DiamondNet: A Neural-Network-Based Heterogeneous Sensor Attentive Fusion for Human Activity Recognition

With the proliferation of intelligent sensors integrated into mobile devices, fine-grained human activity recognition (HAR) based on lightweight sensors has emerged as a useful tool for personalized applications. Although shallow and deep learning algorithms have been proposed for HAR problems in th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 35; no. 11; pp. 15321 - 15331
Main Authors: Zhu, Yida, Luo, Haiyong, Chen, Runze, Zhao, Fang
Format: Journal Article
Language:English
Published: United States IEEE 01.11.2024
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the proliferation of intelligent sensors integrated into mobile devices, fine-grained human activity recognition (HAR) based on lightweight sensors has emerged as a useful tool for personalized applications. Although shallow and deep learning algorithms have been proposed for HAR problems in the past decades, these methods have limited capability to exploit semantic features from multiple sensor types. To address this limitation, we propose a novel HAR framework, DiamondNet, which can create heterogeneous multisensor modalities, denoise, extract, and fuse features from a fresh perspective. In DiamondNet, we leverage multiple 1-D convolutional denoising autoencoders (1-D-CDAEs) to extract robust encoder features. We further introduce an attention-based graph convolutional network to construct new heterogeneous multisensor modalities, which adaptively exploit the potential relationship between different sensors. Moreover, the proposed attentive fusion subnet, which jointly employs a global-attention mechanism and shallow features, effectively calibrates different-level features of multiple sensor modalities. This approach amplifies informative features and provides a comprehensive and robust perception for HAR. The efficacy of the DiamondNet framework is validated on three public datasets. The experimental results demonstrate that our proposed DiamondNet outperforms other state-of-the-art baselines, achieving remarkable and consistent accuracy improvements. Overall, our work introduces a new perspective on HAR, leveraging the power of multiple sensor modalities and attention mechanisms to significantly improve the performance.
AbstractList With the proliferation of intelligent sensors integrated into mobile devices, fine-grained human activity recognition (HAR) based on lightweight sensors has emerged as a useful tool for personalized applications. Although shallow and deep learning algorithms have been proposed for HAR problems in the past decades, these methods have limited capability to exploit semantic features from multiple sensor types. To address this limitation, we propose a novel HAR framework, DiamondNet, which can create heterogeneous multisensor modalities, denoise, extract, and fuse features from a fresh perspective. In DiamondNet, we leverage multiple 1-D convolutional denoising autoencoders (1-D-CDAEs) to extract robust encoder features. We further introduce an attention-based graph convolutional network to construct new heterogeneous multisensor modalities, which adaptively exploit the potential relationship between different sensors. Moreover, the proposed attentive fusion subnet, which jointly employs a global-attention mechanism and shallow features, effectively calibrates different-level features of multiple sensor modalities. This approach amplifies informative features and provides a comprehensive and robust perception for HAR. The efficacy of the DiamondNet framework is validated on three public datasets. The experimental results demonstrate that our proposed DiamondNet outperforms other state-of-the-art baselines, achieving remarkable and consistent accuracy improvements. Overall, our work introduces a new perspective on HAR, leveraging the power of multiple sensor modalities and attention mechanisms to significantly improve the performance.With the proliferation of intelligent sensors integrated into mobile devices, fine-grained human activity recognition (HAR) based on lightweight sensors has emerged as a useful tool for personalized applications. Although shallow and deep learning algorithms have been proposed for HAR problems in the past decades, these methods have limited capability to exploit semantic features from multiple sensor types. To address this limitation, we propose a novel HAR framework, DiamondNet, which can create heterogeneous multisensor modalities, denoise, extract, and fuse features from a fresh perspective. In DiamondNet, we leverage multiple 1-D convolutional denoising autoencoders (1-D-CDAEs) to extract robust encoder features. We further introduce an attention-based graph convolutional network to construct new heterogeneous multisensor modalities, which adaptively exploit the potential relationship between different sensors. Moreover, the proposed attentive fusion subnet, which jointly employs a global-attention mechanism and shallow features, effectively calibrates different-level features of multiple sensor modalities. This approach amplifies informative features and provides a comprehensive and robust perception for HAR. The efficacy of the DiamondNet framework is validated on three public datasets. The experimental results demonstrate that our proposed DiamondNet outperforms other state-of-the-art baselines, achieving remarkable and consistent accuracy improvements. Overall, our work introduces a new perspective on HAR, leveraging the power of multiple sensor modalities and attention mechanisms to significantly improve the performance.
With the proliferation of intelligent sensors integrated into mobile devices, fine-grained human activity recognition (HAR) based on lightweight sensors has emerged as a useful tool for personalized applications. Although shallow and deep learning algorithms have been proposed for HAR problems in the past decades, these methods have limited capability to exploit semantic features from multiple sensor types. To address this limitation, we propose a novel HAR framework, DiamondNet, which can create heterogeneous multisensor modalities, denoise, extract, and fuse features from a fresh perspective. In DiamondNet, we leverage multiple 1-D convolutional denoising autoencoders (1-D-CDAEs) to extract robust encoder features. We further introduce an attention-based graph convolutional network to construct new heterogeneous multisensor modalities, which adaptively exploit the potential relationship between different sensors. Moreover, the proposed attentive fusion subnet, which jointly employs a global-attention mechanism and shallow features, effectively calibrates different-level features of multiple sensor modalities. This approach amplifies informative features and provides a comprehensive and robust perception for HAR. The efficacy of the DiamondNet framework is validated on three public datasets. The experimental results demonstrate that our proposed DiamondNet outperforms other state-of-the-art baselines, achieving remarkable and consistent accuracy improvements. Overall, our work introduces a new perspective on HAR, leveraging the power of multiple sensor modalities and attention mechanisms to significantly improve the performance.
Author Zhao, Fang
Zhu, Yida
Chen, Runze
Luo, Haiyong
Author_xml – sequence: 1
  givenname: Yida
  orcidid: 0000-0001-8643-9150
  surname: Zhu
  fullname: Zhu, Yida
  email: dozenpiggy@bupt.edu.cn
  organization: School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Haiyong
  orcidid: 0000-0001-6827-4225
  surname: Luo
  fullname: Luo, Haiyong
  email: yhluo@ict.ac.cn
  organization: Research Center for Ubiquitous Computing Systems, Institute of Computing Technology Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Runze
  orcidid: 0000-0002-6599-7898
  surname: Chen
  fullname: Chen, Runze
  email: chenrz925@bupt.edu.cn
  organization: School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Fang
  orcidid: 0000-0002-4784-5778
  surname: Zhao
  fullname: Zhao, Fang
  email: zfsse@bupt.edu.cn
  organization: School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37402195$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha0KVJ5_oEKVl2wm-DHj8XSXBmgqRalUQOrOcjx3IrczNrU9IP59HRIqxAJv7Ht8vitfnyO057wDhD5RMqGUNBe3y-XiZsII4xPOZFWV9Qd0yKhgBeNS7v0_178O0GmMv0leglSibD6iA16XhNGmOkTrS6sH79olpC94ipcwBt0XuXr04U_xVUdo8RwSBL8GB36M-AZc9AFPUwKX7APg6zFa73CXxfk4aIenJus2PeGfYPza2ZSvT9B-p_sIp7v9GN1dX93O5sXix7fvs-miMJyVqWhXFWklF52AlTFGVtBVKyZF07CuJQQ001mRDZO6bkxtGkorXVJuaCeoKAk_RufbvvfB_x0hJjXYaKDv9fPrFZOci7KmsszWzzvruBqgVffBDjo8qZfPyQa5NZjgYwzQKWOT3kyTgra9okRtolDPUahNFGoXRUbZG_Sl-7vQ2RayAPAKoDXLc_J_pRWVHw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_JSEN_2024_3443308
crossref_primary_10_1109_JSEN_2025_3561418
crossref_primary_10_1109_TNNLS_2025_3556317
crossref_primary_10_3390_s25134028
crossref_primary_10_1109_JSEN_2025_3543928
Cites_doi 10.1109/MPRV.2008.40
10.24963/ijcai.2019/779
10.24963/ijcai.2018/432
10.1145/1964897.1964918
10.1145/3267305.3267531
10.1145/3380999
10.1109/ISMS.2016.51
10.1109/TNNLS.2020.2978942
10.24963/ijcai.2019/801
10.1016/j.jpdc.2017.05.007
10.1109/TBDATA.2020.2988778
10.1007/BF00994018
10.24963/ijcai.2019/186
10.1109/JIOT.2018.2823084
10.1109/ICCV.2017.612
10.1145/3397323
10.1145/3341162.3345571
10.1109/TNNLS.2019.2927224
10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011
10.1109/TBDATA.2021.3090905
10.1109/RFID.2013.6548154
10.1109/CVPR.2018.00745
10.1145/3090076
10.3390/s16010115
10.1145/3341162.3345570
10.1109/ISWC.2012.13
10.1109/TKDE.2022.3176466
10.3390/s17030529
10.1016/j.inffus.2017.05.004
10.1016/j.asoc.2017.09.027
10.1145/2939672.2939785
10.1145/3410530.3414349
10.1016/j.neucom.2015.07.085
10.24963/ijcai.2019/431
10.1109/TMI.2017.2715284
10.1145/3411836
10.1109/CVPR42600.2020.00269
10.1109/CVPR46437.2021.01049
10.1109/TCYB.2019.2905157
10.1145/3550331
10.1109/BigMM.2019.00026
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNNLS.2023.3285547
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 15331
ExternalDocumentID 37402195
10_1109_TNNLS_2023_3285547
10172911
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62261042; 62002026
  funderid: 10.13039/501100001809
– fundername: BUPT Excellent Ph.D. Students Foundation
  grantid: CX2020220
– fundername: Key Research Projects of the Joint Research Fund for Beijing Natural Science Foundation and the Fengtai Rail Transit Frontier Research Joint Fund
  grantid: L221003
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  grantid: XDA28040500
  funderid: 10.13039/501100002367
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2022RC13
  funderid: 10.13039/501100012226
– fundername: Open Project of the Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences
– fundername: Beijing Natural Science Foundation
  grantid: 4232035; 4212024; 4222034
  funderid: 10.13039/501100004826
– fundername: National Key Research and Development Program of China; National Key Research and Development Program
  grantid: 2022YFB3904700
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c324t-db50d836f6ebccc85ef5b286992fd00ea2aef58928a79c7c9115a413c1f616403
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001025578500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Mon Sep 29 06:19:17 EDT 2025
Thu Jan 02 22:22:28 EST 2025
Sat Nov 29 01:40:26 EST 2025
Tue Nov 18 21:39:56 EST 2025
Wed Aug 27 02:33:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-db50d836f6ebccc85ef5b286992fd00ea2aef58928a79c7c9115a413c1f616403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6827-4225
0000-0002-4784-5778
0000-0002-6599-7898
0000-0001-8643-9150
PMID 37402195
PQID 2833647184
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_37402195
proquest_miscellaneous_2833647184
crossref_citationtrail_10_1109_TNNLS_2023_3285547
crossref_primary_10_1109_TNNLS_2023_3285547
ieee_primary_10172911
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
Liu (ref48) 2020; 4
ref11
ref10
ref16
ref19
ref18
Kingma (ref47)
ref46
ref42
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Klambauer (ref39)
Yang (ref14)
ref35
ref34
ref37
ref36
ref31
Glorot (ref43)
ref30
ref33
ref32
ref2
Ioffe (ref40)
ref1
Anguita (ref45)
ref38
Yang (ref17)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Veličković (ref41)
References_xml – ident: ref16
  doi: 10.1109/MPRV.2008.40
– ident: ref34
  doi: 10.24963/ijcai.2019/779
– ident: ref19
  doi: 10.24963/ijcai.2018/432
– ident: ref13
  doi: 10.1145/1964897.1964918
– ident: ref25
  doi: 10.1145/3267305.3267531
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  ident: ref48
  article-title: GlobalFusion: A global attentional deep learning framework for multisensor information fusion
  publication-title: Proc. ACM Interact., Mobile, Wearable Ubiquitous Technol.
  doi: 10.1145/3380999
– ident: ref22
  doi: 10.1109/ISMS.2016.51
– ident: ref5
  doi: 10.1109/TNNLS.2020.2978942
– ident: ref27
  doi: 10.24963/ijcai.2019/801
– start-page: 1
  volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR)
  ident: ref41
  article-title: Graph attention networks
– ident: ref23
  doi: 10.1016/j.jpdc.2017.05.007
– ident: ref31
  doi: 10.1109/TBDATA.2020.2988778
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref47
  article-title: Adam: A method for stochastic optimization
– ident: ref11
  doi: 10.1007/BF00994018
– ident: ref33
  doi: 10.24963/ijcai.2019/186
– start-page: 315
  volume-title: Proc. AISTATS
  ident: ref43
  article-title: Deep sparse rectifier neural networks
– start-page: 972
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref39
  article-title: Self-normalizing neural networks
– ident: ref4
  doi: 10.1109/JIOT.2018.2823084
– ident: ref37
  doi: 10.1109/ICCV.2017.612
– ident: ref35
  doi: 10.1145/3397323
– ident: ref8
  doi: 10.1145/3341162.3345571
– ident: ref28
  doi: 10.1109/TNNLS.2019.2927224
– ident: ref10
  doi: 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011
– ident: ref30
  doi: 10.1109/TBDATA.2021.3090905
– ident: ref2
  doi: 10.1109/RFID.2013.6548154
– ident: ref42
  doi: 10.1109/CVPR.2018.00745
– ident: ref18
  doi: 10.1145/3090076
– ident: ref20
  doi: 10.3390/s16010115
– ident: ref24
  doi: 10.1145/3341162.3345570
– ident: ref44
  doi: 10.1109/ISWC.2012.13
– ident: ref32
  doi: 10.1109/TKDE.2022.3176466
– ident: ref15
  doi: 10.3390/s17030529
– ident: ref1
  doi: 10.1016/j.inffus.2017.05.004
– start-page: 448
  volume-title: Proc. IEEE Conf. Int. Conf. Mach. Learn. (ICML)
  ident: ref40
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref26
  doi: 10.1016/j.asoc.2017.09.027
– ident: ref12
  doi: 10.1145/2939672.2939785
– ident: ref3
  doi: 10.1145/3410530.3414349
– ident: ref46
  doi: 10.1016/j.neucom.2015.07.085
– start-page: 3995
  volume-title: Proc. Int. Joint Conf. Artif. Intell. (IJCAI)
  ident: ref17
  article-title: Deep convolutional neural networks on multichannel time series for human activity recognition
– ident: ref21
  doi: 10.24963/ijcai.2019/431
– ident: ref38
  doi: 10.1109/TMI.2017.2715284
– ident: ref7
  doi: 10.1145/3411836
– ident: ref9
  doi: 10.1109/CVPR42600.2020.00269
– ident: ref6
  doi: 10.1109/CVPR46437.2021.01049
– start-page: 437
  volume-title: Proc. 21st Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn. (ESANN)
  ident: ref45
  article-title: A public domain dataset for human activity recognition using smartphones
– ident: ref29
  doi: 10.1109/TCYB.2019.2905157
– ident: ref49
  doi: 10.1145/3550331
– ident: ref36
  doi: 10.1109/BigMM.2019.00026
– start-page: 20
  volume-title: Proc. Int. Joint Conf. Artif. Intell. (IJCAI)
  ident: ref14
  article-title: Activity recognition: Linking low-level sensors to high-level intelligence
SSID ssj0000605649
Score 2.5021267
Snippet With the proliferation of intelligent sensors integrated into mobile devices, fine-grained human activity recognition (HAR) based on lightweight sensors has...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15321
SubjectTerms Adaptation models
Algorithms
Attention
Convolutional denoising autoencoders (CDAEs)
Convolutional neural networks
Correlation
Deep Learning
Feature extraction
global-attention mechanism
Graph convolutional networks
Human Activities - classification
Human activity recognition
human activity recognition (HAR)
Humans
multisensor modality
Multisensor systems
Neural Networks, Computer
Noise reduction
Pattern Recognition, Automated - methods
self-attention mechanism
Title DiamondNet: A Neural-Network-Based Heterogeneous Sensor Attentive Fusion for Human Activity Recognition
URI https://ieeexplore.ieee.org/document/10172911
https://www.ncbi.nlm.nih.gov/pubmed/37402195
https://www.proquest.com/docview/2833647184
Volume 35
WOSCitedRecordID wos001025578500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4tALtJS22wcyUm-VF8d5OO5teaw4oAgBrfYW-TFBSGhTLVl-f2ecZMUFpF6iKLITxzPWfGPPzMfYjzLJdfBQCKetFlkwRjhweAkKDVDuQhOLPf-51FVVLhbmakhWj7kwABCDz2BKt_EsP7R-TVtlx6Q-ylAm7xutiz5Za7OhIhGYFxHuqqRQQqV6MSbJSHN8W1WXN1PiCp-mikKziH0v1eg9JUQt8cwmRZKVl_FmtDvzvf8c8Tu2OwBMPus14j3bguU-2xvJG_iwlj-wu7N7IhoKFXS_-IxTkQ77IKo-KlycoHEL_IJiZVpUMWjXj_wGPd52xWddRxFGT8Dna9pq4wh7eTwL4DPfc1Hw6zEsqV0esN_z89vTCzGwLgiP4KoTweUylGnRFOC892UOTe5UWRijmiAlWGXxSWlUabXx2uPf5RZNoU-aAn0vmX5k28t2CZ8Zz6XVTRqMc0nIABBZpCG3kEnnM-sTOWHJOO-1H0qSEzPGQx1dE2nqKLaaxFYPYpuwn5s-f_uCHK-2PiChPGvZy2PCjkb51rie6JDExrmsEW5RSX10fCfsUy_4Te9RX7688Nav7C1-POtTFb-x7W61hu9sxz9194-rQ1TaRXkYlfYf3AbmyQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYlLbSXpI803T5V6K14I8uWZfW2fSxbujWl2Za9GT3GJRDWYePN7--MbC-5pNCLMUYykmbEfCPNzMfYuzJVOngoEqetTvJgTOLA4SNINEDKhSYWe_691FVVrtfmx5CsHnNhACAGn8GUXuNdfmj9jo7KTkl9pKFM3rsqz6Xo07X2RyoCoXkRAa9MC5nITK_HNBlhTldVtTybElv4NJMUnEX8e5lG_yklcokbVinSrNyOOKPlmR_955gfssMBYvJZrxOP2B3YPGZHI30DH3bzE_bn8zlRDYUKug98xqlMh71Iqj4uPPmI5i3wBUXLtKhk0O6u-Bn6vO2Wz7qOYoyugc93dNjGEfjyeBvAZ75no-A_x8CkdnPMfs2_rD4tkoF3IfEIr7okOCVCmRVNAc57XypolJNlYYxsghBgpcUvpZGl1cZrj7NTFo2hT5sCvS-RPWUHm3YDzxhXwuomC8a5NOQAiC2yoCzkwvnc-lRMWDque-2HouTEjXFRR-dEmDqKrSax1YPYJuz9vs9lX5Ljn62PSSg3WvbymLC3o3xr3FF0TWLjWtYIuKioPrq-E3bSC37fe9SX57f89Q27v1h9X9bLr9W3F-wBDiTvExdfsoNuu4NX7J6_7s6vtq-j6v4FkxvpKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DiamondNet%3A+A+Neural-Network-Based+Heterogeneous+Sensor+Attentive+Fusion+for+Human+Activity+Recognition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhu%2C+Yida&rft.au=Luo%2C+Haiyong&rft.au=Chen%2C+Runze&rft.au=Zhao%2C+Fang&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=35&rft.issue=11&rft.spage=15321&rft.epage=15331&rft_id=info:doi/10.1109%2FTNNLS.2023.3285547&rft_id=info%3Apmid%2F37402195&rft.externalDocID=10172911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon