Medical Image Segmentation Review: The Success of U-Net

Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 46; H. 12; S. 10076 - 10095
Hauptverfasser: Azad, Reza, Aghdam, Ehsan Khodapanah, Rauland, Amelie, Jia, Yiwei, Avval, Atlas Haddadi, Bozorgpour, Afshin, Karimijafarbigloo, Sanaz, Cohen, Joseph Paul, Adeli, Ehsan, Merhof, Dorit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.12.2024
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model has received tremendous attention from academic and industrial researchers who have extended it to address the scale and complexity created by medical tasks. These extensions are commonly related to enhancing the U-Net's backbone, bottleneck, or skip connections, or including representation learning, or combining it with a Transformer architecture, or even addressing probabilistic prediction of the segmentation map. Having a compendium of different previously proposed U-Net variants makes it easier for machine learning researchers to identify relevant research questions and understand the challenges of the biological tasks that challenge the model. In this work, we discuss the practical aspects of the U-Net model and organize each variant model into a taxonomy. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. Furthermore, we provide a comprehensive implementation library with trained models. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation.
AbstractList Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model has received tremendous attention from academic and industrial researchers who have extended it to address the scale and complexity created by medical tasks. These extensions are commonly related to enhancing the U-Net's backbone, bottleneck, or skip connections, or including representation learning, or combining it with a Transformer architecture, or even addressing probabilistic prediction of the segmentation map. Having a compendium of different previously proposed U-Net variants makes it easier for machine learning researchers to identify relevant research questions and understand the challenges of the biological tasks that challenge the model. In this work, we discuss the practical aspects of the U-Net model and organize each variant model into a taxonomy. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. Furthermore, we provide a comprehensive implementation library with trained models. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation.
Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model has received tremendous attention from academic and industrial researchers who have extended it to address the scale and complexity created by medical tasks. These extensions are commonly related to enhancing the U-Net's backbone, bottleneck, or skip connections, or including representation learning, or combining it with a Transformer architecture, or even addressing probabilistic prediction of the segmentation map. Having a compendium of different previously proposed U-Net variants makes it easier for machine learning researchers to identify relevant research questions and understand the challenges of the biological tasks that challenge the model. In this work, we discuss the practical aspects of the U-Net model and organize each variant model into a taxonomy. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. Furthermore, we provide a comprehensive implementation library with trained models. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation.Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model has received tremendous attention from academic and industrial researchers who have extended it to address the scale and complexity created by medical tasks. These extensions are commonly related to enhancing the U-Net's backbone, bottleneck, or skip connections, or including representation learning, or combining it with a Transformer architecture, or even addressing probabilistic prediction of the segmentation map. Having a compendium of different previously proposed U-Net variants makes it easier for machine learning researchers to identify relevant research questions and understand the challenges of the biological tasks that challenge the model. In this work, we discuss the practical aspects of the U-Net model and organize each variant model into a taxonomy. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. Furthermore, we provide a comprehensive implementation library with trained models. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation.
Author Cohen, Joseph Paul
Adeli, Ehsan
Jia, Yiwei
Azad, Reza
Rauland, Amelie
Merhof, Dorit
Avval, Atlas Haddadi
Aghdam, Ehsan Khodapanah
Karimijafarbigloo, Sanaz
Bozorgpour, Afshin
Author_xml – sequence: 1
  givenname: Reza
  orcidid: 0000-0002-4772-2161
  surname: Azad
  fullname: Azad, Reza
  organization: Faculty of Electrical Engineering, Information Technology, RWTH Aachen University, Aachen, Germany
– sequence: 2
  givenname: Ehsan Khodapanah
  orcidid: 0000-0002-2849-1070
  surname: Aghdam
  fullname: Aghdam, Ehsan Khodapanah
  organization: Independent Researcher, Tabriz, Iran
– sequence: 3
  givenname: Amelie
  orcidid: 0000-0002-8095-2073
  surname: Rauland
  fullname: Rauland, Amelie
  organization: Faculty of Electrical Engineering, Information Technology, RWTH Aachen University, Aachen, Germany
– sequence: 4
  givenname: Yiwei
  orcidid: 0000-0002-5824-8821
  surname: Jia
  fullname: Jia, Yiwei
  organization: Faculty of Electrical Engineering, Information Technology, RWTH Aachen University, Aachen, Germany
– sequence: 5
  givenname: Atlas Haddadi
  orcidid: 0000-0002-3896-7810
  surname: Avval
  fullname: Avval, Atlas Haddadi
  organization: School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
– sequence: 6
  givenname: Afshin
  orcidid: 0000-0003-1857-1058
  surname: Bozorgpour
  fullname: Bozorgpour, Afshin
  organization: Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
– sequence: 7
  givenname: Sanaz
  orcidid: 0000-0002-6632-6121
  surname: Karimijafarbigloo
  fullname: Karimijafarbigloo, Sanaz
  organization: Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
– sequence: 8
  givenname: Joseph Paul
  orcidid: 0000-0002-1334-3059
  surname: Cohen
  fullname: Cohen, Joseph Paul
  organization: Center for Artificial Intelligence in Medicine & Imaging, Stanford University, Palo Alto, CA, USA
– sequence: 9
  givenname: Ehsan
  orcidid: 0000-0002-0579-7763
  surname: Adeli
  fullname: Adeli, Ehsan
  organization: Stanford University, Stanford, CA, USA
– sequence: 10
  givenname: Dorit
  orcidid: 0000-0002-1672-2185
  surname: Merhof
  fullname: Merhof, Dorit
  email: dorit.merhof@ur.de
  organization: Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39167505$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlKA0EURQuJmEF_QER66aZjzYO7EBwCiYom66K6-nVs6SF2dRT_3sREEBeu3uKdc-HePupUdQUInRI8JASby_njaDYZUkz5kHEmhCIHqEeJxLGhhnZQDxNJY62p7qJ-CK8YEy4wO0JdZohUAoseUjNIc--KaFK6JUTPsCyhal2b11X0BO85fFxF85fNY-09hBDVWbSI76E9RoeZKwKc7O8ALW6u5-O7ePpwOxmPprFnlLdxxlMmmHKMKZoYA0Q46QVhJKGYa0cVAE1SBw6MS4jXwGVKjPKKc51pSdkAXexyV039tobQ2jIPHorCVVCvg2XYCKkk12yDnu_RdVJCaldNXrrm0_6U3QB6B_imDqGBzPp8V7VtXF5Ygu12V_u9q93uave7blT6R_1J_1c620k5APwSJGeMaPYFUzeBDQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108235
crossref_primary_10_3390_s25134073
crossref_primary_10_3390_app15158610
crossref_primary_10_3390_jimaging11060192
crossref_primary_10_3389_fonc_2025_1498832
crossref_primary_10_1016_j_eswa_2024_125874
crossref_primary_10_1088_2057_1976_ae0482
crossref_primary_10_1186_s12880_025_01837_4
crossref_primary_10_1148_ryai_240353
crossref_primary_10_1038_s41598_025_92423_9
crossref_primary_10_1002_ima_70055
crossref_primary_10_1371_journal_pone_0324327
crossref_primary_10_1016_j_eswa_2025_126609
crossref_primary_10_1111_coin_70063
crossref_primary_10_1016_j_jcms_2025_06_008
crossref_primary_10_3390_bioengineering12040399
crossref_primary_10_1140_epjp_s13360_025_06686_2
crossref_primary_10_1186_s12911_024_02778_8
crossref_primary_10_1016_j_phro_2025_100734
crossref_primary_10_3390_computation12120232
crossref_primary_10_3390_ijms26052338
crossref_primary_10_1016_j_knosys_2025_113932
crossref_primary_10_1016_j_patcog_2025_112396
crossref_primary_10_1002_sstr_202500274
crossref_primary_10_1007_s10694_025_01722_0
crossref_primary_10_1007_s10278_025_01464_z
crossref_primary_10_1016_j_rx_2025_501723
crossref_primary_10_1016_j_eswa_2025_129275
crossref_primary_10_3390_bioengineering12050475
crossref_primary_10_1007_s10489_025_06629_5
crossref_primary_10_1007_s42979_025_03900_x
crossref_primary_10_1016_j_compmedimag_2024_102460
crossref_primary_10_1063_5_0274903
crossref_primary_10_1109_JSEN_2025_3546972
crossref_primary_10_3390_jimaging10100252
crossref_primary_10_1049_ipr2_70203
crossref_primary_10_1016_j_media_2025_103638
crossref_primary_10_1016_j_optcom_2024_131423
crossref_primary_10_3389_fmars_2025_1535917
crossref_primary_10_1080_01431161_2025_2530237
crossref_primary_10_1016_j_cmpb_2024_108494
crossref_primary_10_1016_j_jrras_2025_101551
crossref_primary_10_1016_j_mri_2025_110505
crossref_primary_10_1109_LGRS_2025_3583786
crossref_primary_10_1016_j_isprsjprs_2025_05_011
crossref_primary_10_1016_j_optlastec_2025_113682
crossref_primary_10_3390_app14177953
crossref_primary_10_1109_ACCESS_2024_3496723
crossref_primary_10_1364_AO_553741
crossref_primary_10_1007_s11548_025_03513_y
crossref_primary_10_1007_s12145_025_01910_0
crossref_primary_10_3390_jcs9030103
crossref_primary_10_1016_j_bspc_2025_108180
crossref_primary_10_1016_j_eswa_2025_128512
crossref_primary_10_1016_j_neucom_2025_130569
crossref_primary_10_1109_ACCESS_2025_3562762
crossref_primary_10_3389_fonc_2025_1467672
crossref_primary_10_1016_j_bioactmat_2025_06_028
crossref_primary_10_6009_jjrt_25_1586
crossref_primary_10_1021_acs_langmuir_5c01673
crossref_primary_10_3390_diagnostics15141744
crossref_primary_10_3390_app15105342
crossref_primary_10_1038_s41598_025_15185_4
crossref_primary_10_1038_s41598_025_97779_6
crossref_primary_10_1177_00220345251332511
crossref_primary_10_1016_j_neunet_2025_107919
crossref_primary_10_1002_ima_70073
crossref_primary_10_3390_electronics13244919
crossref_primary_10_3390_healthcare13182327
crossref_primary_10_1016_j_bspc_2025_108534
crossref_primary_10_1016_j_dsp_2025_105553
crossref_primary_10_3389_fnbot_2024_1504070
crossref_primary_10_1177_20552076251366855
crossref_primary_10_1016_j_knosys_2025_114127
crossref_primary_10_1109_JMMCT_2024_3475988
crossref_primary_10_1002_cem_70041
crossref_primary_10_1007_s11047_025_10030_z
crossref_primary_10_3389_fmed_2025_1564678
crossref_primary_10_1007_s10278_024_01299_0
crossref_primary_10_1038_s41598_025_91352_x
crossref_primary_10_3390_ai6090212
crossref_primary_10_1016_j_patcog_2025_112291
crossref_primary_10_1055_a_2683_6482
crossref_primary_10_1016_j_bspc_2025_107791
crossref_primary_10_1016_j_ecoinf_2025_103078
crossref_primary_10_1109_JSTARS_2025_3555636
crossref_primary_10_1109_TMI_2025_3540906
crossref_primary_10_3390_s25072030
crossref_primary_10_1016_j_dsp_2025_105441
crossref_primary_10_1080_0305215X_2025_2464852
crossref_primary_10_1002_mco2_70247
crossref_primary_10_1140_epjs_s11734_025_01596_x
crossref_primary_10_1016_j_bspc_2025_108522
crossref_primary_10_1016_j_cmpb_2025_109069
crossref_primary_10_3390_diagnostics15141752
crossref_primary_10_1016_j_oceaneng_2025_122731
crossref_primary_10_1038_s41598_025_01319_1
crossref_primary_10_1016_j_compositesa_2025_109262
crossref_primary_10_1016_j_eswa_2025_128096
crossref_primary_10_1038_s42256_024_00965_w
crossref_primary_10_1109_LSP_2025_3600374
crossref_primary_10_3390_agronomy15071508
crossref_primary_10_5194_gmd_18_2427_2025
crossref_primary_10_1007_s00404_024_07837_z
crossref_primary_10_1016_j_engappai_2025_110493
crossref_primary_10_1016_j_optlaseng_2025_108932
crossref_primary_10_1007_s10278_025_01626_z
crossref_primary_10_1016_j_neucom_2024_129147
crossref_primary_10_3390_s25061793
crossref_primary_10_1093_jcde_qwaf039
crossref_primary_10_1145_3759254
crossref_primary_10_1007_s13748_025_00406_8
crossref_primary_10_1088_2057_1976_addac8
crossref_primary_10_3390_electronics14081497
crossref_primary_10_1016_j_eswa_2025_128650
crossref_primary_10_1016_j_dsp_2025_105219
crossref_primary_10_1109_TASE_2025_3530936
crossref_primary_10_1016_j_displa_2025_102971
crossref_primary_10_3389_fradi_2025_1503625
crossref_primary_10_3390_s25103093
crossref_primary_10_1016_j_eclinm_2025_103146
crossref_primary_10_1109_ACCESS_2025_3552588
crossref_primary_10_1016_j_anucene_2025_111443
crossref_primary_10_1109_ACCESS_2025_3590291
crossref_primary_10_1148_ryct_240353
crossref_primary_10_1038_s41598_025_15617_1
crossref_primary_10_1109_TCI_2025_3572250
crossref_primary_10_3390_rs17142502
crossref_primary_10_1093_ehjdh_ztaf101
crossref_primary_10_1016_j_eswa_2025_128835
crossref_primary_10_1016_j_jag_2025_104649
crossref_primary_10_1016_j_engappai_2025_112063
crossref_primary_10_1161_STROKEAHA_125_052056
crossref_primary_10_1109_TGRS_2024_3504857
crossref_primary_10_1038_s41586_025_09046_3
crossref_primary_10_3390_bioengineering12060636
crossref_primary_10_1016_j_dsp_2025_105501
crossref_primary_10_1016_j_jrras_2025_101873
crossref_primary_10_1038_s41598_025_98355_8
crossref_primary_10_1016_j_jsg_2025_105426
crossref_primary_10_3390_digital5020023
crossref_primary_10_1088_1361_6560_ada0a0
crossref_primary_10_1109_JSTARS_2025_3601739
crossref_primary_10_3390_app15137285
crossref_primary_10_1016_j_knosys_2025_114130
crossref_primary_10_3390_s24227131
crossref_primary_10_1186_s12891_025_08842_2
crossref_primary_10_3390_bioengineering12070709
crossref_primary_10_3390_e26121059
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_1109_ACCESS_2025_3585402
crossref_primary_10_1016_j_ijthermalsci_2025_110147
crossref_primary_10_3390_electronics13234594
crossref_primary_10_3390_computers14090344
crossref_primary_10_3390_bioengineering11121291
crossref_primary_10_3390_electronics14112212
crossref_primary_10_3390_jimaging11030085
crossref_primary_10_1016_j_aej_2025_05_026
crossref_primary_10_1117_1_JRS_18_046505
crossref_primary_10_1016_j_imavis_2025_105655
crossref_primary_10_1016_j_measurement_2025_117082
crossref_primary_10_1016_j_engappai_2025_112188
crossref_primary_10_1002_lary_32292
crossref_primary_10_1016_j_engfracmech_2025_111232
crossref_primary_10_3390_bioengineering12050538
crossref_primary_10_3390_sym17040531
crossref_primary_10_1016_j_rineng_2025_105047
crossref_primary_10_1109_TIP_2025_3599783
crossref_primary_10_3390_s25154535
crossref_primary_10_3390_diagnostics15091072
crossref_primary_10_1016_j_bspc_2025_108291
crossref_primary_10_1186_s10033_025_01331_6
crossref_primary_10_1515_bmt_2024_0112
crossref_primary_10_1016_j_compbiomed_2025_110110
crossref_primary_10_1109_TMI_2024_3523333
crossref_primary_10_1109_TIM_2025_3608349
crossref_primary_10_1186_s13018_025_05830_z
crossref_primary_10_3390_diagnostics15081041
crossref_primary_10_1007_s11760_025_04277_3
crossref_primary_10_1053_j_jvca_2025_07_040
crossref_primary_10_34133_research_0869
crossref_primary_10_1007_s11517_024_03223_8
crossref_primary_10_1016_j_acra_2025_05_062
crossref_primary_10_1080_00051144_2025_2543610
crossref_primary_10_1016_j_cviu_2025_104389
crossref_primary_10_1007_s11548_025_03457_3
crossref_primary_10_1007_s10044_025_01496_9
crossref_primary_10_1016_j_eswa_2025_129661
crossref_primary_10_1016_j_neunet_2025_107832
Cites_doi 10.1109/tmi.2017.2759102
10.1109/ICPR48806.2021.9413346
10.1007/978-3-030-46640-4_25
10.1049/ipr2.12406
10.1109/JBHI.2019.2912935
10.1109/ISBI.2019.8759581
10.1007/978-3-030-87199-4_16
10.1109/LGRS.2018.2802944
10.1109/CBMS49503.2020.00111
10.1007/978-3-030-11726-9_17
10.1016/S1470-2045(19)30098-1
10.1109/CVPR.2016.308
10.1109/NAECON46414.2019.9057834
10.1109/TMI.2019.2959609
10.1364/BOE.396598
10.1109/3DV.2016.79
10.1007/978-3-031-21014-3_39
10.1109/TMI.2018.2837502
10.1109/ICASSP43922.2022.9746172
10.1007/978-3-030-87193-2_4
10.1109/ISBI.2019.8759329
10.1016/j.bbe.2022.02.011
10.48550/ARXIV.1706.03762
10.1007/978-3-030-87589-3_40
10.1038/sj.bjc.6601693
10.1007/978-1-4615-7566-5
10.1109/CVPR.2015.7298958
10.1109/CVPR.2017.243
10.3389/fbioe.2020.00670
10.1007/s11548-022-02732-x
10.1007/s11548-022-02738-5
10.1007/978-3-030-87193-2_41
10.1016/j.ejmp.2019.10.001
10.1109/ICASSP40776.2020.9053405
10.1007/978-3-030-59710-8_8
10.1038/s41467-018-07619-7
10.1109/NSS/MIC42101.2019.9059879
10.1007/978-3-030-58548-8_7
10.1007/978-3-319-66179-7_25
10.1109/CVPR52688.2022.01716
10.1038/s41467-022-30695-9
10.1109/ICCMC48092.2020.ICCMC-000112
10.1007/978-3-030-11723-8_27
10.14569/IJACSA.2017.080853
10.1007/978-3-030-32956-3_10
10.1007/978-3-319-24574-4_28
10.1109/ICCVW54120.2021.00366
10.1038/s41591-018-0107-6
10.1016/B978-0-08-051581-6.50065-9
10.1109/TIP.2021.3058783
10.1007/978-3-031-09037-0_17
10.1109/CVPR.2016.90
10.1007/978-3-319-71589-6_43
10.1109/TMI.2018.2791488
10.1155/2019/8415485
10.1080/16878507.2021.1973760
10.1016/j.media.2023.102846
10.1007/978-3-319-75238-9_25
10.1016/j.knosys.2019.04.025
10.1007/978-3-030-11726-9_32
10.1016/j.neucom.2022.05.055
10.1109/ICCVW.2019.00052
10.1109/TPAMI.2017.2699184
10.1117/1.JMI.6.1.014006
10.1016/j.media.2020.101889
10.1016/j.neunet.2019.08.025
10.1007/978-3-031-08999-2_22
10.7303/SYN3193805
10.1109/CVPR.2015.7298965
10.1109/ACCESS.2021.3053408
10.1109/ICCV.2017.89
10.1109/ICCV48922.2021.00986
10.1007/s10462-020-09854-1
10.1007/978-3-031-25066-8_9
10.1609/aaai.v36i3.20144
10.1007/978-3-030-87193-2_11
10.1007/978-3-030-87193-2_52
10.1109/TMI.2018.2845918
10.1007/978-3-030-32486-5_18
10.1109/ACCESS.2020.3025372
10.1117/1.JMI.6.2.025008
10.1007/978-3-030-72084-1_16
10.1016/j.media.2023.103000
10.1016/j.neunet.2020.01.026
10.7150/ijms.3635
10.1109/WACV51458.2022.00181
10.1007/978-3-030-00889-5_1
10.1109/ACCESS.2021.3086020
10.1109/TMI.2014.2377694
10.1109/iros55552.2023.10342025
10.1038/s41591-021-01312-x
10.1038/nmeth.2089
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2018.00745
10.3389/fbioe.2020.605132
10.1007/s41095-022-0274-8
10.1109/TPAMI.2021.3059968
10.1109/JBHI.2019.2946092
10.1016/j.cmpb.2021.106268
10.1007/978-3-030-00946-5_17
10.1142/S1793545822500183
10.1109/ICCV48922.2021.00061
10.1016/j.compbiomed.2018.08.018
10.1007/978-3-319-46976-8_19
10.1109/ACCESS.2018.2886371
10.1007/978-3-319-46723-8_49
10.24963/ijcai.2022/135
10.1109/ACCESS.2019.2896920
10.1109/ICIP40778.2020.9190761
10.1007/978-3-030-72087-2_22
10.1109/TMI.2020.3000314
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TPAMI.2024.3435571
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 10095
ExternalDocumentID 39167505
10_1109_TPAMI_2024_3435571
10643318
Genre orig-research
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
RIG
Z5M
7X8
ID FETCH-LOGICAL-c324t-f4d3537a3372b99e15a6c5131b2048a27ee2bdaeae9ab1c8e46d197c7448f8623
IEDL.DBID RIE
ISICitedReferencesCount 268
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001364431200162&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Nov 09 11:22:50 EST 2025
Wed Feb 19 02:00:23 EST 2025
Tue Nov 18 22:11:39 EST 2025
Sat Nov 29 02:58:27 EST 2025
Wed Aug 27 03:06:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-f4d3537a3372b99e15a6c5131b2048a27ee2bdaeae9ab1c8e46d197c7448f8623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5824-8821
0000-0002-6632-6121
0000-0002-1334-3059
0000-0002-4772-2161
0000-0002-1672-2185
0000-0002-3896-7810
0000-0002-2849-1070
0000-0002-8095-2073
0000-0003-1857-1058
0000-0002-0579-7763
PMID 39167505
PQID 3095676483
PQPubID 23479
PageCount 20
ParticipantIDs ieee_primary_10643318
pubmed_primary_39167505
crossref_citationtrail_10_1109_TPAMI_2024_3435571
crossref_primary_10_1109_TPAMI_2024_3435571
proquest_miscellaneous_3095676483
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref56
ref59
ref58
ref53
Ho (ref118) 2019
ref52
ref55
ref54
ref51
Fitzke (ref87) 2021
ref48
ref42
ref41
ref44
ref43
ref8
ref7
Chu (ref120) 2021
ref9
ref4
ref3
ref5
Simpson (ref85) 2019
ref100
ref101
ref40
ref35
Brudfors (ref47)
ref37
ref36
ref31
Kohl (ref50)
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref27
ref29
Asadi-Aghbolaghi (ref98) 2020
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
Zhu (ref115)
ref124
ref10
ref17
ref16
ref19
ref18
Huang (ref45) 2021
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
Guan (ref28) 2021
ref130
ref90
Wu (ref46) 2022
ref89
ref86
Xie (ref125)
ref88
ref135
ref136
Chen (ref34) 2021
Mader (ref83) 2017
ref81
Oktay (ref66) 2018
ref84
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref103
Dosovitskiy (ref112) 2020
ref2
ref1
ref71
ref111
ref70
ref73
ref72
ref110
Ciresan (ref6)
Nikolov (ref91) 2018
ref68
ref119
ref67
Liefers (ref99)
ref117
Azad (ref21) 2022
ref69
ref64
ref63
ref116
ref113
ref65
ref114
Azad (ref76)
ref60
ref122
ref123
ref62
ref61
ref121
Myronenko (ref49)
References_xml – ident: ref22
  doi: 10.1109/tmi.2017.2759102
– ident: ref73
  doi: 10.1109/ICPR48806.2021.9413346
– ident: ref55
  doi: 10.1007/978-3-030-46640-4_25
– ident: ref100
  doi: 10.1049/ipr2.12406
– ident: ref136
  doi: 10.1109/JBHI.2019.2912935
– ident: ref18
  doi: 10.1109/ISBI.2019.8759581
– ident: ref37
  doi: 10.1007/978-3-030-87199-4_16
– year: 2019
  ident: ref118
  article-title: Axial attention in multidimensional transformers
– ident: ref128
  doi: 10.1109/LGRS.2018.2802944
– ident: ref60
  doi: 10.1109/CBMS49503.2020.00111
– ident: ref54
  doi: 10.1007/978-3-030-11726-9_17
– ident: ref93
  doi: 10.1016/S1470-2045(19)30098-1
– ident: ref105
  doi: 10.1109/CVPR.2016.308
– ident: ref26
  doi: 10.1109/NAECON46414.2019.9057834
– ident: ref63
  doi: 10.1109/TMI.2019.2959609
– ident: ref29
  doi: 10.1364/BOE.396598
– ident: ref57
  doi: 10.1109/3DV.2016.79
– ident: ref40
  doi: 10.1007/978-3-031-21014-3_39
– ident: ref89
  doi: 10.1109/TMI.2018.2837502
– ident: ref39
  doi: 10.1109/ICASSP43922.2022.9746172
– ident: ref43
  doi: 10.1007/978-3-030-87193-2_4
– year: 2020
  ident: ref112
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– ident: ref14
  doi: 10.1109/ISBI.2019.8759329
– ident: ref97
  doi: 10.1016/j.bbe.2022.02.011
– ident: ref113
  doi: 10.48550/ARXIV.1706.03762
– ident: ref36
  doi: 10.1007/978-3-030-87589-3_40
– ident: ref92
  doi: 10.1038/sj.bjc.6601693
– ident: ref96
  doi: 10.1007/978-1-4615-7566-5
– ident: ref108
  doi: 10.1109/CVPR.2015.7298958
– ident: ref106
  doi: 10.1109/CVPR.2017.243
– start-page: 337
  volume-title: Proc. Int. Conf. Med. Imag. Deep Learn.
  ident: ref99
  article-title: Dense segmentation in selected dimensions: Application to retinal optical coherence tomography
– ident: ref127
  doi: 10.3389/fbioe.2020.00670
– ident: ref24
  doi: 10.1007/s11548-022-02732-x
– ident: ref110
  doi: 10.1007/s11548-022-02738-5
– ident: ref69
  doi: 10.1007/978-3-030-87193-2_41
– ident: ref131
  doi: 10.1016/j.ejmp.2019.10.001
– ident: ref64
  doi: 10.1109/ICASSP40776.2020.9053405
– ident: ref65
  doi: 10.1007/978-3-030-59710-8_8
– year: 2021
  ident: ref120
  article-title: Conditional positional encodings for vision transformers
– year: 2021
  ident: ref28
  article-title: Dense dilated UNet: Deep learning for 3D photoacoustic tomography image reconstruction
– ident: ref95
  doi: 10.1038/s41467-018-07619-7
– ident: ref25
  doi: 10.1109/NSS/MIC42101.2019.9059879
– ident: ref117
  doi: 10.1007/978-3-030-58548-8_7
– year: 2021
  ident: ref34
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
– ident: ref134
  doi: 10.1007/978-3-319-66179-7_25
– ident: ref124
  doi: 10.1109/CVPR52688.2022.01716
– ident: ref1
  doi: 10.1038/s41467-022-30695-9
– ident: ref17
  doi: 10.1109/ICCMC48092.2020.ICCMC-000112
– year: 2019
  ident: ref85
  article-title: A large annotated medical image dataset for the development and evaluation of segmentation algorithms
– ident: ref53
  doi: 10.1007/978-3-030-11723-8_27
– ident: ref135
  doi: 10.14569/IJACSA.2017.080853
– ident: ref19
  doi: 10.1007/978-3-030-32956-3_10
– ident: ref8
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref75
  doi: 10.1109/ICCVW54120.2021.00366
– ident: ref88
  doi: 10.1038/s41591-018-0107-6
– ident: ref129
  doi: 10.1016/B978-0-08-051581-6.50065-9
– ident: ref79
  doi: 10.1109/TIP.2021.3058783
– ident: ref59
  doi: 10.1007/978-3-031-09037-0_17
– ident: ref104
  doi: 10.1109/CVPR.2016.90
– ident: ref15
  doi: 10.1007/978-3-319-71589-6_43
– ident: ref51
  doi: 10.1109/TMI.2018.2791488
– ident: ref77
  doi: 10.1155/2019/8415485
– ident: ref30
  doi: 10.1080/16878507.2021.1973760
– year: 2018
  ident: ref91
  article-title: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy
– ident: ref10
  doi: 10.1016/j.media.2023.102846
– ident: ref94
  doi: 10.1007/978-3-319-75238-9_25
– ident: ref61
  doi: 10.1016/j.knosys.2019.04.025
– ident: ref12
  doi: 10.1007/978-3-030-11726-9_32
– start-page: 48
  volume-title: Proc. Conf. Med. Imag. Deep Learn.
  ident: ref47
  article-title: An MRF-UNet product of experts for image segmentation
– start-page: 311
  volume-title: Proc. Int. MICCAI Brainlesion Workshop
  ident: ref49
  article-title: 3D MRI brain tumor segmentation using autoencoder regularization
– ident: ref133
  doi: 10.1016/j.neucom.2022.05.055
– ident: ref70
  doi: 10.1109/ICCVW.2019.00052
– ident: ref31
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref109
  doi: 10.1117/1.JMI.6.1.014006
– year: 2021
  ident: ref45
  article-title: MissFormer: An effective medical image segmentation transformer
– ident: ref103
  doi: 10.1016/j.media.2020.101889
– ident: ref13
  doi: 10.1016/j.neunet.2019.08.025
– ident: ref38
  doi: 10.1007/978-3-031-08999-2_22
– ident: ref84
  doi: 10.7303/SYN3193805
– ident: ref7
  doi: 10.1109/CVPR.2015.7298965
– ident: ref102
  doi: 10.1109/ACCESS.2021.3053408
– ident: ref107
  doi: 10.1109/ICCV.2017.89
– ident: ref119
  doi: 10.1109/ICCV48922.2021.00986
– year: 2018
  ident: ref66
  article-title: Attention U-Net: Learning where to look for the pancreas
– ident: ref2
  doi: 10.1007/s10462-020-09854-1
– ident: ref44
  doi: 10.1007/978-3-031-25066-8_9
– ident: ref41
  doi: 10.1609/aaai.v36i3.20144
– start-page: 48
  volume-title: Proc. Int. Conf. Med. Imag. Deep Learn.
  ident: ref76
  article-title: SMU-Net: Style matching U-Net for brain tumor segmentation with missing modalities
– ident: ref35
  doi: 10.1007/978-3-030-87193-2_11
– start-page: 12 077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref125
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
– ident: ref101
  doi: 10.1007/978-3-030-87193-2_52
– ident: ref58
  doi: 10.1109/TMI.2018.2845918
– ident: ref23
  doi: 10.1007/978-3-030-32486-5_18
– ident: ref72
  doi: 10.1109/ACCESS.2020.3025372
– ident: ref62
  doi: 10.1117/1.JMI.6.2.025008
– year: 2022
  ident: ref21
  article-title: Medical image segmentation on MRI images with missing modalities: A review
– ident: ref48
  doi: 10.1007/978-3-030-72084-1_16
– ident: ref114
  doi: 10.1016/j.media.2023.103000
– ident: ref27
  doi: 10.1016/j.neunet.2020.01.026
– year: 2021
  ident: ref87
  article-title: Oncopetnet: A deep learning based AI system for mitotic figure counting on H&E stained whole slide digital images in a large veterinary diagnostic lab setting
– ident: ref90
  doi: 10.7150/ijms.3635
– ident: ref116
  doi: 10.1109/WACV51458.2022.00181
– ident: ref11
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref33
  doi: 10.1109/ACCESS.2021.3086020
– year: 2022
  ident: ref46
  article-title: D-Former: A U-shaped dilated transformer for 3D medical image segmentation
– ident: ref86
  doi: 10.1109/TMI.2014.2377694
– ident: ref121
  doi: 10.1109/iros55552.2023.10342025
– start-page: 6965
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref50
  article-title: A probabilistic U-Net for segmentation of ambiguous images
– ident: ref4
  doi: 10.1038/s41591-021-01312-x
– ident: ref5
  doi: 10.1038/nmeth.2089
– ident: ref32
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref111
  doi: 10.1109/CVPR.2018.00745
– ident: ref67
  doi: 10.3389/fbioe.2020.605132
– ident: ref123
  doi: 10.1007/s41095-022-0274-8
– ident: ref3
  doi: 10.1109/TPAMI.2021.3059968
– start-page: 2843
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref6
  article-title: Deep neural networks segment neuronal membranes in electron microscopy images
– ident: ref71
  doi: 10.1109/JBHI.2019.2946092
– ident: ref126
  doi: 10.1016/j.cmpb.2021.106268
– ident: ref16
  doi: 10.1007/978-3-030-00946-5_17
– ident: ref20
  doi: 10.1142/S1793545822500183
– ident: ref122
  doi: 10.1109/ICCV48922.2021.00061
– ident: ref9
  doi: 10.1016/j.compbiomed.2018.08.018
– ident: ref56
  doi: 10.1007/978-3-319-46976-8_19
– ident: ref130
  doi: 10.1109/ACCESS.2018.2886371
– ident: ref80
  doi: 10.1007/978-3-319-46723-8_49
– ident: ref42
  doi: 10.24963/ijcai.2022/135
– year: 2020
  ident: ref98
  article-title: Multi-level context gating of embedded collective knowledge for medical image segmentation
– ident: ref52
  doi: 10.1016/j.ejmp.2019.10.001
– ident: ref74
  doi: 10.1109/ACCESS.2019.2896920
– ident: ref68
  doi: 10.1109/ICIP40778.2020.9190761
– year: 2017
  ident: ref83
  article-title: Finding and measuring lungs in CT data
– ident: ref132
  doi: 10.1007/978-3-030-72087-2_22
– ident: ref78
  doi: 10.1109/TMI.2020.3000314
– ident: ref81
  doi: 10.1007/978-3-319-24574-4_28
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref115
  article-title: Deformable {DETR}: Deformable transformers for end-to-end object detection
SSID ssj0014503
Score 2.7453682
SecondaryResourceType review_article
Snippet Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10076
SubjectTerms Biomedical imaging
Computer architecture
Convolutional neural network
deep learning
Feature extraction
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Image segmentation
Machine Learning
medical image segmentation
Neural Networks, Computer
Task analysis
Taxonomy
transformer
Transformers
U-Net
Title Medical Image Segmentation Review: The Success of U-Net
URI https://ieeexplore.ieee.org/document/10643318
https://www.ncbi.nlm.nih.gov/pubmed/39167505
https://www.proquest.com/docview/3095676483
Volume 46
WOSCitedRecordID wos001364431200162&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7c8EEfnM6p88eI4JtU1yZtWt9EHAo6BjrYW0nSqwiuE938-72k7dCHCb4VmqTlvrvmrpfvDuCMQgCTU3DsZX2lPBEL30u0bzwjJXkHGlWsHVH4QQ6H8WSSjCqyuuPCIKI7fIYX9tLl8rOZWdhfZWThkSX4xA1oSBmVZK1lykCErg0yuTBk4hRH1AyZfnL5PLp-vKdYMBAXnNyDUNr-MJZxSttl-GtDch1WVjubbtMZtP75utuwVXmX7LpUhx1Yw6INrbpzA6sMuQ2bP8oQ7oKssjXsfkpfF_aEL9OKkVSwMndwxUid2NPCdVdks5yNvSHOOzAe3D7f3HlVQwXPkN8093KR8ZBLxbkMdJKgH6rIhD73tS3fqwKJGOhMocJEEWAxiijzE2kkxXA5hT58D5rFrMADYBojFHTL-AQ0rapjY3ItsijDIMpC1QW_lmpqqmrjtunFW-qijn6SOlBSC0pagdKF8-Wc97LWxp-jO1bkP0aW0u7CaY1eSqZi8x-qwNniM-W26KKMRMy7sF_Cupxda8PhilWPYMM-vDzIcgzN-ccCT2DdfM1fPz96pI-TuOf08RuNutdT
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXB74_5GcE36VybtGl9E1EczjHYBnsrSXoVQTvRzb_fS9oOfVDwrdAkhNxd7369_O4AzgkCmJzAsZe1lPJELHwv0b7xjJQUHWhUsXZE4Y7sduPRKOlVZHXHhUFEd_kMm_bR5fKzsZnaX2Vk4ZEl-MTzsBgKEbRKutYsaSBC1wiZghgyckISNUemlVwOetePbUKDgWhyChBCaTvEWM4pOczwh0tyPVZ-Dzed27lb_-eGN2Ctii_ZdakQmzCHxRas170bWGXKW7D6rRDhNsgqX8Par_R9YX18eq04SQUrswdXjBSK9aeuvyIb52zodXGyA8O728HNvVe1VPAMRU4TLxcZD7lUnMtAJwn6oYpM6HNf2wK-KpCIgc4UKkwUiSxGEWV-Io0kFJcT-OG7sFCMC9wHpjFCQa-MT6KmVXVsTK5FFmUYRFmoGuDXp5qaqt64bXvxkjrc0UpSJ5TUCiWthNKAi9mct7Laxp-jd-yRfxtZnnYDzmrppWQsNgOiChxPP1Juyy7KSMS8AXulWGeza204-GXVU1i-Hzx20k67-3AIK3Yj5bWWI1iYvE_xGJbM5-T54_3EaeUX2fnZsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Segmentation+Review%3A+The+Success+of+U-Net&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Azad%2C+Reza&rft.au=Aghdam%2C+Ehsan+Khodapanah&rft.au=Rauland%2C+Amelie&rft.au=Jia%2C+Yiwei&rft.date=2024-12-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=46&rft.issue=12&rft.spage=10076&rft.epage=10095&rft_id=info:doi/10.1109%2FTPAMI.2024.3435571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2024_3435571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon