Knowledge Learning With Crowdsourcing: A Brief Review and Systematic Perspective

Big data have the characteristics of enormous volume, high velocity, diversity, value-sparsity, and uncertainty, which lead the knowledge learning from them full of challenges. With the emergence of crowdsourcing, versatile information can be obtained on-demand so that the wisdom of crowds is easily...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/CAA journal of automatica sinica Vol. 9; no. 5; pp. 749 - 762
Main Author: Zhang, Jing
Format: Journal Article
Language:English
Published: Piscataway Chinese Association of Automation (CAA) 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Subjects:
ISSN:2329-9266, 2329-9274
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Big data have the characteristics of enormous volume, high velocity, diversity, value-sparsity, and uncertainty, which lead the knowledge learning from them full of challenges. With the emergence of crowdsourcing, versatile information can be obtained on-demand so that the wisdom of crowds is easily involved to facilitate the knowledge learning process. During the past thirteen years, researchers in the AI community made great efforts to remove the obstacles in the field of learning from crowds. This concentrated survey paper comprehensively reviews the technical progress in crowdsourcing learning from a systematic perspective that includes three dimensions of data, models, and learning processes. In addition to reviewing existing important work, the paper places a particular emphasis on providing some promising blueprints on each dimension as well as discussing the lessons learned from our past research work, which will light up the way for new researchers and encourage them to pursue new contributions.
AbstractList Big data have the characteristics of enormous volume, high velocity, diversity, value-sparsity, and uncertainty, which lead the knowledge learning from them full of challenges. With the emergence of crowdsourcing, versatile information can be obtained on-demand so that the wisdom of crowds is easily involved to facilitate the knowledge learning process. During the past thirteen years, researchers in the AI community made great efforts to remove the obstacles in the field of learning from crowds. This concentrated survey paper comprehensively reviews the technical progress in crowdsourcing learning from a systematic perspective that includes three dimensions of data, models, and learning processes. In addition to reviewing existing important work, the paper places a particular emphasis on providing some promising blueprints on each dimension as well as discussing the lessons learned from our past research work, which will light up the way for new researchers and encourage them to pursue new contributions.
Author Zhang, Jing
AuthorAffiliation School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
AuthorAffiliation_xml – name: School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Author_xml – sequence: 1
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  email: jzhang@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology,Nanjing,China,210094
BookMark eNp9kEtPGzEURq0KpFJg3UU3lrqrlMTjxxh3l0Ytr0hEpYilZXuug1HwBHtgCL8eR4OoxIKVr6zz3cf5gnZiGwGhrxUZVxVRk7Pp5ZgSSscVEZzxT2iPMqpGikq-81bX9Wd0mPMtIaSiQtaK76HFeWz7FTRLwHMwKYa4xNehu8Gz1PZNbh-SK18_8RT_SgE8_guPAXpsYoMvN7mDO9MFhxeQ8hpcFx7hAO16s8pw-Pruo6s_v__NTkbzi-PT2XQ-cozybuQ5V8QYyayXIEkjlbLGSQWV9JYfeavASOub2hIDzoBQVjDhqJWcM2g820c_hr69id7Epb4tu8YyUT83N09Wb3q7FUJEObbA3wd4ndr7B8jdf5rWQhzVRUhdKDFQLrU5J_Daha7c18YumbDSFdFb2brI1tveepBdcpN3uXUKdyZtPkh8GxIBAN5oJWvGpWQvn6-L2A
CODEN IJASJC
CitedBy_id crossref_primary_10_1016_j_patcog_2025_111962
crossref_primary_10_1109_JAS_2023_123960
crossref_primary_10_3390_math11051153
crossref_primary_10_1007_s11432_023_3854_7
crossref_primary_10_1057_s41599_025_05105_2
crossref_primary_10_1007_s11704_023_2751_3
crossref_primary_10_1007_s11704_022_2225_z
crossref_primary_10_1109_ACCESS_2025_3598463
crossref_primary_10_1109_TPAMI_2024_3388209
crossref_primary_10_1177_22104968251361342
crossref_primary_10_1002_widm_70037
crossref_primary_10_1109_TSC_2023_3292498
crossref_primary_10_1007_s10479_023_05619_5
crossref_primary_10_1109_TETCI_2024_3423346
crossref_primary_10_1016_j_patcog_2023_109525
crossref_primary_10_1016_j_ins_2024_120702
crossref_primary_10_1109_TNNLS_2022_3194022
crossref_primary_10_3390_diagnostics13061070
crossref_primary_10_1016_j_patcog_2024_110325
crossref_primary_10_1109_JAS_2024_124860
crossref_primary_10_1016_j_ins_2022_05_066
crossref_primary_10_1016_j_patcog_2024_111034
crossref_primary_10_3390_s23073518
crossref_primary_10_1016_j_is_2023_102321
crossref_primary_10_1109_TSC_2024_3404353
crossref_primary_10_1007_s11704_022_2245_8
crossref_primary_10_1145_3712605
crossref_primary_10_1016_j_ijar_2025_109570
crossref_primary_10_1109_TMC_2025_3563345
crossref_primary_10_1109_TNNLS_2024_3438680
crossref_primary_10_1109_TASE_2024_3360476
crossref_primary_10_1016_j_patcog_2023_109316
crossref_primary_10_1287_ijoc_2023_0440
crossref_primary_10_3390_app14020530
crossref_primary_10_1080_03610918_2025_2479843
Cites_doi 10.24963/ijcai.2020/210
10.18653/v1/p17-5006
10.1109/TKDE.2016.2555805
10.24963/ijcai.2017/413
10.1145/2362456.2362479
10.1109/TKDE.2018.2857766
10.1609/hcomp.v1i1.13091
10.1109/TKDE.2019.2951668
10.1007/s10115-019-01386-7
10.1007/978-3-642-40988-2_18
10.1007/s11432-020-3118-7
10.1145/3159652.3159654
10.24963/ijcai.2017/324
10.3115/1613715.1613751
10.1145/3077136.3080679
10.1093/bioinformatics/btt333
10.1609/hcomp.v3i1.13238
10.2307/2346806
10.1609/aaai.v28i2.19016
10.1109/TNNLS.2020.2978386
10.1145/2431211.2431215
10.1609/aaai.v33i01.33019837
10.24963/ijcai.2020/402
10.1609/aaai.v34i01.5392
10.1109/ICCV.2013.373
10.24963/ijcai.2020/214
10.1145/2661829.2661946
10.1145/3394486.3403167
10.1145/3018661.3018688
10.1007/s10115-020-01475-y
10.1145/1401890.1401965
10.1145/3290605.3300773
10.1609/aaai.v29i1.9761
10.1109/ICDM.2017.78
10.1007/978-3-319-18038-0_31
10.1609/aaai.v32i1.11513
10.1145/2484028.2484199
10.1109/TKDE.2015.2504974
10.1609/aaai.v27i1.8456
10.1609/aaai.v36i11.21684
10.1016/j.eswa.2014.03.048
10.1609/hcomp.v2i1.13165
10.1145/1656274.1656278
10.1109/TKDE.2016.2535242
10.1109/ICDM.2011.133
10.1145/2488388.2488414
10.24963/ijcai.2017/261
10.1109/TNNLS.2021.3082496
10.1609/aaai.v26i1.8105
10.14778/2735496.2735505
10.1109/TKDE.2014.2327026
10.1145/3404835.3463081
10.1016/j.ins.2021.05.060
10.1609/aaai.v28i1.8993
10.1145/2187836.2187900
10.1609/hcomp.v3i1.13231
10.1609/aaai.v27i1.8530
10.1609/hcomp.v3i1.13256
10.1609/hcomp.v1i1.13088
10.1145/3148148
10.1145/2487575.2487708
10.1109/TNNLS.2017.2677468
10.1145/2566486.2567989
10.1109/CVPR.2013.81
10.1007/978-3-030-45442-5_26
10.1007/978-3-030-58607-2_17
10.1609/aaai.v30i1.10315
10.1609/hcomp.v2i1.13167
10.1145/2487575.2487593
10.1016/j.comnet.2021.108227
10.1109/Allerton.2011.6120180
10.1109/ICDM.2012.64
10.1109/TNNLS.2020.2984729
10.1109/CVPRW.2010.5543189
10.1109/TKDE.2014.2327039
10.1007/s10994-013-5412-1
10.24963/ijcai.2021/238
10.1109/TCYB.2014.2344674
10.1609/aaai.v32i1.11506
10.1109/TKDE.2018.2860992
10.1145/1993574.1993599
10.14778/3055540.3055547
10.1007/s10462-016-9491-9
10.24963/ijcai.2017/184
10.1109/TKDE.2017.2754499
10.1145/3219819.3219958
10.1561/0600000071
10.1145/1557019.1557053
10.1145/2588555.2610509
10.1609/aaai.v34i04.5898
10.1145/1458082.1458165
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2022.105434
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 762
ExternalDocumentID zdhxb_ywb202205001
10_1109_JAS_2022_105434
9763477
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0102002
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62076130,91846104
  funderid: 10.13039/501100001809
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
R-I
RIG
ID FETCH-LOGICAL-c324t-f4490aa73bf7e70d799bac79e17fb48fb9ea7bfd6b0aecae59b535c2b7443edf3
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794202700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Fri Jul 25 05:30:43 EDT 2025
Tue Nov 18 22:05:37 EST 2025
Sat Nov 29 03:31:06 EST 2025
Wed Aug 27 02:40:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Crowdsourcing
data fusion
learning from crowds
learning paradigms
learning with uncertainty
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-f4490aa73bf7e70d799bac79e17fb48fb9ea7bfd6b0aecae59b535c2b7443edf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2655860126
PQPubID 2040495
PageCount 14
ParticipantIDs wanfang_journals_zdhxb_ywb202205001
proquest_journals_2655860126
ieee_primary_9763477
crossref_citationtrail_10_1109_JAS_2022_105434
crossref_primary_10_1109_JAS_2022_105434
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2022
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
References ref57
ref56
ref59
ref58
ref52
ref55
ref54
Zhou (ref29) 2012; 25
Bonald (ref64) 2017; 30
Tian (ref49) 2015; 28
Zhou (ref33) 2014
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
Zhang (ref116) 2015; 16
ref9
ref4
ref3
ref6
ref5
Yan (ref73) 2010
ref100
ref101
ref40
Rodrigues (ref106) 2014
ref35
ref34
ref37
ref36
ref30
Kim (ref26) 2012
ref38
Yan (ref74) 2011; 11
Ratner (ref97) 2016; 29
Li (ref32) 2019
ref24
Zhou (ref50) 2016
ref20
Zhao (ref76) 2015
ref22
Zhang (ref31) 2016; 17
ref28
ref27
Liu (ref23) 2012; 25
Whitehill (ref21) 2009; 22
Jung (ref39) 2011
Cao (ref78) 2019; abs/1905.13436
ref13
ref15
Welinder (ref25) 2010; 23
ref96
ref11
ref99
ref10
Kipf (ref94) 2017
Howe (ref1) 2006; 14
ref17
ref16
ref19
ref18
Khattak (ref63) 2011; 2
ref93
ref92
ref95
Hsieh (ref98) 2015
ref91
ref90
ref89
ref86
ref85
ref88
ref87
Bi (ref14) 2014
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref109
ref107
ref75
ref104
ref105
Raykar (ref12) 2010; 11
ref77
ref102
ref103
ref2
Oyama (ref65) 2013
Gaunt (ref53) 2016
ref71
ref111
ref70
ref112
ref72
ref110
ref68
ref67
ref117
ref69
ref118
ref115
ref66
ref113
ref114
ref60
ref62
ref61
References_xml – volume: 23
  start-page: 2424
  volume-title: Advances Neural Inf. Process. Syst.
  year: 2010
  ident: ref25
  article-title: The multidimensional wisdom of crowds
– ident: ref56
  doi: 10.24963/ijcai.2020/210
– start-page: 932
  volume-title: Proc. 13 Int. Conf. Artif. Intell. Stat.
  year: 2010
  ident: ref73
  article-title: Modeling annotator expertise: Learning when everybody knows a bit of something
– ident: ref6
  doi: 10.18653/v1/p17-5006
– ident: ref19
  doi: 10.1109/TKDE.2016.2555805
– ident: ref69
  doi: 10.24963/ijcai.2017/413
– ident: ref2
  doi: 10.1145/2362456.2362479
– ident: ref103
  doi: 10.1109/TKDE.2018.2857766
– ident: ref35
  doi: 10.1609/hcomp.v1i1.13091
– ident: ref38
  doi: 10.1109/TKDE.2019.2951668
– ident: ref57
  doi: 10.1007/s10115-019-01386-7
– ident: ref109
  doi: 10.1007/978-3-642-40988-2_18
– ident: ref34
  doi: 10.1007/s11432-020-3118-7
– ident: ref59
  doi: 10.1145/3159652.3159654
– ident: ref66
  doi: 10.24963/ijcai.2017/324
– volume-title: Proc. Int. Conf. Learn. Representation
  year: 2017
  ident: ref94
  article-title: Semi-supervised classification with graph convolution networks
– volume: 28
  start-page: 1621
  volume-title: Advances Neural Inf. Process. Syst.
  year: 2015
  ident: ref49
  article-title: Max-margin majority voting for learning from crowds
– ident: ref8
  doi: 10.3115/1613715.1613751
– ident: ref67
  doi: 10.1145/3077136.3080679
– ident: ref4
  doi: 10.1093/bioinformatics/btt333
– ident: ref61
  doi: 10.1609/hcomp.v3i1.13238
– ident: ref9
  doi: 10.2307/2346806
– start-page: 2445
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  year: 2015
  ident: ref98
  article-title: PU learning for matrix completion
– ident: ref45
  doi: 10.1609/aaai.v28i2.19016
– ident: ref93
  doi: 10.1109/TNNLS.2020.2978386
– start-page: 397
  volume-title: Proc. 18th Int. Conf. Extending Database Tech.
  year: 2015
  ident: ref76
  article-title: Crowd-selection query processing in crowdsourcing databases: A task-driven approach
– ident: ref86
  doi: 10.1145/2431211.2431215
– ident: ref20
  doi: 10.1609/aaai.v33i01.33019837
– ident: ref71
  doi: 10.24963/ijcai.2020/402
– start-page: 433
  volume-title: Proc. 31st Int. Conf. Mach. Learn.
  year: 2014
  ident: ref106
  article-title: Gaussian process classification and active learning with multiple annotators
– ident: ref113
  doi: 10.1609/aaai.v34i01.5392
– volume: 11
  start-page: 1161
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  year: 2011
  ident: ref74
  article-title: Active learning from crowds
– ident: ref102
  doi: 10.1109/ICCV.2013.373
– ident: ref80
  doi: 10.24963/ijcai.2020/214
– ident: ref16
  doi: 10.1145/2661829.2661946
– ident: ref88
  doi: 10.1145/3394486.3403167
– ident: ref5
  doi: 10.1145/3018661.3018688
– ident: ref46
  doi: 10.1007/s10115-020-01475-y
– ident: ref7
  doi: 10.1145/1401890.1401965
– ident: ref62
  doi: 10.1145/3290605.3300773
– ident: ref112
  doi: 10.1609/aaai.v29i1.9761
– ident: ref95
  doi: 10.1109/ICDM.2017.78
– ident: ref28
  doi: 10.1007/978-3-319-18038-0_31
– ident: ref87
  doi: 10.1609/aaai.v32i1.11513
– ident: ref114
  doi: 10.1145/2484028.2484199
– start-page: 619
  year: 2012
  ident: ref26
  article-title: Bayesian classifier combination
  publication-title: Artif. Intell. and Statistics
– start-page: 262
  volume-title: Proc. 31st Int. Conf. Mach. Learn.
  year: 2014
  ident: ref33
  article-title: Aggregating ordinal labels from crowds by minimax conditional entropy
– volume: 25
  start-page: 692
  year: 2012
  ident: ref23
  article-title: Variational inference for crowdsourcing
  publication-title: Advances Neural Inf. Process. Syst.
– ident: ref52
  doi: 10.1109/TKDE.2015.2504974
– ident: ref83
  doi: 10.1609/aaai.v27i1.8456
– volume: 29
  start-page: 3567
  volume-title: Advances Neural Inf. Process. Syst.
  year: 2016
  ident: ref97
  article-title: Data programming: Creating large training sets, quickly
– ident: ref72
  doi: 10.1609/aaai.v36i11.21684
– volume: 25
  start-page: 2195
  volume-title: Advances Neural Inf. Process. Syst.
  year: 2012
  ident: ref29
  article-title: Learning from the wisdom of crowds by minimax entropy
– ident: ref36
  doi: 10.1016/j.eswa.2014.03.048
– ident: ref107
  doi: 10.1609/hcomp.v2i1.13165
– ident: ref117
  doi: 10.1145/1656274.1656278
– ident: ref100
  doi: 10.1109/TKDE.2016.2535242
– ident: ref85
  doi: 10.1109/ICDM.2011.133
– ident: ref42
  doi: 10.1145/2488388.2488414
– ident: ref17
  doi: 10.24963/ijcai.2017/261
– ident: ref51
  doi: 10.1109/TNNLS.2021.3082496
– start-page: 82
  volume-title: Proc. 30th Conf. Uncertainty Artif. Intell.
  year: 2014
  ident: ref14
  article-title: Learning to predict from crowdsourced data
– start-page: 2554
  volume-title: Proc. 22th Int. Joint Conf. Artif. Intell.
  year: 2013
  ident: ref65
  article-title: Accurate integration of crowdsourced labels using workers self-reported confidence scores
– ident: ref13
  doi: 10.1609/aaai.v26i1.8105
– ident: ref47
  doi: 10.14778/2735496.2735505
– volume: 22
  start-page: 2035
  year: 2009
  ident: ref21
  article-title: Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
  publication-title: Advances Neural Inf. Process. Syst.
– ident: ref22
  doi: 10.1109/TKDE.2014.2327026
– ident: ref99
  doi: 10.1145/3404835.3463081
– ident: ref70
  doi: 10.1016/j.ins.2021.05.060
– ident: ref110
  doi: 10.1609/aaai.v28i1.8993
– ident: ref27
  doi: 10.1145/2187836.2187900
– ident: ref82
  doi: 10.1609/hcomp.v3i1.13231
– ident: ref58
  doi: 10.1609/aaai.v27i1.8530
– ident: ref118
  doi: 10.1609/hcomp.v3i1.13256
– ident: ref115
  doi: 10.1609/hcomp.v1i1.13088
– ident: ref18
  doi: 10.1145/3148148
– ident: ref111
  doi: 10.1145/2487575.2487708
– ident: ref68
  doi: 10.1109/TNNLS.2017.2677468
– ident: ref30
  doi: 10.1145/2566486.2567989
– ident: ref81
  doi: 10.1109/CVPR.2013.81
– ident: ref60
  doi: 10.1007/978-3-030-45442-5_26
– volume: 11
  start-page: 1297
  year: 2010
  ident: ref12
  article-title: Learning from crowds
  publication-title: J. Mach. Learn. Res.
– ident: ref77
  doi: 10.1007/978-3-030-58607-2_17
– ident: ref105
  doi: 10.1609/aaai.v30i1.10315
– ident: ref90
  doi: 10.1609/hcomp.v2i1.13167
– ident: ref108
  doi: 10.1145/2487575.2487593
– start-page: 3886
  volume-title: Int. Conf. Mach. Learn.
  year: 2019
  ident: ref32
  article-title: Exploiting worker correlation for label aggregation in crowdsourcing
– ident: ref89
  doi: 10.1016/j.comnet.2021.108227
– volume: 16
  start-page: 2853
  issue: 1
  year: 2015
  ident: ref116
  article-title: CEKA: A tool for mining the wisdom of crowds
  publication-title: J. Mach. Learn. Res.
– ident: ref40
  doi: 10.1109/Allerton.2011.6120180
– ident: ref96
  doi: 10.1109/ICDM.2012.64
– ident: ref104
  doi: 10.1109/TNNLS.2020.2984729
– volume: 2
  volume-title: Proc. NIPS 2nd Workshop on Comput. Social Science and the Wisdom of Crowds
  year: 2011
  ident: ref63
  article-title: Quality control of crowd labeling through expert evaluation
– ident: ref15
  doi: 10.1109/CVPRW.2010.5543189
– ident: ref43
  doi: 10.1109/TKDE.2014.2327039
– start-page: 2435
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  year: 2016
  ident: ref50
  article-title: Crowdsourcing via tensor augmentation and completion
– volume: 17
  start-page: 3537
  issue: 1
  year: 2016
  ident: ref31
  article-title: Spectral methods meet EM: A provably optimal algorithm for crowdsourcing
  publication-title: J. Mach. Learn. Res.
– ident: ref75
  doi: 10.1007/s10994-013-5412-1
– volume: 14
  start-page: 1
  issue: 6
  year: 2006
  ident: ref1
  article-title: The rise of crowdsourcing
  publication-title: Wired Magazine
– ident: ref24
  doi: 10.24963/ijcai.2021/238
– start-page: 242
  volume-title: Proc. 32nd Conf. Uncertainty Artif. Intell.
  year: 2016
  ident: ref53
  article-title: Training deep neural nets to aggregate crowdsourced responses
– ident: ref101
  doi: 10.1109/TCYB.2014.2344674
– ident: ref55
  doi: 10.1609/aaai.v32i1.11506
– ident: ref91
  doi: 10.1109/TKDE.2018.2860992
– ident: ref41
  doi: 10.1145/1993574.1993599
– ident: ref11
  doi: 10.14778/3055540.3055547
– ident: ref10
  doi: 10.1007/s10462-016-9491-9
– ident: ref54
  doi: 10.24963/ijcai.2017/184
– volume: 30
  start-page: 4355
  volume-title: Advances Neural Inf. Process. Syst.
  year: 2017
  ident: ref64
  article-title: A minimax optimal algorithm for crowdsourcing
– ident: ref92
  doi: 10.1109/TKDE.2017.2754499
– ident: ref37
  doi: 10.1145/3219819.3219958
– volume: abs/1905.13436
  year: 2019
  ident: ref78
  article-title: Max-MIG: An information theoretic approach for joint learning from crowds
  publication-title: ArXiv
– ident: ref3
  doi: 10.1561/0600000071
– volume-title: Proc. 3rd Human Comput. Workshop
  year: 2011
  ident: ref39
  article-title: Improving consensus accuracy via Z-score and weighted voting
– ident: ref44
  doi: 10.1145/1557019.1557053
– ident: ref48
  doi: 10.1145/2588555.2610509
– ident: ref79
  doi: 10.1609/aaai.v34i04.5898
– ident: ref84
  doi: 10.1145/1458082.1458165
SSID ssj0001257694
Score 2.4566057
SecondaryResourceType review_article
Snippet Big data have the characteristics of enormous volume, high velocity, diversity, value-sparsity, and uncertainty, which lead the knowledge learning from them...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 749
SubjectTerms Big Data
Costs
Crowdsourcing
data fusion
Data models
Lead
Learning
learning from crowds
learning paradigms
learning with uncertainty
Systematics
Training
Uncertainty
Title Knowledge Learning With Crowdsourcing: A Brief Review and Systematic Perspective
URI https://ieeexplore.ieee.org/document/9763477
https://www.proquest.com/docview/2655860126
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202205001
Volume 9
WOSCitedRecordID wos000794202700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257694
  issn: 2329-9266
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UFPTgW6wvFvTgwbR5bLpdb1UUUSiFKnoL-2wLkoptrfrrnWzSF-jBW0gmS5iZMN83uzMDcOYHwvixQJKjufVoIGNPYtT2NFcYfJSKNZVu2ARrNGovL7y5ABeTWhhjjDt8ZsrZpdvL1z01zFJlFQydEWVsERYZY3mt1kw-BZGzm3uIGIF7HANP0ckn8Hnlvt5CLhiG2VhbGtG5IOSmqswBzJWRSK1I2zOR5nbjf9-4CesFoiT13AW2YMGk27A202dwB5oP48wZKfqptslzd9Ah10jCtcvf461LUidXyJwtyTcMiEg1aU06PZPmtC5zF55ubx6v77xilIKnEDENPEsp94VgkbTMMF8zzqVQjJuAWUlrVnIjmLS6Kn1hlDAxl3EUq1AySiOjbbQHS2kvNftAmAgDKjXCIGRaYaRqwlhcQUhUr0J0V4LyWLeJKvqMZ-MuXhPHN3yeoDGSzBhJbowSnE9eeMtbbPwtupNpfCJWKLsER2PjJcUv2E_CahzXkG6G1RKcFgadPv3WnU-ZfI1k6EqN0X8Ofl_7EFYzkfyM4xEsDd6H5hiW1ceg238_cT74Azqe2c0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLZ4CjiwD0AMsLuR4MBhC22aTCbcBgTiORoJVnCL8gQkVBAMz1-Pm3aGQdo97K1q3aiyXfn7nNgGWEsz7VOukeQ4GRKWGZ4YjNqJkxaDj7XcMROHTYhOp3VxIbsj8HtQC-O9j4fP_EZ5Gffy3a19LFNlmxg6cybEKIxzxmhWVWsNZVQQO8fJh4gSZCIx9NS9fLJUbh62T5ENUloOtmU5-xSG4lyVTxBz8lkXQReXQ7Fm78v_feVXmK0xJWlXTvANRnzxHWaGOg3OQfeonzsjdUfVS3J-3bsiO0jDXczg460t0ibbyJ0DqbYMiC4cOR30eibdj8rMefizt3u2s5_UwxQSi5iplwTGZKq1yE0QXqROSGm0FdJnIhjWCkZ6LUxwTZNqb7Xn0vCcW2oEY7l3IV-AseK28ItAhKYZMw6BEHItmtuW9gFX0AbVaxHfNWCjr1tl607j5cCLGxUZRyoVGkOVxlCVMRqwPnjhrmqy8W_RuVLjA7Fa2Q1Y6RtP1T_hg6JNzltIOGmzAau1QT-evrmrF6Nenw2NxcboP0t_X_sXTO2fnRyr44PO0TJMl-LViccVGOvdP_ofMGGfetcP9z-jP74DtWXdFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Learning+With+Crowdsourcing%3A+A+Brief+Review+and+Systematic+Perspective&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Zhang%2C+Jing&rft.date=2022-05-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=9&rft.issue=5&rft.spage=749&rft.epage=762&rft_id=info:doi/10.1109%2FJAS.2022.105434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2022_105434
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg