Stochastic optimization methods in optimal engineering design under stochastic uncertainty

Problems from optimal plastic design are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic stress (state) vector. Having to take into account, in practice, stochastic variations of the model parameters (e.g. yield stresses, plastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik Jg. 83; H. 12; S. 795 - 811
1. Verfasser: Marti, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin WILEY-VCH Verlag 01.12.2003
WILEY‐VCH Verlag
Schlagworte:
ISSN:0044-2267, 1521-4001
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Problems from optimal plastic design are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic stress (state) vector. Having to take into account, in practice, stochastic variations of the model parameters (e.g. yield stresses, plastic capacities) and external loadings, the basic stochastic optimal plastic design problem must be replaced by an appropriate deterministic substitute problem. After considering stochastic optimization methods based on failure/survival probabilities and presenting differentiation techniques and differentiation formulas for probability of failure/survival functions, a direct approach is presented using the construction and failure costs (e.g. costs for damage, repair, compensation for weakness within the structure, etc.). Based on the basic mechanical survival conditions, the failure costs may be represented by the minimum value of a convex and often linear program. Several mathematical properties of this program are shown. Minimizing then the total expected costs subject to the remaining (simple) deterministic constraints, a stochastic optimization problem is obtained which may be represented by a “Stochastic Convex Program (SCP) with recourse”. Working with linearized yield/strength conditions, a “Stochastic Linear Program (SLP) with complete fixed recourse” results. In case of a discretely distributed probability distribution or after the discretization of a more general probability distribution of the random structural parameters and loadings as well as certain random cost factors one has a linear program (LP) with a so‐called “dual decomposition data” structure. For stochastic programs of this type many theoretical results and efficient numerical solution procedures (LP‐solver) are available. The mathematical properties of theses substitute problems are considered, and numerical solution procedures are described.
AbstractList Problems from optimal plastic design are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic stress (state) vector. Having to take into account, in practice, stochastic variations of the model parameters (e.g. yield stresses, plastic capacities) and external loadings, the basic stochastic optimal plastic design problem must be replaced by an appropriate deterministic substitute problem. After considering stochastic optimization methods based on failure/survival probabilities and presenting differentiation techniques and differentiation formulas for probability of failure/survival functions, a direct approach is presented using the construction and failure costs (e.g. costs for damage, repair, compensation for weakness within the structure, etc.). Based on the basic mechanical survival conditions, the failure costs may be represented by the minimum value of a convex and often linear program. Several mathematical properties of this program are shown. Minimizing then the total expected costs subject to the remaining (simple) deterministic constraints, a stochastic optimization problem is obtained which may be represented by a “Stochastic Convex Program (SCP) with recourse”. Working with linearized yield/strength conditions, a “Stochastic Linear Program (SLP) with complete fixed recourse” results. In case of a discretely distributed probability distribution or after the discretization of a more general probability distribution of the random structural parameters and loadings as well as certain random cost factors one has a linear program (LP) with a so‐called “dual decomposition data” structure. For stochastic programs of this type many theoretical results and efficient numerical solution procedures (LP‐solver) are available. The mathematical properties of theses substitute problems are considered, and numerical solution procedures are described.
Author Marti, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Marti
  fullname: Marti, K.
