Parameterized computational complexity of Dodgson and Young elections

We show that the two NP-complete problems of Dodgson Score and Young Score have differing computational complexities when the winner is close to being a Condorcet winner. On the one hand, we present an efficient fixed-parameter algorithm for determining a Condorcet winner in Dodgson elections by a m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information and computation Ročník 208; číslo 2; s. 165 - 177
Hlavní autoři: Betzler, Nadja, Guo, Jiong, Niedermeier, Rolf
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.02.2010
Elsevier
Témata:
ISSN:0890-5401, 1090-2651
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We show that the two NP-complete problems of Dodgson Score and Young Score have differing computational complexities when the winner is close to being a Condorcet winner. On the one hand, we present an efficient fixed-parameter algorithm for determining a Condorcet winner in Dodgson elections by a minimum number of switches in the votes. On the other hand, we prove that the corresponding problem for Young elections, where one has to delete votes instead of performing switches, is W[2]-complete. In addition, we study Dodgson elections that allow ties between the candidates and give fixed-parameter tractability as well as W[2]-completeness results depending on the cost model for switching ties.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2009.10.001