Parameterized computational complexity of Dodgson and Young elections

We show that the two NP-complete problems of Dodgson Score and Young Score have differing computational complexities when the winner is close to being a Condorcet winner. On the one hand, we present an efficient fixed-parameter algorithm for determining a Condorcet winner in Dodgson elections by a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation Jg. 208; H. 2; S. 165 - 177
Hauptverfasser: Betzler, Nadja, Guo, Jiong, Niedermeier, Rolf
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Inc 01.02.2010
Elsevier
Schlagworte:
ISSN:0890-5401, 1090-2651
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the two NP-complete problems of Dodgson Score and Young Score have differing computational complexities when the winner is close to being a Condorcet winner. On the one hand, we present an efficient fixed-parameter algorithm for determining a Condorcet winner in Dodgson elections by a minimum number of switches in the votes. On the other hand, we prove that the corresponding problem for Young elections, where one has to delete votes instead of performing switches, is W[2]-complete. In addition, we study Dodgson elections that allow ties between the candidates and give fixed-parameter tractability as well as W[2]-completeness results depending on the cost model for switching ties.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2009.10.001