization: Federal Armed Forces University Munich, Aerospace Engineering and Technology, 85577 Neubiberg/München, Germany |
| BookMark | eNqFkFFLwzAUhYNMcJu--tw_0JmkSdM-jqmbuCnoRNlLiEm6Rdd0JBm6_Xo7K1ME8elyD-c7cE4HtGxlNQCnCPYQhPhsK8qyhyFM6o_hA9BGFKOYQIhaoA0hITHGKTsCHe9fYK3mKGmD2X2o5EL4YGRUrYIpzVYEU9mo1GFRKR8Z2-hiGWk7N1ZrZ-w8UtqbuY3WVmkX-e-MtZXaBWFs2ByDw0IsvT75ul3wcHkxHYzi8e3watAfxzLBFMeZwJSoNM3yDNKMKklQoajMxXOBsSiYVClTCcVUK0QVZZoRkgtGCi0w1lImXUCaXOkq750uuDThs0Rwwiw5gny3D9_tw_f71FjvF7ZydU23-RvIG-DNLPXmHzef9SeTn2zcsMYH_b5nhXvlKUsY5Y83Q34-vkvI9XTEn5IPKsqNKQ |
| CitedBy_id | crossref_primary_10_1243_09544100JAERO444 crossref_primary_10_1002_zamm_200410148 crossref_primary_10_1080_15397730701243066 crossref_primary_10_1002_zamm_200410246 crossref_primary_10_1016_j_compstruc_2006_08_076 crossref_primary_10_1007_s12206_023_0831_9 crossref_primary_10_1080_15502280903563509 crossref_primary_10_1088_1748_3190_abac47 crossref_primary_10_1007_s11081_013_9241_7 |
| Cites_doi | 10.1007/978-3-642-88272-2_3 10.1007/978-3-642-66252-2 10.1080/03052157608960606 10.1007/978-0-387-34866-7_20 10.1016/S0951-8320(01)00057-6 10.1201/9781482267457 10.4203/ccp.65.5.1 10.1002/zamm.19850650813 10.1115/1.3607621 10.1016/0045-7825(74)90041-3 10.1080/03052159008941166 10.1090/qam/39533 10.1007/s004190050194 10.1007/BF01745455 10.1016/0898-1221(95)00113-1 10.1007/978-3-7091-2618-9_1 10.1007/978-3-7091-2566-3 10.1007/BF01415892 10.1061/(ASCE)0733-9445(1985)111:8(1703) 10.1007/BF02592152 10.1061/JSDEAG.0001577 10.1080/03601217908905329 10.1007/978-1-4615-1771-9_16 10.1007/BF01197451 10.1016/0045-7949(94)00310-Y 10.1007/BF00536009 10.1214/aoms/1177698049 10.1007/978-3-642-45767-8_4 10.1214/aop/1176995765 10.1007/978-1-4615-2494-6_28 10.1007/BF00532856 10.1007/978-3-662-02558-1 |
| ContentType | Journal Article |
| Copyright | Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/zamm.200310072 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1521-4001 |
| EndPage | 811 |
| ExternalDocumentID | 10_1002_zamm_200310072 ZAMM200310072 ark_67375_WNG_DLR34KTH_X |
| Genre | article |
| GroupedDBID | -~X .3N .DC .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCQX ABCUV ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RX1 TN5 UB1 V2E VOH W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~02 ~IA ~WT .4S 41~ ABEML ACSCC AEUQT AFPWT ARCSS EDO FSPIC HF~ H~9 I-F M6L PALCI RJQFR RWI SAMSI SUPJJ WRC WWM AAYXX AGHNM AIQQE CITATION O8X |
| ID | FETCH-LOGICAL-c3252-8a254d668980585dc41fd5c9abf22af7cd67d3525ed15d57e7449a74fea22ecc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000187220200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0044-2267 |
| IngestDate | Sat Nov 29 05:29:22 EST 2025 Tue Nov 18 21:43:07 EST 2025 Wed Jan 22 16:31:55 EST 2025 Sun Sep 21 06:18:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3252-8a254d668980585dc41fd5c9abf22af7cd67d3525ed15d57e7449a74fea22ecc3 |
| Notes | istex:95031377177A6E6194B8547EBF558D96E0D277FD ArticleID:ZAMM200310072 ark:/67375/WNG-DLR34KTH-X |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1002_zamm_200310072 crossref_primary_10_1002_zamm_200310072 wiley_primary_10_1002_zamm_200310072_ZAMM200310072 istex_primary_ark_67375_WNG_DLR34KTH_X |
| PublicationCentury | 2000 |
| PublicationDate | December 2003 |
| PublicationDateYYYYMMDD | 2003-12-01 |
| PublicationDate_xml | – month: 12 year: 2003 text: December 2003 |
| PublicationDecade | 2000 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Zeitschrift für angewandte Mathematik und Mechanik |
| PublicationTitleAlternate | Z. angew. Math. Mech |
| PublicationYear | 2003 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
| References | K. Marti, Computation of descent directions in stochastic optimization problems with invariant distributions, Z. Angew. Math. Mech. 65, 355-378 (1985). K. Marti, Approximationen der Entscheidungprobleme mit linearer Ergebnisfunktion und positiv homogener, subadditiver Verlustfunktion, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 31, 203-233 (1975). K. Marti, Diskretisierung stochastischer Programme unter Berücksichtigung der Problemstruktur, Z. Angew. Math. Mech. 59, T105-T108 (1979). G. Cocchetti and G. Maier, Static shakedown theorems in piecewise linearized poroplasticity, Arch. Appl. Mech. 68, 651-661 (1988). L. Corradi and A. Zavelani, A linear programming approach to shakedown analysis of structures, Comput. Methods Appl. Mech. Eng. (Netherlands) 3, 37-53 (1974). D.M. Frangopol, Sensitivity of reliability-based optimum design, J. Struct. Div. 111, 1703-1721 (1985). W. Prager and R.T. Shield, A general theory of optimal plastic design, J. Appl. Mech. 34(1), 184-186 (1967). D.L. Smith and J. Munro, Plastic analysis and synthesis of frames subject to multiple loadings, Eng. Optim. 2, 145-157 (1976). F. Tin-Loi, Plastic limit analysis of plane frames and grids using GAMS, Comput. Struct. 54, 15-25 (1995). K. Marti, Stochastic optimization methods in structural mechanics, Z. Angew. Math. Mech. 70, T742-T745 (1990). Y. Murotsu and S. Shao, Optimum shape design of truss structures based on reliability, Struct. Optim. 2(2), 65-76 (1990). O. Ditlevsen, Narrow reliability bounds for structural systems, J. Struct. Mech. 7, 453-472 (1979). K. Marti, Approximation and derivatives of probabilities of survival in structural analysis and design, Struct. Optim. 13, 230-243 (1997). D.M. Frangopol et al. (eds.), Reliability oriented structural design, Special Issue of Reliab. Eng. Syst. Saf. 73(3), 105-301 (2001). K. Marti, Differentiation formulas for probability functions: the transformation method, Math. Program. B 75, 201-220 (1996). E.G. Kounias, Bounds for the probability of a union, with applications, Ann. Math. Statist. 39, 2154-2158 (1968). G. Maier and J. Munro, Mathematical programming applications to engineering plastic analysis, Appl. Mech. Rev. 35(12), 1631-1643 (1982). J. Galambos, Bonferroni inequalities, The Annals of Probability 5, 577-581 (1977). K. Marti, Computation of efficient solutions of discretely distributed stochastic optimization problems, Math. Methods Oper. Res. 36, 259-294 (1992). K. Marti, Differentiation of probability functions: the transformation method, Comput. Math. Appl. 30, 361-382 (1995). F. Tin-Loi, On the optimal plastic synthesis of frames, Eng. Optim. 16, 91-108 (1990). C.A. Cornell, Bounds on the reliability of structural systems, J. Struct. Div., ASCE 93, 171-200 (1967). J. Heyman, Plastic design of beams and plane frames for minimum material consumption, Q. Appl. Math. 8, 373-381 (1950/51). K. Marti, Entscheidungsprobleme mit linearem Aktionen- und Ergebnisraum, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 23, 133-147 (1972). 1995; 30 1982; 35(12) 1979; 59 1968; 39 1990; 16 1967; 93 1997; 13 1995; 54 1990; 2(2) 1976; 2 1988; 68 1967; 34(1) 1975; 31 1992; 36 2001; 73(3) 8 1972; 23 1985; 65 1974; 3 1990; 70 1996; 75 1977; 5 1979; 7 1985; 111 e_1_2_1_41_2 e_1_2_1_45_2 e_1_2_1_20_2 e_1_2_1_43_2 Marti K. (e_1_2_1_26_2) 1979; 59 e_1_2_1_49_2 e_1_2_1_24_2 e_1_2_1_47_2 Frangopol D.M. (e_1_2_1_9_2) 2001; 73 e_1_2_1_28_2 e_1_2_1_6_2 Marti K. (e_1_2_1_29_2) 1990; 70 e_1_2_1_2_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_50_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_14_2 e_1_2_1_35_2 Heyman J. (e_1_2_1_13_2); 8 e_1_2_1_8_2 e_1_2_1_18_2 e_1_2_1_39_2 Cornell C.A. (e_1_2_1_4_2) 1967; 93 e_1_2_1_40_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_27_2 e_1_2_1_48_2 e_1_2_1_25_2 e_1_2_1_46_2 Maier G. (e_1_2_1_22_2) 1982; 35 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_32_2 e_1_2_1_51_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_36_2 e_1_2_1_19_2 e_1_2_1_17_2 |
| References_xml | – reference: D.L. Smith and J. Munro, Plastic analysis and synthesis of frames subject to multiple loadings, Eng. Optim. 2, 145-157 (1976). – reference: C.A. Cornell, Bounds on the reliability of structural systems, J. Struct. Div., ASCE 93, 171-200 (1967). – reference: W. Prager and R.T. Shield, A general theory of optimal plastic design, J. Appl. Mech. 34(1), 184-186 (1967). – reference: K. Marti, Differentiation formulas for probability functions: the transformation method, Math. Program. B 75, 201-220 (1996). – reference: F. Tin-Loi, On the optimal plastic synthesis of frames, Eng. Optim. 16, 91-108 (1990). – reference: K. Marti, Computation of efficient solutions of discretely distributed stochastic optimization problems, Math. Methods Oper. Res. 36, 259-294 (1992). – reference: G. Cocchetti and G. Maier, Static shakedown theorems in piecewise linearized poroplasticity, Arch. Appl. Mech. 68, 651-661 (1988). – reference: J. Heyman, Plastic design of beams and plane frames for minimum material consumption, Q. Appl. Math. 8, 373-381 (1950/51). – reference: K. Marti, Differentiation of probability functions: the transformation method, Comput. Math. Appl. 30, 361-382 (1995). – reference: K. Marti, Diskretisierung stochastischer Programme unter Berücksichtigung der Problemstruktur, Z. Angew. Math. Mech. 59, T105-T108 (1979). – reference: Y. Murotsu and S. Shao, Optimum shape design of truss structures based on reliability, Struct. Optim. 2(2), 65-76 (1990). – reference: K. Marti, Approximation and derivatives of probabilities of survival in structural analysis and design, Struct. Optim. 13, 230-243 (1997). – reference: F. Tin-Loi, Plastic limit analysis of plane frames and grids using GAMS, Comput. Struct. 54, 15-25 (1995). – reference: J. Galambos, Bonferroni inequalities, The Annals of Probability 5, 577-581 (1977). – reference: K. Marti, Entscheidungsprobleme mit linearem Aktionen- und Ergebnisraum, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 23, 133-147 (1972). – reference: D.M. Frangopol et al. (eds.), Reliability oriented structural design, Special Issue of Reliab. Eng. Syst. Saf. 73(3), 105-301 (2001). – reference: O. Ditlevsen, Narrow reliability bounds for structural systems, J. Struct. Mech. 7, 453-472 (1979). – reference: D.M. Frangopol, Sensitivity of reliability-based optimum design, J. Struct. Div. 111, 1703-1721 (1985). – reference: E.G. Kounias, Bounds for the probability of a union, with applications, Ann. Math. Statist. 39, 2154-2158 (1968). – reference: K. Marti, Stochastic optimization methods in structural mechanics, Z. Angew. Math. Mech. 70, T742-T745 (1990). – reference: K. Marti, Computation of descent directions in stochastic optimization problems with invariant distributions, Z. Angew. Math. Mech. 65, 355-378 (1985). – reference: G. Maier and J. Munro, Mathematical programming applications to engineering plastic analysis, Appl. Mech. Rev. 35(12), 1631-1643 (1982). – reference: K. Marti, Approximationen der Entscheidungprobleme mit linearer Ergebnisfunktion und positiv homogener, subadditiver Verlustfunktion, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 31, 203-233 (1975). – reference: L. Corradi and A. Zavelani, A linear programming approach to shakedown analysis of structures, Comput. Methods Appl. Mech. Eng. (Netherlands) 3, 37-53 (1974). – volume: 65 start-page: 355 year: 1985 end-page: 378 publication-title: Z. Angew. Math. Mech. – volume: 31 start-page: 203 year: 1975 end-page: 233 publication-title: Z. Wahrscheinlichkeitstheor. Verwandte Geb. – volume: 2(2) start-page: 65 year: 1990 end-page: 76 publication-title: Struct. Optim. – volume: 8 start-page: 373 end-page: 381 publication-title: Q. Appl. Math. – volume: 68 start-page: 651 year: 1988 end-page: 661 publication-title: Arch. Appl. Mech. – volume: 16 start-page: 91 year: 1990 end-page: 108 publication-title: Eng. Optim. – volume: 59 year: 1979 publication-title: Z. Angew. Math. Mech. – volume: 2 start-page: 145 year: 1976 end-page: 157 publication-title: Eng. Optim. – volume: 54 start-page: 15 year: 1995 end-page: 25 publication-title: Comput. Struct. – volume: 7 start-page: 453 year: 1979 end-page: 472 publication-title: J. Struct. Mech. – volume: 93 start-page: 171 year: 1967 end-page: 200 publication-title: J. Struct. Div., ASCE – volume: 23 start-page: 133 year: 1972 end-page: 147 publication-title: Z. Wahrscheinlichkeitstheor. Verwandte Geb. – volume: 73(3) start-page: 105 year: 2001 end-page: 301 publication-title: Reliab. Eng. Syst. Saf. – volume: 5 start-page: 577 year: 1977 end-page: 581 publication-title: The Annals of Probability – volume: 75 start-page: 201 year: 1996 end-page: 220 publication-title: Math. Program. B – volume: 111 start-page: 1703 year: 1985 end-page: 1721 publication-title: J. Struct. Div. – volume: 13 start-page: 230 year: 1997 end-page: 243 publication-title: Struct. Optim. – volume: 34(1) start-page: 184 year: 1967 end-page: 186 publication-title: J. Appl. Mech. – volume: 30 start-page: 361 year: 1995 end-page: 382 publication-title: Comput. Math. Appl. – volume: 3 start-page: 37 year: 1974 end-page: 53 publication-title: Comput. Methods Appl. Mech. Eng. (Netherlands) – volume: 39 start-page: 2154 year: 1968 end-page: 2158 publication-title: Ann. Math. Statist. – volume: 35(12) start-page: 1631 year: 1982 end-page: 1643 publication-title: Appl. Mech. Rev. – volume: 70 year: 1990 publication-title: Z. Angew. Math. Mech. – volume: 36 start-page: 259 year: 1992 end-page: 294 publication-title: Math. Methods Oper. Res. – ident: e_1_2_1_11_2 – ident: e_1_2_1_17_2 – ident: e_1_2_1_25_2 – ident: e_1_2_1_34_2 doi: 10.1007/978-3-642-88272-2_3 – ident: e_1_2_1_42_2 – ident: e_1_2_1_16_2 doi: 10.1007/978-3-642-66252-2 – ident: e_1_2_1_47_2 doi: 10.1080/03052157608960606 – ident: e_1_2_1_33_2 doi: 10.1007/978-0-387-34866-7_20 – ident: e_1_2_1_41_2 – volume: 73 start-page: 105 year: 2001 ident: e_1_2_1_9_2 publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/S0951-8320(01)00057-6 – ident: e_1_2_1_39_2 – ident: e_1_2_1_2_2 doi: 10.1201/9781482267457 – ident: e_1_2_1_20_2 doi: 10.4203/ccp.65.5.1 – volume: 70 year: 1990 ident: e_1_2_1_29_2 publication-title: Z. Angew. Math. Mech. – ident: e_1_2_1_27_2 doi: 10.1002/zamm.19850650813 – ident: e_1_2_1_44_2 doi: 10.1115/1.3607621 – ident: e_1_2_1_5_2 doi: 10.1016/0045-7825(74)90041-3 – ident: e_1_2_1_37_2 – ident: e_1_2_1_50_2 doi: 10.1080/03052159008941166 – ident: e_1_2_1_15_2 – ident: e_1_2_1_18_2 – ident: e_1_2_1_12_2 – ident: e_1_2_1_14_2 – volume: 8 start-page: 373 ident: e_1_2_1_13_2 publication-title: Q. Appl. Math. doi: 10.1090/qam/39533 – ident: e_1_2_1_3_2 doi: 10.1007/s004190050194 – ident: e_1_2_1_40_2 doi: 10.1007/BF01745455 – ident: e_1_2_1_32_2 doi: 10.1016/0898-1221(95)00113-1 – ident: e_1_2_1_48_2 doi: 10.1007/978-3-7091-2618-9_1 – volume: 35 start-page: 1631 year: 1982 ident: e_1_2_1_22_2 publication-title: Appl. Mech. Rev. – volume: 59 year: 1979 ident: e_1_2_1_26_2 publication-title: Z. Angew. Math. Mech. – ident: e_1_2_1_45_2 doi: 10.1007/978-3-7091-2566-3 – ident: e_1_2_1_30_2 doi: 10.1007/BF01415892 – ident: e_1_2_1_7_2 doi: 10.1061/(ASCE)0733-9445(1985)111:8(1703) – ident: e_1_2_1_35_2 doi: 10.1007/BF02592152 – volume: 93 start-page: 171 year: 1967 ident: e_1_2_1_4_2 publication-title: J. Struct. Div., ASCE doi: 10.1061/JSDEAG.0001577 – ident: e_1_2_1_6_2 doi: 10.1080/03601217908905329 – ident: e_1_2_1_8_2 doi: 10.1007/978-1-4615-1771-9_16 – ident: e_1_2_1_36_2 doi: 10.1007/BF01197451 – ident: e_1_2_1_49_2 – ident: e_1_2_1_51_2 doi: 10.1016/0045-7949(94)00310-Y – ident: e_1_2_1_24_2 doi: 10.1007/BF00536009 – ident: e_1_2_1_38_2 – ident: e_1_2_1_21_2 – ident: e_1_2_1_19_2 doi: 10.1214/aoms/1177698049 – ident: e_1_2_1_46_2 doi: 10.1007/978-3-642-45767-8_4 – ident: e_1_2_1_43_2 – ident: e_1_2_1_10_2 doi: 10.1214/aop/1176995765 – ident: e_1_2_1_31_2 doi: 10.1007/978-1-4615-2494-6_28 – ident: e_1_2_1_23_2 doi: 10.1007/BF00532856 – ident: e_1_2_1_28_2 doi: 10.1007/978-3-662-02558-1 |
| SSID | ssj0001913 |
| Score | 1.7312788 |
| Snippet | Problems from optimal plastic design are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic... |
| SourceID | crossref wiley istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 795 |
| SubjectTerms | expected costs of failure limit load analysis optimal structural design probability of failure stochastic linear programming stochastic optimization stochastic uncertainty |
| Title | Stochastic optimization methods in optimal engineering design under stochastic uncertainty |
| URI | https://api.istex.fr/ark:/67375/WNG-DLR34KTH-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.200310072 |
| Volume | 83 |
| WOSCitedRecordID | wos000187220200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4001 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001913 issn: 0044-2267 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8M-KAPfhvxK3sw-rQw-kG3RyIiiUAMQiS8LO3aRqIMs02j_vW22xjwYEz0scvtslyvd73b3e8AuIAe9aRAykZQb4OOGKTNmWQ2IoqiuqdM3iEdNkF7PXc08u6XuvgzfIgi4WZORmqvzQFnPK4uQEO_2DTtJDcZaqqNcBlq5cUlUG72W8NOYY11PJL_Zca2vmrQOXCjA6urHFYcU9nI-GP1wpp6nNb2_791B2zlt02rkanHLliT4R7YXMIg1KtuAdwa74PxQzILnpgBb7Zm2ppM8zZNK5s0HVuTMHuuucoFG0ukhSCW6UiLrHjBQ3vNrOYg-TwAw9bN4Lpt5-MX7ABBou0k08GjqNddz3V0UCECXFOCBB7jCkKmaCDqVBg0VSlqRBAqKcYeo1hJBqHWDHQISuEslEfAchhmSmFGOBUYcckc5jpcO0aKEOGIV4A9l70f5NjkZkTGi5-hKkPfSNAvJFgBVwX9a4bK8SPlZbqVBRmLnk0tGyX-Y-_Wb3b6CN8N2v6oAmC6g7_w88eNbrdYHf_lpROwkVUEmpqYU1BKojd5BtaD92QSR-e5_n4D2sXycg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4YMFEPvo347MHoqbHsg6VHIiKGRwxCJFw22-5uJAoYQKP-enfbUuRgTIzHbbaTZmZ2Zmc68w3AGfKZryTWLkZGDCZiUG4glHAx1QwXfG3zDtGwCdZsFrtd_y6pJrS9MDE-RJpwsycjstf2gNuE9OUcNfRTDKJWcpuiZsYKZ4nRJZqBbLlV6dRTc2wCkuQ3M3HNXYPNkBs9dLlIYcEzZS2T3xdvrJHLqWz8w8duwnpy33RKsYJswZIabsPaNxRCs2qk0K2THejdT0fho7Dwzc7I2JNB0qjpxLOmJ05_GD83VNWcjCOjUhDH9qSNncmchvGbcdXB9GMXOpXr9lXVTQYwuCFG1FhKYcJHWSgU_aJnwgoZkryWNPRFoBESmoWywKTFU1UyTyVlihHiC0a0EggZ3cB7kBmOhmofHE8QoTURNGCS4EAJTxS9wLhGhjENcJADd8Z8Hibo5HZIxjOPcZURtxzkKQdzcJHuf4lxOX7ceR7JMt0mxk-2mo1R_tC84eV6C5Nau8q7OUCRCH-hx3ulRiNdHfzlpVNYqbYbdV6_bdYOYTWuD7QVMkeQmY5f1TEsh2_T_mR8kijzF2Vh9mI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+optimization+methods+in+optimal+engineering+design+under+stochastic+uncertainty&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Marti%2C+K.&rft.date=2003-12-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=83&rft.issue=12&rft.spage=795&rft.epage=811&rft_id=info:doi/10.1002%2Fzamm.200310072&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DLR34KTH_X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon |