On the Generalized Gaussian CEO Problem

This paper considers a distributed source coding (DSC) problem where L encoders observe noisy linear combinations of K correlated remote Gaussian sources, and separately transmit the compressed observations to the decoder to reconstruct the remote sources subject to a sum-distortion constraint. This...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 58; no. 6; pp. 3350 - 3372
Main Authors: Yang, Yang, Xiong, Zixiang
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper considers a distributed source coding (DSC) problem where L encoders observe noisy linear combinations of K correlated remote Gaussian sources, and separately transmit the compressed observations to the decoder to reconstruct the remote sources subject to a sum-distortion constraint. This DSC problem is referred to as the generalized Gaussian CEO problem since it can be viewed as a generalization of the quadratic Gaussian CEO problem where the number of remote source K =1. First, we provide a new outer region obtained using the entropy power inequality and an equivalent argument (in the sense of having the same rate-distortion region and Berger-Tung inner region) among a certain class of generalized Gaussian CEO problems. We then give two sufficient conditions for our new outer region to match the inner region achieved by Berger-Tung schemes, where the second matching condition implies that in the low-distortion regime, the Berger-Tung inner rate region is always tight, while in the high-distortion regime, the same region is tight if a certain condition holds. The sum-rate part of the outer region is also studied and shown to meet the Berger-Tung sum-rate upper bound under a certain condition, which is obtained using the Karush-Kuhn-Tucker conditions of the underlying convex semidefinite optimization problem, and is in general weaker than the aforesaid two for rate region tightness.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2012.2184667