Machine Learning Algorithms for Classification of First-Trimester Fetal Brain Ultrasound Images

To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images. Two image segmentation methods processed high-resolution fetal brain images obtained during the nuchal translucency scan: "Statistical Region Merging" (S...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ultrasound in medicine Vol. 41; no. 7; p. 1773
Main Authors: Gofer, Stav, Haik, Oren, Bardin, Ron, Gilboa, Yinon, Perlman, Sharon
Format: Journal Article
Language:English
Published: England 01.07.2022
Subjects:
ISSN:1550-9613, 1550-9613
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images. Two image segmentation methods processed high-resolution fetal brain images obtained during the nuchal translucency scan: "Statistical Region Merging" (SRM) and "Trainable Weka Segmentation" (TWS), with training and testing sets in the latter. Measurement of the fetal cerebral cortex in original and processed images served to evaluate the performance of the algorithms. Mean absolute percentage error (MAPE) was used as an accuracy index of the segmentation processing. The SRM plugin revealed a total MAPE of 1.71% ± 1.62 SD (standard deviation) and a MAPE of 1.4% ± 1.32 SD and 2.72% ± 2.21 SD for the normal and increased NT groups, respectively. The TWS plugin displayed a MAPE of 1.71% ± 0.59 SD (testing set). There were no significant differences between the training and testing sets after 5-fold cross-validation. The images obtained from normal NT fetuses and increased NT fetuses revealed a MAPE of 1.52% ± 1.02 SD and 2.63% ± 1.98 SD. Our study demonstrates the feasibility of using ML algorithms to classify first-trimester fetal brain ultrasound images and lay the foundation for earlier diagnosis of fetal brain abnormalities.
AbstractList To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images. Two image segmentation methods processed high-resolution fetal brain images obtained during the nuchal translucency scan: "Statistical Region Merging" (SRM) and "Trainable Weka Segmentation" (TWS), with training and testing sets in the latter. Measurement of the fetal cerebral cortex in original and processed images served to evaluate the performance of the algorithms. Mean absolute percentage error (MAPE) was used as an accuracy index of the segmentation processing. The SRM plugin revealed a total MAPE of 1.71% ± 1.62 SD (standard deviation) and a MAPE of 1.4% ± 1.32 SD and 2.72% ± 2.21 SD for the normal and increased NT groups, respectively. The TWS plugin displayed a MAPE of 1.71% ± 0.59 SD (testing set). There were no significant differences between the training and testing sets after 5-fold cross-validation. The images obtained from normal NT fetuses and increased NT fetuses revealed a MAPE of 1.52% ± 1.02 SD and 2.63% ± 1.98 SD. Our study demonstrates the feasibility of using ML algorithms to classify first-trimester fetal brain ultrasound images and lay the foundation for earlier diagnosis of fetal brain abnormalities.
To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images.OBJECTIVETo evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images.Two image segmentation methods processed high-resolution fetal brain images obtained during the nuchal translucency scan: "Statistical Region Merging" (SRM) and "Trainable Weka Segmentation" (TWS), with training and testing sets in the latter. Measurement of the fetal cerebral cortex in original and processed images served to evaluate the performance of the algorithms. Mean absolute percentage error (MAPE) was used as an accuracy index of the segmentation processing.METHODSTwo image segmentation methods processed high-resolution fetal brain images obtained during the nuchal translucency scan: "Statistical Region Merging" (SRM) and "Trainable Weka Segmentation" (TWS), with training and testing sets in the latter. Measurement of the fetal cerebral cortex in original and processed images served to evaluate the performance of the algorithms. Mean absolute percentage error (MAPE) was used as an accuracy index of the segmentation processing.The SRM plugin revealed a total MAPE of 1.71% ± 1.62 SD (standard deviation) and a MAPE of 1.4% ± 1.32 SD and 2.72% ± 2.21 SD for the normal and increased NT groups, respectively. The TWS plugin displayed a MAPE of 1.71% ± 0.59 SD (testing set). There were no significant differences between the training and testing sets after 5-fold cross-validation. The images obtained from normal NT fetuses and increased NT fetuses revealed a MAPE of 1.52% ± 1.02 SD and 2.63% ± 1.98 SD.RESULTSThe SRM plugin revealed a total MAPE of 1.71% ± 1.62 SD (standard deviation) and a MAPE of 1.4% ± 1.32 SD and 2.72% ± 2.21 SD for the normal and increased NT groups, respectively. The TWS plugin displayed a MAPE of 1.71% ± 0.59 SD (testing set). There were no significant differences between the training and testing sets after 5-fold cross-validation. The images obtained from normal NT fetuses and increased NT fetuses revealed a MAPE of 1.52% ± 1.02 SD and 2.63% ± 1.98 SD.Our study demonstrates the feasibility of using ML algorithms to classify first-trimester fetal brain ultrasound images and lay the foundation for earlier diagnosis of fetal brain abnormalities.CONCLUSIONSOur study demonstrates the feasibility of using ML algorithms to classify first-trimester fetal brain ultrasound images and lay the foundation for earlier diagnosis of fetal brain abnormalities.
Author Gilboa, Yinon
Perlman, Sharon
Haik, Oren
Gofer, Stav
Bardin, Ron
Author_xml – sequence: 1
  givenname: Stav
  surname: Gofer
  fullname: Gofer, Stav
  organization: Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
– sequence: 2
  givenname: Oren
  surname: Haik
  fullname: Haik, Oren
  organization: Independent Researcher
– sequence: 3
  givenname: Ron
  orcidid: 0000-0003-4545-7234
  surname: Bardin
  fullname: Bardin, Ron
  organization: Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
– sequence: 4
  givenname: Yinon
  surname: Gilboa
  fullname: Gilboa, Yinon
  organization: Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
– sequence: 5
  givenname: Sharon
  orcidid: 0000-0002-8023-0679
  surname: Perlman
  fullname: Perlman, Sharon
  organization: Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34710247$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB9w4A8gH7mk-JU0OZaqhUpFXNpz5Nib1pVjFzs58O-xRJG47M5In1YzO0Uj5x0g9EjJnBLCXs5DN6d5WZAbNKF5TrKqoHz0T4_RNMZzQgldiDs05mJBCROLCao_pDoZB3gHMjjjjnhpjz6Y_tRF3PqAV1bGaFqjZG-8w77FGxNin-2D6SD2EPAGemnxa5DG4YPtg4x-cBpvO3mEeI9uW2kjPFz3DB026_3qPdt9vm1Xy12mOEshFRRKC1lCRSvgbcHTaAqoSkWbvNGKUtEorcu2qLTkgiRHOG90rgsiWi7ZDD3_3r0E_zWkYHVnogJrpQM_xJrlFaGMC14m9OmKDk0Hur6kJjJ8139PYT_5eGXg
CitedBy_id crossref_primary_10_1109_TUFFC_2023_3311879
crossref_primary_10_1016_j_ebiom_2023_104466
crossref_primary_10_1016_j_imavis_2023_104725
crossref_primary_10_1109_TIM_2024_3369155
crossref_primary_10_1002_ijgo_15762
crossref_primary_10_1007_s00247_025_06376_2
crossref_primary_10_1007_s00521_023_09148_x
crossref_primary_10_3390_s25165034
crossref_primary_10_1016_j_bspc_2025_107499
crossref_primary_10_1002_pd_6411
crossref_primary_10_1038_s41598_024_77313_w
crossref_primary_10_1109_TMI_2022_3226274
crossref_primary_10_3390_diagnostics14182089
crossref_primary_10_3390_jcm12165334
crossref_primary_10_3390_jcm12216833
crossref_primary_10_1002_jum_16418
ContentType Journal Article
Copyright 2021 American Institute of Ultrasound in Medicine.
Copyright_xml – notice: 2021 American Institute of Ultrasound in Medicine.
DBID NPM
7X8
DOI 10.1002/jum.15860
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1550-9613
ExternalDocumentID 34710247
Genre Journal Article
GroupedDBID ---
.55
.GJ
0R~
18M
1KJ
1OB
1OC
33P
34G
39C
53G
5GY
5RE
5VS
6PF
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAWTL
AAYCA
AAZKR
ABCUV
ABDPE
ABDQB
ABJNI
ABLJU
ABOCM
ABQWH
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXQS
ADBBV
ADBTR
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
C45
DCZOG
DU5
EBS
EJD
F5P
H13
HDBZQ
HGLYW
KQ8
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
N4W
NPM
O9-
OK1
OVD
P2P
P2W
RHF
RHI
ROL
RS9
SAMSI
SUPJJ
TEORI
TUL
TWZ
USG
WIH
WIJ
WIK
WOHZO
WXSBR
X7M
ZGI
ZVN
ZXP
ZZTAW
7X8
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
LH4
ID FETCH-LOGICAL-c3250-ce6cd4a8e919e3f63e3fb6e98c1b5bdc114bcdd8f69da3404bc033bd5d604f3a2
IEDL.DBID 7X8
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711905800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1550-9613
IngestDate Fri Sep 05 11:13:12 EDT 2025
Wed Feb 19 02:26:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords image processing
first trimester
nuchal translucency
machine learning
fetal cortex
ultrasound
Language English
License 2021 American Institute of Ultrasound in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3250-ce6cd4a8e919e3f63e3fb6e98c1b5bdc114bcdd8f69da3404bc033bd5d604f3a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8023-0679
0000-0003-4545-7234
PMID 34710247
PQID 2590123438
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2590123438
pubmed_primary_34710247
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of ultrasound in medicine
PublicationTitleAlternate J Ultrasound Med
PublicationYear 2022
SSID ssj0020174
Score 2.4323895
Snippet To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images. Two image segmentation...
To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images.OBJECTIVETo evaluate...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1773
Title Machine Learning Algorithms for Classification of First-Trimester Fetal Brain Ultrasound Images
URI https://www.ncbi.nlm.nih.gov/pubmed/34710247
https://www.proquest.com/docview/2590123438
Volume 41
WOSCitedRecordID wos000711905800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAAuLCUvZNRuJqSOIl8QkVRAUSrXpopd6ieCtFXYAUvp-xm8KFAxIXSzkkiuzJzIvn-T2ELou4iLRigmRMCsKYdERx54hJI8MB4HOtgmT-U9puZ_2-7FQbbmVFq1zkxJCozVT7PfLrxB-STCij2c3rG_GuUb67WlloLKMaBSjjKV1p_7uLALUtqDB7FE4k1K2FslCUXL98jK9inlXKlL8iy1Bhmlv_fbdttFlhS9yYB8MOWrKTOlpvVd3zOloLdE9d7qK8FTiUFlfyqgPcGA3gibPncYkBxuLglelZRGHh8NTh5hBwIul6NwCvrYCbFmA7vvUOE7g3mr0XpTdowo9jSFDlHuo177t3D6SyWiCaAggi2gptWJFZGUtLnaAwKGFlpmPFldHw16S0MZkT0hSURXAVUaoMNyJijhbJPlqZTCf2EGFuNCQFHhvhNHM6k8rTaFPBKXca4NYRulhMYg6h7PsTxcROP8r8ZxqP0MF8JfLXueZGTpmHQiw9_sPdJ2gj8YcUAqn2FNUcfMj2DK3qz9mwfD8PMQJju9P6AmGSx7c
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithms+for+Classification+of+First-Trimester+Fetal+Brain+Ultrasound+Images&rft.jtitle=Journal+of+ultrasound+in+medicine&rft.au=Gofer%2C+Stav&rft.au=Haik%2C+Oren&rft.au=Bardin%2C+Ron&rft.au=Gilboa%2C+Yinon&rft.date=2022-07-01&rft.eissn=1550-9613&rft.volume=41&rft.issue=7&rft.spage=1773&rft_id=info:doi/10.1002%2Fjum.15860&rft_id=info%3Apmid%2F34710247&rft_id=info%3Apmid%2F34710247&rft.externalDocID=34710247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-9613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-9613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-9613&client=summon