  email: kurt.marti@unibw-muenchen.de
  organization: Federal Armed Forces University Munich, Aerospace Engineering and Technology, 85577 Neubiberg/München, Germany
BookMark eNqFkFFLwzAUhYNMcJu--tw_0JmkSdM-jqmbuCnoRNlLiEm6Rdd0JBm6_Xo7K1ME8elyD-c7cE4HtGxlNQCnCPYQhPhsK8qyhyFM6o_hA9BGFKOYQIhaoA0hITHGKTsCHe9fYK3mKGmD2X2o5EL4YGRUrYIpzVYEU9mo1GFRKR8Z2-hiGWk7N1ZrZ-w8UtqbuY3WVmkX-e-MtZXaBWFs2ByDw0IsvT75ul3wcHkxHYzi8e3watAfxzLBFMeZwJSoNM3yDNKMKklQoajMxXOBsSiYVClTCcVUK0QVZZoRkgtGCi0w1lImXUCaXOkq750uuDThs0Rwwiw5gny3D9_tw_f71FjvF7ZydU23-RvIG-DNLPXmHzef9SeTn2zcsMYH_b5nhXvlKUsY5Y83Q34-vkvI9XTEn5IPKsqNKQ
CitedBy_id crossref_primary_10_1243_09544100JAERO444
crossref_primary_10_1002_zamm_200410148
crossref_primary_10_1080_15397730701243066
crossref_primary_10_1002_zamm_200410246
crossref_primary_10_1016_j_compstruc_2006_08_076
crossref_primary_10_1007_s12206_023_0831_9
crossref_primary_10_1080_15502280903563509
crossref_primary_10_1088_1748_3190_abac47
crossref_primary_10_1007_s11081_013_9241_7
Cites_doi 10.1007/978-3-642-88272-2_3
10.1007/978-3-642-66252-2
10.1080/03052157608960606
10.1007/978-0-387-34866-7_20
10.1016/S0951-8320(01)00057-6
10.1201/9781482267457
10.4203/ccp.65.5.1
10.1002/zamm.19850650813
10.1115/1.3607621
10.1016/0045-7825(74)90041-3
10.1080/03052159008941166
10.1090/qam/39533
10.1007/s004190050194
10.1007/BF01745455
10.1016/0898-1221(95)00113-1
10.1007/978-3-7091-2618-9_1
10.1007/978-3-7091-2566-3
10.1007/BF01415892
10.1061/(ASCE)0733-9445(1985)111:8(1703)
10.1007/BF02592152
10.1061/JSDEAG.0001577
10.1080/03601217908905329
10.1007/978-1-4615-1771-9_16
10.1007/BF01197451
10.1016/0045-7949(94)00310-Y
10.1007/BF00536009
10.1214/aoms/1177698049
10.1007/978-3-642-45767-8_4
10.1214/aop/1176995765
10.1007/978-1-4615-2494-6_28
10.1007/BF00532856
10.1007/978-3-662-02558-1
ContentType Journal Article
Copyright Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/zamm.200310072
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1521-4001
EndPage 811
ExternalDocumentID 10_1002_zamm_200310072
ZAMM200310072
ark_67375_WNG_DLR34KTH_X
Genre article
GroupedDBID -~X
.3N
.DC
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCQX
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RX1
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~02
~IA
~WT
.4S
41~
ABEML
ACSCC
AEUQT
AFPWT
ARCSS
EDO
FSPIC
HF~
H~9
I-F
M6L
PALCI
RJQFR
RWI
SAMSI
SUPJJ
WRC
WWM
AAYXX
AGHNM
AIQQE
CITATION
O8X
ID FETCH-LOGICAL-c3252-8a254d668980585dc41fd5c9abf22af7cd67d3525ed15d57e7449a74fea22ecc3
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000187220200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0044-2267
IngestDate Sat Nov 29 05:29:22 EST 2025
Tue Nov 18 21:43:07 EST 2025
Wed Jan 22 16:31:55 EST 2025
Sun Sep 21 06:18:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3252-8a254d668980585dc41fd5c9abf22af7cd67d3525ed15d57e7449a74fea22ecc3
Notes istex:95031377177A6E6194B8547EBF558D96E0D277FD
ArticleID:ZAMM200310072
ark:/67375/WNG-DLR34KTH-X
PageCount 17
ParticipantIDs crossref_citationtrail_10_1002_zamm_200310072
crossref_primary_10_1002_zamm_200310072
wiley_primary_10_1002_zamm_200310072_ZAMM200310072
istex_primary_ark_67375_WNG_DLR34KTH_X
PublicationCentury 2000
PublicationDate December 2003
PublicationDateYYYYMMDD 2003-12-01
PublicationDate_xml – month: 12
  year: 2003
  text: December 2003
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Zeitschrift für angewandte Mathematik und Mechanik
PublicationTitleAlternate Z. angew. Math. Mech
PublicationYear 2003
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References K. Marti, Computation of descent directions in stochastic optimization problems with invariant distributions, Z. Angew. Math. Mech. 65, 355-378 (1985).
K. Marti, Approximationen der Entscheidungprobleme mit linearer Ergebnisfunktion und positiv homogener, subadditiver Verlustfunktion, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 31, 203-233 (1975).
K. Marti, Diskretisierung stochastischer Programme unter Berücksichtigung der Problemstruktur, Z. Angew. Math. Mech. 59, T105-T108 (1979).
G. Cocchetti and G. Maier, Static shakedown theorems in piecewise linearized poroplasticity, Arch. Appl. Mech. 68, 651-661 (1988).
L. Corradi and A. Zavelani, A linear programming approach to shakedown analysis of structures, Comput. Methods Appl. Mech. Eng. (Netherlands) 3, 37-53 (1974).
D.M. Frangopol, Sensitivity of reliability-based optimum design, J. Struct. Div. 111, 1703-1721 (1985).
W. Prager and R.T. Shield, A general theory of optimal plastic design, J. Appl. Mech. 34(1), 184-186 (1967).
D.L. Smith and J. Munro, Plastic analysis and synthesis of frames subject to multiple loadings, Eng. Optim. 2, 145-157 (1976).
F. Tin-Loi, Plastic limit analysis of plane frames and grids using GAMS, Comput. Struct. 54, 15-25 (1995).
K. Marti, Stochastic optimization methods in structural mechanics, Z. Angew. Math. Mech. 70, T742-T745 (1990).
Y. Murotsu and S. Shao, Optimum shape design of truss structures based on reliability, Struct. Optim. 2(2), 65-76 (1990).
O. Ditlevsen, Narrow reliability bounds for structural systems, J. Struct. Mech. 7, 453-472 (1979).
K. Marti, Approximation and derivatives of probabilities of survival in structural analysis and design, Struct. Optim. 13, 230-243 (1997).
D.M. Frangopol et al. (eds.), Reliability oriented structural design, Special Issue of Reliab. Eng. Syst. Saf. 73(3), 105-301 (2001).
K. Marti, Differentiation formulas for probability functions: the transformation method, Math. Program. B 75, 201-220 (1996).
E.G. Kounias, Bounds for the probability of a union, with applications, Ann. Math. Statist. 39, 2154-2158 (1968).
G. Maier and J. Munro, Mathematical programming applications to engineering plastic analysis, Appl. Mech. Rev. 35(12), 1631-1643 (1982).
J. Galambos, Bonferroni inequalities, The Annals of Probability 5, 577-581 (1977).
K. Marti, Computation of efficient solutions of discretely distributed stochastic optimization problems, Math. Methods Oper. Res. 36, 259-294 (1992).
K. Marti, Differentiation of probability functions: the transformation method, Comput. Math. Appl. 30, 361-382 (1995).
F. Tin-Loi, On the optimal plastic synthesis of frames, Eng. Optim. 16, 91-108 (1990).
C.A. Cornell, Bounds on the reliability of structural systems, J. Struct. Div., ASCE 93, 171-200 (1967).
J. Heyman, Plastic design of beams and plane frames for minimum material consumption, Q. Appl. Math. 8, 373-381 (1950/51).
K. Marti, Entscheidungsprobleme mit linearem Aktionen- und Ergebnisraum, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 23, 133-147 (1972).
1995; 30
1982; 35(12)
1979; 59
1968; 39
1990; 16
1967; 93
1997; 13
1995; 54
1990; 2(2)
1976; 2
1988; 68
1967; 34(1)
1975; 31
1992; 36
2001; 73(3)
8
1972; 23
1985; 65
1974; 3
1990; 70
1996; 75
1977; 5
1979; 7
1985; 111
e_1_2_1_41_2
e_1_2_1_45_2
e_1_2_1_20_2
e_1_2_1_43_2
Marti K. (e_1_2_1_26_2) 1979; 59
e_1_2_1_49_2
e_1_2_1_24_2
e_1_2_1_47_2
Frangopol D.M. (e_1_2_1_9_2) 2001; 73
e_1_2_1_28_2
e_1_2_1_6_2
Marti K. (e_1_2_1_29_2) 1990; 70
e_1_2_1_2_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_50_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_14_2
e_1_2_1_35_2
Heyman J. (e_1_2_1_13_2); 8
e_1_2_1_8_2
e_1_2_1_18_2
e_1_2_1_39_2
Cornell C.A. (e_1_2_1_4_2) 1967; 93
e_1_2_1_40_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_27_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_46_2
Maier G. (e_1_2_1_22_2) 1982; 35
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_36_2
e_1_2_1_19_2
e_1_2_1_17_2
References_xml – reference: D.L. Smith and J. Munro, Plastic analysis and synthesis of frames subject to multiple loadings, Eng. Optim. 2, 145-157 (1976).
– reference: C.A. Cornell, Bounds on the reliability of structural systems, J. Struct. Div., ASCE 93, 171-200 (1967).
– reference: W. Prager and R.T. Shield, A general theory of optimal plastic design, J. Appl. Mech. 34(1), 184-186 (1967).
– reference: K. Marti, Differentiation formulas for probability functions: the transformation method, Math. Program. B 75, 201-220 (1996).
– reference: F. Tin-Loi, On the optimal plastic synthesis of frames, Eng. Optim. 16, 91-108 (1990).
– reference: K. Marti, Computation of efficient solutions of discretely distributed stochastic optimization problems, Math. Methods Oper. Res. 36, 259-294 (1992).
– reference: G. Cocchetti and G. Maier, Static shakedown theorems in piecewise linearized poroplasticity, Arch. Appl. Mech. 68, 651-661 (1988).
– reference: J. Heyman, Plastic design of beams and plane frames for minimum material consumption, Q. Appl. Math. 8, 373-381 (1950/51).
– reference: K. Marti, Differentiation of probability functions: the transformation method, Comput. Math. Appl. 30, 361-382 (1995).
– reference: K. Marti, Diskretisierung stochastischer Programme unter Berücksichtigung der Problemstruktur, Z. Angew. Math. Mech. 59, T105-T108 (1979).
– reference: Y. Murotsu and S. Shao, Optimum shape design of truss structures based on reliability, Struct. Optim. 2(2), 65-76 (1990).
– reference: K. Marti, Approximation and derivatives of probabilities of survival in structural analysis and design, Struct. Optim. 13, 230-243 (1997).
– reference: F. Tin-Loi, Plastic limit analysis of plane frames and grids using GAMS, Comput. Struct. 54, 15-25 (1995).
– reference: J. Galambos, Bonferroni inequalities, The Annals of Probability 5, 577-581 (1977).
– reference: K. Marti, Entscheidungsprobleme mit linearem Aktionen- und Ergebnisraum, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 23, 133-147 (1972).
– reference: D.M. Frangopol et al. (eds.), Reliability oriented structural design, Special Issue of Reliab. Eng. Syst. Saf. 73(3), 105-301 (2001).
– reference: O. Ditlevsen, Narrow reliability bounds for structural systems, J. Struct. Mech. 7, 453-472 (1979).
– reference: D.M. Frangopol, Sensitivity of reliability-based optimum design, J. Struct. Div. 111, 1703-1721 (1985).
– reference: E.G. Kounias, Bounds for the probability of a union, with applications, Ann. Math. Statist. 39, 2154-2158 (1968).
– reference: K. Marti, Stochastic optimization methods in structural mechanics, Z. Angew. Math. Mech. 70, T742-T745 (1990).
– reference: K. Marti, Computation of descent directions in stochastic optimization problems with invariant distributions, Z. Angew. Math. Mech. 65, 355-378 (1985).
– reference: G. Maier and J. Munro, Mathematical programming applications to engineering plastic analysis, Appl. Mech. Rev. 35(12), 1631-1643 (1982).
– reference: K. Marti, Approximationen der Entscheidungprobleme mit linearer Ergebnisfunktion und positiv homogener, subadditiver Verlustfunktion, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 31, 203-233 (1975).
– reference: L. Corradi and A. Zavelani, A linear programming approach to shakedown analysis of structures, Comput. Methods Appl. Mech. Eng. (Netherlands) 3, 37-53 (1974).
– volume: 65
  start-page: 355
  year: 1985
  end-page: 378
  publication-title: Z. Angew. Math. Mech.
– volume: 31
  start-page: 203
  year: 1975
  end-page: 233
  publication-title: Z. Wahrscheinlichkeitstheor. Verwandte Geb.
– volume: 2(2)
  start-page: 65
  year: 1990
  end-page: 76
  publication-title: Struct. Optim.
– volume: 8
  start-page: 373
  end-page: 381
  publication-title: Q. Appl. Math.
– volume: 68
  start-page: 651
  year: 1988
  end-page: 661
  publication-title: Arch. Appl. Mech.
– volume: 16
  start-page: 91
  year: 1990
  end-page: 108
  publication-title: Eng. Optim.
– volume: 59
  year: 1979
  publication-title: Z. Angew. Math. Mech.
– volume: 2
  start-page: 145
  year: 1976
  end-page: 157
  publication-title: Eng. Optim.
– volume: 54
  start-page: 15
  year: 1995
  end-page: 25
  publication-title: Comput. Struct.
– volume: 7
  start-page: 453
  year: 1979
  end-page: 472
  publication-title: J. Struct. Mech.
– volume: 93
  start-page: 171
  year: 1967
  end-page: 200
  publication-title: J. Struct. Div., ASCE
– volume: 23
  start-page: 133
  year: 1972
  end-page: 147
  publication-title: Z. Wahrscheinlichkeitstheor. Verwandte Geb.
– volume: 73(3)
  start-page: 105
  year: 2001
  end-page: 301
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 5
  start-page: 577
  year: 1977
  end-page: 581
  publication-title: The Annals of Probability
– volume: 75
  start-page: 201
  year: 1996
  end-page: 220
  publication-title: Math. Program. B
– volume: 111
  start-page: 1703
  year: 1985
  end-page: 1721
  publication-title: J. Struct. Div.
– volume: 13
  start-page: 230
  year: 1997
  end-page: 243
  publication-title: Struct. Optim.
– volume: 34(1)
  start-page: 184
  year: 1967
  end-page: 186
  publication-title: J. Appl. Mech.
– volume: 30
  start-page: 361
  year: 1995
  end-page: 382
  publication-title: Comput. Math. Appl.
– volume: 3
  start-page: 37
  year: 1974
  end-page: 53
  publication-title: Comput. Methods Appl. Mech. Eng. (Netherlands)
– volume: 39
  start-page: 2154
  year: 1968
  end-page: 2158
  publication-title: Ann. Math. Statist.
– volume: 35(12)
  start-page: 1631
  year: 1982
  end-page: 1643
  publication-title: Appl. Mech. Rev.
– volume: 70
  year: 1990
  publication-title: Z. Angew. Math. Mech.
– volume: 36
  start-page: 259
  year: 1992
  end-page: 294
  publication-title: Math. Methods Oper. Res.
– ident: e_1_2_1_11_2
– ident: e_1_2_1_17_2
– ident: e_1_2_1_25_2
– ident: e_1_2_1_34_2
  doi: 10.1007/978-3-642-88272-2_3
– ident: e_1_2_1_42_2
– ident: e_1_2_1_16_2
  doi: 10.1007/978-3-642-66252-2
– ident: e_1_2_1_47_2
  doi: 10.1080/03052157608960606
– ident: e_1_2_1_33_2
  doi: 10.1007/978-0-387-34866-7_20
– ident: e_1_2_1_41_2
– volume: 73
  start-page: 105
  year: 2001
  ident: e_1_2_1_9_2
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/S0951-8320(01)00057-6
– ident: e_1_2_1_39_2
– ident: e_1_2_1_2_2
  doi: 10.1201/9781482267457
– ident: e_1_2_1_20_2
  doi: 10.4203/ccp.65.5.1
– volume: 70
  year: 1990
  ident: e_1_2_1_29_2
  publication-title: Z. Angew. Math. Mech.
– ident: e_1_2_1_27_2
  doi: 10.1002/zamm.19850650813
– ident: e_1_2_1_44_2
  doi: 10.1115/1.3607621
– ident: e_1_2_1_5_2
  doi: 10.1016/0045-7825(74)90041-3
– ident: e_1_2_1_37_2
– ident: e_1_2_1_50_2
  doi: 10.1080/03052159008941166
– ident: e_1_2_1_15_2
– ident: e_1_2_1_18_2
– ident: e_1_2_1_12_2
– ident: e_1_2_1_14_2
– volume: 8
  start-page: 373
  ident: e_1_2_1_13_2
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/39533
– ident: e_1_2_1_3_2
  doi: 10.1007/s004190050194
– ident: e_1_2_1_40_2
  doi: 10.1007/BF01745455
– ident: e_1_2_1_32_2
  doi: 10.1016/0898-1221(95)00113-1
– ident: e_1_2_1_48_2
  doi: 10.1007/978-3-7091-2618-9_1
– volume: 35
  start-page: 1631
  year: 1982
  ident: e_1_2_1_22_2
  publication-title: Appl. Mech. Rev.
– volume: 59
  year: 1979
  ident: e_1_2_1_26_2
  publication-title: Z. Angew. Math. Mech.
– ident: e_1_2_1_45_2
  doi: 10.1007/978-3-7091-2566-3
– ident: e_1_2_1_30_2
  doi: 10.1007/BF01415892
– ident: e_1_2_1_7_2
  doi: 10.1061/(ASCE)0733-9445(1985)111:8(1703)
– ident: e_1_2_1_35_2
  doi: 10.1007/BF02592152
– volume: 93
  start-page: 171
  year: 1967
  ident: e_1_2_1_4_2
  publication-title: J. Struct. Div., ASCE
  doi: 10.1061/JSDEAG.0001577
– ident: e_1_2_1_6_2
  doi: 10.1080/03601217908905329
– ident: e_1_2_1_8_2
  doi: 10.1007/978-1-4615-1771-9_16
– ident: e_1_2_1_36_2
  doi: 10.1007/BF01197451
– ident: e_1_2_1_49_2
– ident: e_1_2_1_51_2
  doi: 10.1016/0045-7949(94)00310-Y
– ident: e_1_2_1_24_2
  doi: 10.1007/BF00536009
– ident: e_1_2_1_38_2
– ident: e_1_2_1_21_2
– ident: e_1_2_1_19_2
  doi: 10.1214/aoms/1177698049
– ident: e_1_2_1_46_2
  doi: 10.1007/978-3-642-45767-8_4
– ident: e_1_2_1_43_2
– ident: e_1_2_1_10_2
  doi: 10.1214/aop/1176995765
– ident: e_1_2_1_31_2
  doi: 10.1007/978-1-4615-2494-6_28
– ident: e_1_2_1_23_2
  doi: 10.1007/BF00532856
– ident: e_1_2_1_28_2
  doi: 10.1007/978-3-662-02558-1
SSID ssj0001913
Score 1.7313712
Snippet Problems from optimal plastic design are based on the convex, linear or linearized yield/strength condition and the linear equilibrium equation for the generic...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 795
SubjectTerms expected costs of failure
limit load analysis
optimal structural design
probability of failure
stochastic linear programming
stochastic optimization
stochastic uncertainty
Title Stochastic optimization methods in optimal engineering design under stochastic uncertainty
URI https://api.istex.fr/ark:/67375/WNG-DLR34KTH-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.200310072
Volume 83
WOSCitedRecordID wos000187220200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4001
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001913
  issn: 0044-2267
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-y-aAPfovzizyIPpWladq0j8M5B25D5oZjLyVNUhy6Ttoq6l9v0nbd9iCCPqZcjnK53F2Su98BcMEQM6VkgUERlQZRDsBwPcYM5GAkOeKempg1m6C9njsaefdLVfw5PkR54aZ3Rmav9QZnQVJfgIZ-sWlWSa5vqKkywlWslJdUQLXZbw07pTVW55HilZkYKtSgc-BGhOurHFYcU1XL-GM1YM08Tmv7__-6A7aKaBM2cvXYBWsy2gObSxiEatQtgVuTfTB-SGf8iWnwZjhT1mRalGnCvNN0AidR_l1xlQs2UGSJIFBXpMUwWfBQXjPPOUg_D8CwdTO4bhtF-wWDW9hWdpKpw6NwHNdzkTpUCE7MUNjcY0GIMQspFw4VGk1VCtMWNpWUEI9REkqGsdIM6xBUolkkjwB0aWjiELmcE4-Y0nEdzxYWD-1Qw6EFVg0Yc9n7vMAm1y0yXvwcVRn7WoJ-KcEauCrpX3NUjh8pL7OlLMlY_Kxz2ajtP_Zu_Wanb5G7Qdsf1QDOVvAXfv640e2Wo-O_TDoBG3lGoM6JOQWVNH6TZ2Cdv6eTJD4v9PcbF2Hycw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED9kE9QHv8X52QfRp2Kbpk37OJxzsm7I3HDsJWRJikO3yTpF_etN2q5zDyKIjymXo1wud5fk7ncAZ8xitpSsbxKLSBMrB2D6AWOm5SFLcosHamLSbII0m363G9xl2YS6FibFh8gv3PTOSOy13uD6Qvpyjhr6yYZJKbm-oibKChex0iW3AMVKq9oJc3OsDiTZMzM2VaxBZsiNFrpc5LDgmYpayO-LEWvicqob__Czm7CexZtGOVWQLViSo21Y-4ZCqEaNHLo13oHe_XTMH5mGbzbGyp4Ms0JNI-01HRuDUfpdcZVzNoZIUkEMXZM2MeI5D-U306yD6ccudKrX7auamTVgMLmDXGUpmTo-Cs_zA99SxwrBsR0JlwesHyHEIsKFR4TGU5XCdoVLJME4YARHkiGkdMPZg8JoPJL7YPgkslFk-ZzjANvS873AFQ6P3EgDovWdEpgz4VOeoZPrJhnPNMVVRlRLkOYSLMFFTv-S4nL8SHmerGVOxiZPOpuNuPSheUMrYcvB9XaNdkuAkiX8hR_tlRuNfHTwl0mnsFJrN0Ia3jbrh7Ca5gfqDJkjKEwnr_IYlvnbdBBPTjJl_gKjMvZj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+optimization+methods+in+optimal+engineering+design+under+stochastic+uncertainty&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Marti%2C+K.&rft.date=2003-12-01&rft.pub=WILEY-VCH+Verlag&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=83&rft.issue=12&rft.spage=795&rft.epage=811&rft_id=info:doi/10.1002%2Fzamm.200310072&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DLR34KTH_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon