Machine Learning Algorithms for Classification of First-Trimester Fetal Brain Ultrasound Images

To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images. Two image segmentation methods processed high-resolution fetal brain images obtained during the nuchal translucency scan: "Statistical Region Merging" (S...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of ultrasound in medicine Ročník 41; číslo 7; s. 1773
Hlavní autori: Gofer, Stav, Haik, Oren, Bardin, Ron, Gilboa, Yinon, Perlman, Sharon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.07.2022
Predmet:
ISSN:1550-9613, 1550-9613
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To evaluate the feasibility of machine learning (ML) tools for segmenting and classifying first-trimester fetal brain ultrasound images. Two image segmentation methods processed high-resolution fetal brain images obtained during the nuchal translucency scan: "Statistical Region Merging" (SRM) and "Trainable Weka Segmentation" (TWS), with training and testing sets in the latter. Measurement of the fetal cerebral cortex in original and processed images served to evaluate the performance of the algorithms. Mean absolute percentage error (MAPE) was used as an accuracy index of the segmentation processing. The SRM plugin revealed a total MAPE of 1.71% ± 1.62 SD (standard deviation) and a MAPE of 1.4% ± 1.32 SD and 2.72% ± 2.21 SD for the normal and increased NT groups, respectively. The TWS plugin displayed a MAPE of 1.71% ± 0.59 SD (testing set). There were no significant differences between the training and testing sets after 5-fold cross-validation. The images obtained from normal NT fetuses and increased NT fetuses revealed a MAPE of 1.52% ± 1.02 SD and 2.63% ± 1.98 SD. Our study demonstrates the feasibility of using ML algorithms to classify first-trimester fetal brain ultrasound images and lay the foundation for earlier diagnosis of fetal brain abnormalities.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1550-9613
1550-9613
DOI:10.1002/jum.15860