Big Learning with Bayesian methods
The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine leaming algorithms, systems and applications with Big Data. Bayesian methods represent one important class of sta...
Saved in:
| Published in: | National science review Vol. 4; no. 4; pp. 627 - 651 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford University Press
01.07.2017
|
| Subjects: | |
| ISSN: | 2095-5138, 2053-714X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine leaming algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine leaming, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This artide provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning0 including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference. |
|---|---|
| AbstractList | The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine leaming algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine leaming, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This artide provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning0 including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference. The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine learning, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This article provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning, including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference. Abstract The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine learning, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This article provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning, including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference. |
| Author | Jun Zhu;Jianfei Chen;Wenbo Hu;Bo Zhang |
| AuthorAffiliation | TNList Lab, State Key Lab for Intelligent Technology and Systems, CBICR Center, Department of Computer Science and Technology, Tsinghua University,Beijing 100084,China |
| Author_xml | – sequence: 1 givenname: Jun surname: Zhu fullname: Zhu, Jun email: dcszj@mail.tsinghua.edu.cn – sequence: 2 givenname: Jianfei surname: Chen fullname: Chen, Jianfei organization: TNList Lab, State Key Lab for Intelligent Technology and Systems, CBICR Center, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Wenbo surname: Hu fullname: Hu, Wenbo email: dcszj@mail.tsinghua.edu.cn organization: TNList Lab, State Key Lab for Intelligent Technology and Systems, CBICR Center, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Bo surname: Zhang fullname: Zhang, Bo organization: TNList Lab, State Key Lab for Intelligent Technology and Systems, CBICR Center, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China |
| BookMark | eNp9kM1LwzAYxoNMcM5d_AvKwItQlzRv83F0Y35AwYuCt5KmSRfY0plU5v57Ozo8iHh6n8PveeD3XqKRb71B6JrgO4IlnfsY5n7_hQHO0DjDOU05gffRMcs8zQkVF2gao6twnxnnQMZotnBNUhgVvPNNsnfdOlmog4lO-WRrunVbxyt0btUmmunpTtDbw-p1-ZQWL4_Py_si1TSDLq0lq6TIKoUZKFtjW8mKgABdKQBBe4jW3FIJjEqca1mT2ma5ZQBSaGIwnSA87OrQxhiMLbXrVOda3wXlNiXB5VGz7DXLQbOv3P6q7ILbqnD4G74Z4PZz9z83O42uW9989H_5oRmnXBBGBf0GjUtudw |
| CitedBy_id | crossref_primary_10_1016_j_compstruct_2025_119275 crossref_primary_10_3390_math10060898 crossref_primary_10_1016_j_apmate_2025_100333 crossref_primary_10_3390_ijgi9040265 crossref_primary_10_1007_s00180_020_00970_8 crossref_primary_10_1109_TVCG_2017_2744938 crossref_primary_10_1109_ACCESS_2019_2958047 crossref_primary_10_1145_3239540 crossref_primary_10_1002_wcms_1568 crossref_primary_10_1017_asb_2017_15 crossref_primary_10_1002_inf2_12099 crossref_primary_10_1080_17517575_2019_1670361 crossref_primary_10_1016_j_knosys_2019_02_007 crossref_primary_10_1109_TKDE_2025_3552658 crossref_primary_10_3390_sym16050600 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1016_j_jmatprotec_2022_117528 crossref_primary_10_1007_s11431_018_9335_1 crossref_primary_10_1016_j_jprocont_2019_10_010 crossref_primary_10_1109_TII_2021_3073645 crossref_primary_10_1016_j_strusafe_2019_101918 crossref_primary_10_1007_s11432_021_3449_x crossref_primary_10_1016_j_knosys_2021_107536 crossref_primary_10_1214_22_BA1321 crossref_primary_10_1109_ACCESS_2021_3065965 crossref_primary_10_1007_s40815_019_00627_9 crossref_primary_10_1016_j_patrec_2019_09_007 crossref_primary_10_1038_s41598_024_68175_3 crossref_primary_10_1016_j_apgeochem_2020_104781 crossref_primary_10_1007_s11634_021_00455_6 crossref_primary_10_1007_s11831_023_09886_0 crossref_primary_10_1016_j_ins_2020_12_054 crossref_primary_10_1016_j_trc_2021_103363 crossref_primary_10_3103_S0005105518040064 crossref_primary_10_1016_j_neunet_2019_05_009 |
| Cites_doi | 10.1126/science.1236536 10.1093/bjps/31.2.131 10.1007/s11222-006-5196-2 10.1126/science.aab3050 10.1145/2623330.2623756 10.1017/CBO9780511569920.017 10.1038/455016a 10.1007/s11222-007-9028-9 10.1073/pnas.1102900108 10.1109/TPAMI.2013.50 10.1093/biomet/asm071 10.1109/MSP.2012.2205597 10.1038/nature14539 10.1016/j.jmp.2012.02.005 10.1093/bioinformatics/btg427 10.1017/CBO9780511802478 10.1145/2484838.2484843 10.1145/2484425.2484427 10.1080/01621459.1995.10476590 10.1080/01621459.1995.10476572 10.1093/bioinformatics/btg180 10.1145/1807167.1807184 10.1201/b16018 10.1198/016214502753479464 10.1016/j.csda.2009.11.019 10.1109/5.18626 10.2307/2335470 10.1214/009053607000000677 10.1023/A:1020281327116 10.1093/nsr/nwt032 10.1145/2124295.2124312 10.1093/biomet/57.1.97 10.1145/2487575.2487658 10.1109/TPAMI.1984.4767596 10.1198/016214504000000269 10.1093/biomet/ast067 10.1214/aos/1176342871 10.1111/j.1467-9868.2006.00553.x 10.1111/j.1467-9868.2009.00736.x 10.1198/016214508000000409 10.1214/088342304000000017 10.1214/ss/1177011136 10.1093/biomet/87.4.731 10.1145/2939672.2939821 10.1063/1.1699114 10.1214/09-BA412 10.1214/aos/1176342360 10.1162/089976601753195969 10.1080/01621459.1987.10478458 10.1145/2641361.2641367 10.1162/089976698300017746 10.1186/1297-9686-44-29 10.1214/aos/1056562461 10.1561/2200000016 10.1038/469282a 10.1126/science.1197962 10.1080/03610910601096262 10.1016/j.jmp.2011.08.004 10.1145/3037697.3037740 10.1109/78.978374 10.1145/1961189.1961198 10.1214/06-BA104 10.1561/2200000001 10.1198/016214506000000302 10.1214/088342307000000014 10.1109/TSSC.1968.300117 10.1017/CBO9781139042918 10.1023/A:1023562417138 10.1145/1390156.1390294 10.1080/01621459.1998.10473765 10.1080/01621459.1992.10476265 10.1073/pnas.1221839110 10.1017/CBO9780511804441 10.1145/2187836.2187955 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2017 |
| Copyright_xml | – notice: The Author(s) 2017. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2017 |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
| DOI | 10.1093/nsr/nwx044 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Big Learning with Bayesian methods |
| EISSN | 2053-714X |
| EndPage | 651 |
| ExternalDocumentID | 10_1093_nsr_nwx044 10.1093/nsr/nwx044 673781638 |
| GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 61620106010; 61621136008; 61332007 – fundername: the National Basic Research Program of China grantid: 2013CB329403 |
| GroupedDBID | 2RA 92L ALMA_UNASSIGNED_HOLDINGS CDYEO CQIGP ~WA -SA -SC -S~ 0R~ 5VR AAFWJ AAOGV AAPXW AAVAP AAXDM ABDBF ABPTD ABQLI ABXVV ACGFS AENEX AFPKN AFUIB AFULF AVWKF BAYMD CAJEA CAJEC CCEZO CCVFK CEKLB EBS EJD ESX FA0 GROUPED_DOAJ H13 KSI O9- OK1 Q-- ROX RXO TOX U1G U5K U5M AAYXX ABEJV ABGNP ACUHS ADMLS AMNDL CITATION |
| ID | FETCH-LOGICAL-c324t-d96b982ba064afd0fb9b1484cba4483c323d7f39463905c9d1df25f64498c1e03 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412270500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2095-5138 |
| IngestDate | Sat Nov 29 02:00:23 EST 2025 Tue Nov 18 21:54:33 EST 2025 Wed Aug 28 03:21:16 EDT 2024 Wed Feb 14 10:02:42 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | scalable algorithms regularized Bayesian inference Big Bayesian Learning Bayesian non-parametrics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-d96b982ba064afd0fb9b1484cba4483c323d7f39463905c9d1df25f64498c1e03 |
| Notes | Big Bayesian Learning, Bayesian non-parametrics, regularized Bayesian inference, scalablealgorithms The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine leaming algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine leaming, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This artide provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning0 including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference. 10-1088/N |
| OpenAccessLink | https://academic.oup.com/nsr/article-pdf/4/4/627/20335448/nwx044.pdf |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1093_nsr_nwx044 crossref_primary_10_1093_nsr_nwx044 oup_primary_10_1093_nsr_nwx044 chongqing_primary_673781638 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-01 |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | National science review |
| PublicationTitleAlternate | National Science Review |
| PublicationYear | 2017 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Chen (2020011102321388800_bib58) 2013 Williamson (2020011102321388800_bib85) 2010 Dean (2020011102321388800_bib182) 2008 Koyejo (2020011102321388800_bib93) 2013 Papaspiliopoulos (2020011102321388800_bib111) 2007; 22 Zhu (2020011102321388800_bib98) 2013 Kraska (2020011102321388800_bib208) 2013 Zhang (2020011102321388800_bib81) 2014 Petrone (2020011102321388800_bib54) 2014; 101 Yu (2020011102321388800_bib113) 2011; 20 Ghahramani (2020011102321388800_bib61) 2013 Blei (2020011102321388800_bib48) 2003; 3 George (2020011102321388800_bib52) 2000; 87 Salihoglu (2020011102321388800_bib187) 2013 Zhu (2020011102321388800_bib91) 2012; 13 Ranganath (2020011102321388800_bib105) 2013 Lauritzen (2020011102321388800_bib138) 1992; 87 Scott (2020011102321388800_bib148) 2016; 11 Geman (2020011102321388800_bib40) 1984; 6 Aitchison (2020011102321388800_bib57) 1980; 67 Efron (2020011102321388800_bib24) 2013; 340 Xu (2020011102321388800_bib153) 2014 Mnih (2020011102321388800_bib114) 2014 Zaharia (2020011102321388800_bib185) 2010 Gershmana (2020011102321388800_bib62) 2012; 56 Teh (2020011102321388800_bib73) 2007 Gopalan (2020011102321388800_bib89) 2013; 110 Zhu (2020011102321388800_bib97) 2014; 15 Donnet (2020011102321388800_bib55) 2014 Deng (2020011102321388800_bib11) 2011 Ferguson (2020011102321388800_bib64) 1973; 1 Kingma (2020011102321388800_bib110) 2014 Zhai (2020011102321388800_bib142) 2012 Le (2020011102321388800_bib14) 2013 Hinton (2020011102321388800_bib12) 2012; 29 Altekar (2020011102321388800_bib180) 2004; 20 Miller (2020011102321388800_bib87) 2009 Rabiner (2020011102321388800_bib130) 1989; 77 Jordan (2020011102321388800_bib34) 1999; 37 Sethuraman (2020011102321388800_bib65) 1994; 4 Beal (2020011102321388800_bib80) 2002 Rasmussen (2020011102321388800_bib76) 2006 Song (2020011102321388800_bib94) 2016 Minsker (2020011102321388800_bib151) 2014 Ma (2020011102321388800_bib124) 2015 Hoffman (2020011102321388800_bib104) 2013; 14 McAuliffe (2020011102321388800_bib53) 2006; 16 Dallaire (2020011102321388800_bib79) 2014 Fan (2020011102321388800_bib4) 2013; 1 Muller (2020011102321388800_bib63) 2004; 19 Boyd (2020011102321388800_bib141) 2011; 3 Thibaux (2020011102321388800_bib72) 2007 Bengio (2020011102321388800_bib59) 2013; 35 Beck (2020011102321388800_bib152) 2015 Canny (2020011102321388800_bib177) 2013 Robert (2020011102321388800_bib36) 2005 Suchard (2020011102321388800_bib145) 2010; 19 Gershman (2020011102321388800_bib86) 2015 Rezende (2020011102321388800_bib16) 2014 Crammer (2020011102321388800_bib134) 2006 Andrieu (2020011102321388800_bib37) 2003; 50 Jaynes (2020011102321388800_bib51) 1968; 4 Pitman (2020011102321388800_bib67) 2002 Zhu (2020011102321388800_bib96) 2013 Chau (2020011102321388800_bib178) 2013; 41 Mitchell (2020011102321388800_bib5) 1997 Broderick (2020011102321388800_bib133) 2013 Chu (2020011102321388800_bib183) 2007 Li (2020011102321388800_bib176) 2017 Theano Development Team (2020011102321388800_bib205) 2016 Beam (2020011102321388800_bib174) 2016 Grelaud (2020011102321388800_bib30) 2009; 4 Williams (2020011102321388800_bib26) 1980; 31 Angelino (2020011102321388800_bib155) 2014 Duan (2020011102321388800_bib83) 2007; 94 Antoniak (2020011102321388800_bib68) 1974; 273 Xin (2020011102321388800_bib189) 2013 Jasra (2020011102321388800_bib42) 2007; 17 Pillai (2020011102321388800_bib118) 2014 Mandt (2020011102321388800_bib107) 2014 Abadi (2020011102321388800_bib204) 2015 Ahmed (2020011102321388800_bib162) 2012 Blei (2020011102321388800_bib84) 2010 Moral (2020011102321388800_bib173) 2006; 68 Blei (2020011102321388800_bib66) 2006; 1 Liu (2020011102321388800_bib136) 1998; 93 Blei (2020011102321388800_bib56) 2006 Ho (2020011102321388800_bib194) 2013 Shi (2020011102321388800_bib129) 2014 Salakhutdinov (2020011102321388800_bib15) 2009 Turnera (2020011102321388800_bib31) 2012; 56 Ghoting (2020011102321388800_bib207) 2011 Kass (2020011102321388800_bib29) 1995; 90 Chen (2020011102321388800_bib164) 2016 Welling (2020011102321388800_bib22) 2013 Wilkinson (2020011102321388800_bib146) 2006 Griffiths (2020011102321388800_bib191) 2004 Power (2020011102321388800_bib193) 2010 Gal (2020011102321388800_bib165) 2014 Reichman (2020011102321388800_bib3) 2011; 331 Amari (2020011102321388800_bib103) 1998; 10 Beal (2020011102321388800_bib35) 2003 Wainwright (2020011102321388800_bib33) 2008; 1 Vincent (2020011102321388800_bib13) 2008 Li (2020011102321388800_bib198) 2014 2020011102321388800_bib170 2020011102321388800_bib171 Zhu (2020011102321388800_bib88) 2012 Kyrola (2020011102321388800_bib190) Boyd (2020011102321388800_bib100) 2004 Adams (2020011102321388800_bib60) 2010 Dean (2020011102321388800_bib197) 2012 Kingma (2020011102321388800_bib112) 2014 Bishop (2020011102321388800_bib27) 2006 MacEachern (2020011102321388800_bib82) 1999 Bardenet (2020011102321388800_bib127) 2015 Bottou (2020011102321388800_bib99) 2008 Wang (2020011102321388800_bib150) 2013 Bialek (2020011102321388800_bib20) 2001; 13 Strid (2020011102321388800_bib156) 2010; 54 Gelman (2020011102321388800_bib23) 2013 Teh (2020011102321388800_bib78) 2006; 101 Kadane (2020011102321388800_bib28) 2004; 99 2020011102321388800_bib8 Maclaurin (2020011102321388800_bib128) 2014 Neiswanger (2020011102321388800_bib149) 2014 2020011102321388800_bib9 Brockwell (2020011102321388800_bib154) 2006; 15 Marlin (2020011102321388800_bib108) 2011 Roberts (2020011102321388800_bib115) 2002; 4 Neal (2020011102321388800_bib69) 2000; 9 Teh (2020011102321388800_bib119) Hofmann (2020011102321388800_bib75) 2008; 36 Geyer (2020011102321388800_bib43) 1995; 90 Lloyd (2020011102321388800_bib209) 2014 Bengio (2020011102321388800_bib10) 2010 Gonzalez (2020011102321388800_bib158) 2011 Walker (2020011102321388800_bib70) 2007; 36 Williamson (2020011102321388800_bib147) 2013 Liu (2020011102321388800_bib163) 2011; 2 Zhu (2020011102321388800_bib18) 2014; 15 Wu (2020011102321388800_bib143) 2012; 44 Neal (2020011102321388800_bib46) 2003; 31 Andrieu (2020011102321388800_bib135) 2010; 72 2020011102321388800_bib192 Jordan (2020011102321388800_bib17) 2011; 18 Neal (2020011102321388800_bib41) 2010 Bekkerman (2020011102321388800_bib181) 2011 Patterson (2020011102321388800_bib122) 2013 Doshi-Velez (2020011102321388800_bib74) 2009 Opper (2020011102321388800_bib139) 1999 Wang (2020011102321388800_bib201) 2014 Bardenet (2020011102321388800_bib126) 2014 Li (2020011102321388800_bib49) 2005 2020011102321388800_bib184 Scott (2020011102321388800_bib131) 2002; 97 Korattikara (2020011102321388800_bib125) 2014 LeCun (2020011102321388800_bib203) 2015; 521 Brumfiel (2020011102321388800_bib1) 2011; 469 Ahn (2020011102321388800_bib120) 2012 Banterle (2020011102321388800_bib157) 2014 Malewicz (2020011102321388800_bib186) 2010 Kalman (2020011102321388800_bib132) 1960; 82 Arulampalam (2020011102321388800_bib137) 2002; 50 Johnson (2020011102321388800_bib159) 2013 Dyk (2020011102321388800_bib45) 2001; 10 Hjort (2020011102321388800_bib19) 2010 Schraudolph (2020011102321388800_bib121) 2007 Ronquist (2020011102321388800_bib179) 2003; 19 Li (2020011102321388800_bib196) 2014 Srivastava (2020011102321388800_bib21) 2014; 15 Liu (2020011102321388800_bib123) 2016 Newman (2020011102321388800_bib160) 2007 Robert (2020011102321388800_bib32) 2011; 108 Jeffreys (2020011102321388800_bib50) 1945 Lawrence (2020011102321388800_bib77) 2005; 6 Jia (2020011102321388800_bib206) 2014 Kim (2020011102321388800_bib90) 2013 Chen (2020011102321388800_bib117) 2014 Yan (2020011102321388800_bib175) 2009 Tan (2020011102321388800_bib7) 2014; 15 Niu (2020011102321388800_bib167) 2011 Tanner (2020011102321388800_bib44) 1987; 82 Guhaniyogi (2020011102321388800_bib140) 2014 Ghosh (2020011102321388800_bib25) Zinkevich (2020011102321388800_bib166) 2010 Paisley (2020011102321388800_bib109) 2012 Bottou (2020011102321388800_bib102) 1998 Yang (2020011102321388800_bib169) 2016 Lake (2020011102321388800_bib202) 2015; 350 Welling (2020011102321388800_bib116) 2011 Ahn (2020011102321388800_bib168) 2014 Smola (2020011102321388800_bib161) 2010 Zheng (2020011102321388800_bib200) 2014 Hastings (2020011102321388800_bib39) 1970; 57 Low (2020011102321388800_bib188) 2013 Metropolis (2020011102321388800_bib38) 1953; 21 Duchi (2020011102321388800_bib101) 2011; 12 Gelman (2020011102321388800_bib144) 1992; 7 Snoek (2020011102321388800_bib106) 2012 Weinberger (2020011102321388800_bib6) 2009 Mei (2020011102321388800_bib92) 2014 Lee (2020011102321388800_bib199) 2014 Blei (2020011102321388800_bib95) 2007 Lee (2020011102321388800_bib172) 2010; 19 Dai (2020011102321388800_bib195) 2013 Griffiths (2020011102321388800_bib71) 2005 Doctorow (2020011102321388800_bib2) 2008; 455 van Dyk (2020011102321388800_bib47) 2008; 103 |
| References_xml | – volume: 15 start-page: 1073 year: 2014 ident: 2020011102321388800_bib97 article-title: Gibbs Max-margin topic models with data augmentation publication-title: JMLR – start-page: 2445 volume-title: Advances in Neural Information Processing Systems year: 2013 ident: 2020011102321388800_bib58 article-title: Scalable Inference for Logistic-Normal Topic Models – volume: 340 start-page: 1177 year: 2013 ident: 2020011102321388800_bib24 article-title: Bayes’ Theorem in the 21st Century publication-title: Science doi: 10.1126/science.1236536 – volume: 31 year: 1980 ident: 2020011102321388800_bib26 article-title: Bayesian Conditionalisation and the Principle of Minimum Information publication-title: Br J Philos Sci doi: 10.1093/bjps/31.2.131 – volume: 16 start-page: 5 year: 2006 ident: 2020011102321388800_bib53 article-title: Nonparametric empirical Bayes for the Dirichlet process mixture model publication-title: Statist Comput doi: 10.1007/s11222-006-5196-2 – start-page: 2134 volume-title: Advances in Neural Information Processing Systems year: 2009 ident: 2020011102321388800_bib175 article-title: Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units – volume: 9 start-page: 249 year: 2000 ident: 2020011102321388800_bib69 article-title: Markov chain sampling methods for Dirichlet process mixture models publication-title: JCGS – start-page: 1113 volume-title: International Conference on Machine Learning year: 2009 ident: 2020011102321388800_bib6 article-title: Feature hashing for large scale multitask learning – volume: 350 start-page: 1332 year: 2015 ident: 2020011102321388800_bib202 article-title: Human-level concept learning through probabilistic program induction publication-title: Science doi: 10.1126/science.aab3050 – start-page: 891 volume-title: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining year: 2014 ident: 2020011102321388800_bib198 article-title: Reducing the sampling complexity of topic models doi: 10.1145/2623330.2623756 – start-page: 1361 year: 2015 ident: 2020011102321388800_bib127 article-title: Concentration inequalities for sampling without replacement – volume-title: Online Algorithms and Stochastic Approximations. Online Learning and Neural Networks year: 1998 ident: 2020011102321388800_bib102 – start-page: 334 volume-title: IEEE transactions on pattern analysis and machine intelligence year: 2015 ident: 2020011102321388800_bib86 article-title: Distance dependent infinite latent feature models – volume-title: On-Line Learning in Neural Networks year: 1999 ident: 2020011102321388800_bib139 article-title: A Bayesian approach to on-line learning doi: 10.1017/CBO9780511569920.017 – year: 2013 ident: 2020011102321388800_bib150 article-title: Parallelizing MCMC via Weierstrass Sampler – start-page: 208 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib165 article-title: Pitfalls in the use of Parallel Inference for the Dirichlet Process – volume: 455 start-page: 16 year: 2008 ident: 2020011102321388800_bib2 article-title: Big data: Welcome to the petacentre publication-title: Nature doi: 10.1038/455016a – volume: 18 start-page: 1 year: 2011 ident: 2020011102321388800_bib17 article-title: The era of Big Data publication-title: ISBA Bulletin – start-page: 378 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib129 article-title: Online Bayesian passive-aggressive learning – ident: 2020011102321388800_bib170 – ident: 2020011102321388800_bib9 – volume-title: Technical Report No. 621 year: 2002 ident: 2020011102321388800_bib67 article-title: Combinatorial Stochastic Processes – start-page: 1 volume-title: J Opt Theory Appl year: 2015 ident: 2020011102321388800_bib152 article-title: Weiszfelds method: old and new results – volume: 17 start-page: 263 year: 2007 ident: 2020011102321388800_bib42 article-title: On population-based simulation for static inference publication-title: Stat Comput doi: 10.1007/s11222-007-9028-9 – start-page: 340 volume-title: Conference on Uncertainty in Artificial Intelligence year: 2013 ident: 2020011102321388800_bib188 article-title: Graphlab: A new framework for parallel machine learning – start-page: 298 volume-title: International Conference on Machine Learning year: 2013 ident: 2020011102321388800_bib105 article-title: An adaptive learning rate for stochastic variational inference – start-page: 324 volume-title: Artificial Intelligence and Statistics Conference year: 2011 ident: 2020011102321388800_bib158 article-title: Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees – start-page: 477 volume-title: Statistics Textbooks and Monographs year: 2006 ident: 2020011102321388800_bib146 article-title: Parallel bayesian computation – year: 2014 ident: 2020011102321388800_bib155 article-title: Accelerating MCMC via Parallel Predictive Prefetching – volume-title: Ph.D. Thesis year: 2003 ident: 2020011102321388800_bib35 article-title: Variational Algorithms for approximate Bayesian inference – start-page: 719 volume-title: International Conference on Machine Learning year: 2012 ident: 2020011102321388800_bib88 article-title: Max-Margin Nonparametric latent feature models for link prediction – volume: 108 start-page: 15112 year: 2011 ident: 2020011102321388800_bib32 article-title: Lack of confidence in approximate Bayesian computation model choice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1102900108 – volume: 15 start-page: 246 year: 2006 ident: 2020011102321388800_bib154 article-title: Parallel Markov chain Monte Carlo Simulation by Pre-Fetching publication-title: JCGS – year: 2014 ident: 2020011102321388800_bib199 article-title: Primitives for Dynamic Big Model Parallelism – start-page: 556 volume-title: Artificial Intelligence and Statistics Conference year: 2007 ident: 2020011102321388800_bib73 article-title: Stick-breaking construction for the Indian buffet process – start-page: 577 volume-title: Advances in Neural Information Processing Systems year: 2002 ident: 2020011102321388800_bib80 article-title: The infinite hidden Markov model – year: 2014 ident: 2020011102321388800_bib201 article-title: Towards Topic Modeling for Big Data – ident: 2020011102321388800_bib8 – volume: 35 start-page: 1798 year: 2013 ident: 2020011102321388800_bib59 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans PAMI doi: 10.1109/TPAMI.2013.50 – volume: 94 start-page: 809 year: 2007 ident: 2020011102321388800_bib83 article-title: Generalized spatial Dirichlet process models publication-title: Biometrika doi: 10.1093/biomet/asm071 – volume: 15 start-page: 1799 year: 2014 ident: 2020011102321388800_bib18 article-title: Bayesian inference with posterior regularization and applications to infinite latent SVMs publication-title: JMLR – start-page: 1 volume-title: Artificial Intelligence and Statistics Conference year: 2010 ident: 2020011102321388800_bib60 article-title: Learning the structure of deep sparse graphical models – volume: 29 start-page: 82 year: 2012 ident: 2020011102321388800_bib12 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – start-page: 163 volume-title: Advances in Neural Information Processing Systems year: 2010 ident: 2020011102321388800_bib10 article-title: Label embedding trees for large multi-class tasks – start-page: 341 volume-title: Conference on Uncertainty in Artificial Intelligence year: 2013 ident: 2020011102321388800_bib93 article-title: Constrained Bayesian inference for low rank multitask learning – volume-title: Hot Topics in Cloud Computing year: 2010 ident: 2020011102321388800_bib185 article-title: Spark: cluster computing with working sets – volume: 521 start-page: 436 year: 2015 ident: 2020011102321388800_bib203 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 56 start-page: 69 year: 2012 ident: 2020011102321388800_bib31 article-title: A tutorial on approximate Bayesian computation publication-title: J Math Psychol doi: 10.1016/j.jmp.2012.02.005 – start-page: 1 volume-title: Operating Systems Design and Implementation year: 2010 ident: 2020011102321388800_bib193 article-title: Piccolo: Building Fast, Distributed Programs with Partitioned Tables – volume: 20 start-page: 407 year: 2004 ident: 2020011102321388800_bib180 article-title: Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg427 – start-page: 1782 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib112 article-title: Efficient gradient-based inference through Transformations between Bayes nets and neural nets – start-page: 567 year: 2011 ident: 2020011102321388800_bib11 article-title: Fast and balanced: efficient label tree learning for large scale object recognition publication-title: Advances in Neural Information Processing Systems – volume-title: Bayesian Nonparametrics: Principles and Practice year: 2010 ident: 2020011102321388800_bib19 doi: 10.1017/CBO9780511802478 – start-page: 2595 volume-title: Advances in Neural Information Processing Systems year: 2010 ident: 2020011102321388800_bib166 article-title: Parallelized StochasticGradient Descent – start-page: 924 volume-title: Artificial Intelligence and Statistics Conference year: 2010 ident: 2020011102321388800_bib85 article-title: Dependent Indian buffet processes – start-page: 3356 volume-title: Advances in Neural Information Processing Systems year: 2014 ident: 2020011102321388800_bib153 article-title: Distributed Bayesian Posterior Sampling via Moment Sharing – start-page: 2438 year: 2014 ident: 2020011102321388800_bib107 article-title: Smoothed gradients for stochastic variational inference – volume-title: Conference on Innovative Data Systems Research year: 2013 ident: 2020011102321388800_bib208 article-title: MLbase: A Distributed Machine-learning System – volume: 6 start-page: 1783 year: 2005 ident: 2020011102321388800_bib77 article-title: Probabilistic non-linear principal component analysis with gaussian process latent variable models publication-title: JMLR – volume-title: Conference on Scientific and Statistical Database Management year: 2013 ident: 2020011102321388800_bib187 article-title: GPS: A Graph Processing System doi: 10.1145/2484838.2484843 – start-page: 744 volume-title: Proceedings of the VLDB Endowment year: 2016 ident: 2020011102321388800_bib164 article-title: WarpLDA: a cache efficient O (1) algorithm for latent dirichlet allocation – start-page: 2461 volume-title: International Conference on Machine Learning year: 2010 ident: 2020011102321388800_bib84 article-title: Distance dependent Chinese restaurant processes – volume: 15 start-page: 1371 year: 2014 ident: 2020011102321388800_bib7 article-title: Towards ultrahigh dimensional feature selection for big data publication-title: JMLR – start-page: 693 volume-title: Advances in Neural Information Processing Systems year: 2011 ident: 2020011102321388800_bib167 article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent – year: 2014 ident: 2020011102321388800_bib200 article-title: Model-Parallel Inference for Big Topic Models – volume-title: Workshop on Graph Data Management Experiences and Systems year: 2013 ident: 2020011102321388800_bib189 article-title: Graphx: A resilient distributed graph system on spark doi: 10.1145/2484425.2484427 – volume: 90 start-page: 909 year: 1995 ident: 2020011102321388800_bib43 article-title: Annealing Markov Chain Monte Carlo with applications to ancestral inference publication-title: JASA doi: 10.1080/01621459.1995.10476590 – volume: 90 start-page: 773 year: 1995 ident: 2020011102321388800_bib29 publication-title: JASA doi: 10.1080/01621459.1995.10476572 – volume: 19 start-page: 1572 year: 2003 ident: 2020011102321388800_bib179 article-title: MrBayes: Bayesian inference of phylogenetic trees publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 – volume-title: Advances in Neural Information Processing Systems year: 2013 ident: 2020011102321388800_bib133 article-title: Streaming Variational Bayes – volume-title: Advances in Neural Information Processing Systems year: 2013 ident: 2020011102321388800_bib159 article-title: Analyzing Hogwild Parallel Gaussian Gibbs Sampling – volume-title: Special Interest Group on Management of Data year: 2010 ident: 2020011102321388800_bib186 article-title: Pregel: a system for large-scale graph processing doi: 10.1145/1807167.1807184 – year: 2016 ident: 2020011102321388800_bib205 article-title: Theano: A Python framework for fast computation of mathematical expressions – volume-title: Operating Systems Design and Implementation ident: 2020011102321388800_bib190 article-title: GraphChi: Large-Scale Graph Computation on Just a PC – volume-title: Advances in Neural Information Processing Systems. Big Learning Workshop year: 2013 ident: 2020011102321388800_bib177 article-title: BIDMach: Large-scale Learning with Zero Memory Allocation – volume-title: Artificial Intelligence and Statistics Conference year: 2009 ident: 2020011102321388800_bib74 article-title: Variational inference for the Indian buffet process – volume-title: Bayesian Data Analysis year: 2013 ident: 2020011102321388800_bib23 doi: 10.1201/b16018 – volume: 11 start-page: 78 year: 2016 ident: 2020011102321388800_bib148 article-title: Bayes and big data: the consensus Monte Carlo algorithm publication-title: Int J Manage Sci Eng Manage – volume: 97 start-page: 337 year: 2002 ident: 2020011102321388800_bib131 article-title: Bayesian Methods for Hidden Markov Models publication-title: JASA doi: 10.1198/016214502753479464 – volume: 54 start-page: 2814 year: 2010 ident: 2020011102321388800_bib156 article-title: Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.11.019 – start-page: 20110553 volume-title: Phil Trans Royal Soc year: 2013 ident: 2020011102321388800_bib61 article-title: Bayesian nonparametrics and the probabilistic approach to modelling – volume: 77 start-page: 257 year: 1989 ident: 2020011102321388800_bib130 article-title: A tutorial on hidden Markov Models and selected applications in speech recognition publication-title: Proc of the IEEE doi: 10.1109/5.18626 – volume: 67 start-page: 261 year: 1980 ident: 2020011102321388800_bib57 article-title: Logistic-normal distributions: some properties and uses publication-title: Biometrika doi: 10.2307/2335470 – volume: 36 start-page: 1171 year: 2008 ident: 2020011102321388800_bib75 article-title: Kernel methods in machine learning publication-title: Ann Statist doi: 10.1214/009053607000000677 – volume: 50 start-page: 5 year: 2003 ident: 2020011102321388800_bib37 article-title: An introduction to MCMC for machine learning publication-title: Mach Learn doi: 10.1023/A:1020281327116 – start-page: 4289 volume-title: Conference on Uncertainty in Artificial Intelligence year: 2014 ident: 2020011102321388800_bib128 article-title: Firefly Monte Carlo: exact MCMC with Subsets of Data – ident: 2020011102321388800_bib192 – volume: 1 start-page: 293 year: 2013 ident: 2020011102321388800_bib4 article-title: Challenges of Big Data analysis publication-title: Nat Sci Rev doi: 10.1093/nsr/nwt032 – start-page: 962 volume-title: Advances in Neural Information Processing Systems year: 2013 ident: 2020011102321388800_bib90 article-title: Efficient online inference for bayesian nonparametric relational models – start-page: 123 volume-title: International Conference on Web Search and Data Mining year: 2012 ident: 2020011102321388800_bib162 article-title: Scalable inference in latent variable models doi: 10.1145/2124295.2124312 – start-page: 231 volume-title: International Conference on Data Engineering year: 2011 ident: 2020011102321388800_bib207 article-title: SystemML: Declarative machine learning on MapReduce – volume: 57 start-page: 97 year: 1970 ident: 2020011102321388800_bib39 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – start-page: 453 volume-title: Proceedings of the Royal Society of London Series A, Math Phys Sci year: 1945 ident: 2020011102321388800_bib50 article-title: An invariant form for the prior probability in estimation problems – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: 2020011102321388800_bib76 – start-page: 964 volume-title: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining year: 2013 ident: 2020011102321388800_bib98 article-title: Scalable inference in max-margin topic models doi: 10.1145/2487575.2487658 – volume: 37 start-page: 183 year: 1999 ident: 2020011102321388800_bib34 article-title: An Introduction to variational methods for graphical models publication-title: MLJ – volume: 20 start-page: 531 year: 2011 ident: 2020011102321388800_bib113 article-title: To center or not to center: That is not the question–an Ancillarity–Sufficiency Interweaving Strategy (ASIS) for boosting MCMC efficiency publication-title: JCGS – volume: 19 start-page: 769 year: 2010 ident: 2020011102321388800_bib172 article-title: On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods publication-title: JCGS – year: 2006 ident: 2020011102321388800_bib56 article-title: Correlated topic models publication-title: Advances in Neural Information Processing Systems – start-page: 98 volume-title: International Conference on Machine Learning year: 2013 ident: 2020011102321388800_bib147 article-title: Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models – start-page: 583 volume-title: Operating Systems Design and Implementation year: 2014 ident: 2020011102321388800_bib196 article-title: Scaling Distributed Machine Learning with the Parameter Server – volume: 6 start-page: 721 year: 1984 ident: 2020011102321388800_bib40 article-title: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images publication-title: IEEE Trans PAMI doi: 10.1109/TPAMI.1984.4767596 – volume: 99 start-page: 279 year: 2004 ident: 2020011102321388800_bib28 article-title: Methods and criteria for model selection publication-title: JASA doi: 10.1198/016214504000000269 – start-page: 1774 volume-title: Association for the Advancement of Artificial Intelligence year: 2014 ident: 2020011102321388800_bib79 article-title: Learning the structure of probabilistic graphical models with an extended cascading indian buffet process – volume-title: Monte Carlo Statistical Methods year: 2005 ident: 2020011102321388800_bib36 – volume: 101 start-page: 1 year: 2014 ident: 2020011102321388800_bib54 article-title: Bayes and empirical Bayes: Do they merge? publication-title: Biometrika doi: 10.1093/biomet/ast067 – volume-title: Ph.D. Thesis year: 2009 ident: 2020011102321388800_bib15 article-title: Learning deep generative models – volume-title: Neural Information Processing Systems workshop on ‘Probabilistic Models for Big Data’ year: 2013 ident: 2020011102321388800_bib22 article-title: Exploiting the statistics of learning and inference – volume-title: International Conference on Machine Learning year: 2011 ident: 2020011102321388800_bib116 article-title: Bayesian learning via Stochastic gradient langevin dynamics – volume: 15 start-page: 1929 year: 2014 ident: 2020011102321388800_bib21 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: JMLR – start-page: 564 volume-title: Artificial Intelligence and Statistics Conference year: 2007 ident: 2020011102321388800_bib72 article-title: Hierarchical beta processes and the Indian buffet process – start-page: 121 volume-title: Advances in Neural Information Processing Systems year: 2007 ident: 2020011102321388800_bib95 article-title: Supervised topic models – start-page: 315 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib81 article-title: Max-margin Infinite Hidden Markov Models – ident: 2020011102321388800_bib184 – year: 2014 ident: 2020011102321388800_bib140 article-title: Bayesian Conditional Density Filtering for Big Data – volume: 273 start-page: 1152 year: 1974 ident: 2020011102321388800_bib68 article-title: Mixture of Dirichlet Process with Applications to Bayesian Nonparametric Problems publication-title: Ann Stats doi: 10.1214/aos/1176342871 – start-page: 101 volume-title: Proc Natl Acad Sci USA year: 2004 ident: 2020011102321388800_bib191 article-title: Finding scientific topics – start-page: 623 volume-title: Conference on Uncertainty in Artificial Intelligence year: 2014 ident: 2020011102321388800_bib149 article-title: Asymptotically Exact, Embarrassingly Parallel MCMC – volume-title: 47th Scientific Meeting of the Italian Statistical Society year: 2014 ident: 2020011102321388800_bib55 article-title: On convergence rates of empirical Bayes Procedures – volume: 12 start-page: 2121 year: 2011 ident: 2020011102321388800_bib101 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: JMLR – volume: 68 start-page: 411 year: 2006 ident: 2020011102321388800_bib173 article-title: Sequential Monte Carlo samplers publication-title: J R Stat Soc Ser B doi: 10.1111/j.1467-9868.2006.00553.x – start-page: 436 volume-title: Artificial Intelligence and Statistics Conference year: 2007 ident: 2020011102321388800_bib121 article-title: A Stochastic Quasi-Newton method for online convex optimization – volume: 72 start-page: 269 year: 2010 ident: 2020011102321388800_bib135 article-title: Particle Markov chain Monte Carlo methods publication-title: J R Stat Soc Ser B doi: 10.1111/j.1467-9868.2009.00736.x – start-page: 1278 year: 2014 ident: 2020011102321388800_bib16 article-title: Stochastic backpropagation and approximate inference in deep generative models publication-title: International Conference on Machine Learning – volume: 103 start-page: 790 year: 2008 ident: 2020011102321388800_bib47 article-title: Partially collapsed gibbs samplers: theory and methods publication-title: JASA doi: 10.1198/016214508000000409 – volume: 19 start-page: 95 year: 2004 ident: 2020011102321388800_bib63 article-title: Nonparametric Bayesian Data Analysis publication-title: Stat Sci doi: 10.1214/088342304000000017 – volume: 7 start-page: 457 year: 1992 ident: 2020011102321388800_bib144 article-title: Inference from iterative simulation using multiple simulations publication-title: Stat Sci doi: 10.1214/ss/1177011136 – volume: 87 start-page: 731 year: 2000 ident: 2020011102321388800_bib52 article-title: Calibration and empirical Bayes variable selection publication-title: Biometrika doi: 10.1093/biomet/87.4.731 – start-page: 1975 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: 2020011102321388800_bib169 article-title: Distributing the Stochastic Gradient Sampler for Large-Scale LDA doi: 10.1145/2939672.2939821 – volume: 21 start-page: 1087 year: 1953 ident: 2020011102321388800_bib38 article-title: Equation of state calculations by fast computing machines publication-title: J Chem Phys doi: 10.1063/1.1699114 – start-page: 107 volume-title: Communications of the ACM year: 2008 ident: 2020011102321388800_bib182 article-title: MapReduce: simplified data processing on large clusters – volume: 4 start-page: 317 year: 2009 ident: 2020011102321388800_bib30 article-title: Likelihood-free methods for model choice in Gibbs random fields publication-title: Bayesian Anal doi: 10.1214/09-BA412 – start-page: 161 volume-title: Advances in Neural Information Processing Systems year: 2008 ident: 2020011102321388800_bib99 article-title: The Tradeoffs of large scale learning – volume-title: Handbook of Markov Chain Monte Carlo year: 2010 ident: 2020011102321388800_bib41 article-title: MCMC using Hamiltonian Dynamics – volume: 1 start-page: 209 year: 1973 ident: 2020011102321388800_bib64 article-title: A Bayesian analysis of some nonparametric problems publication-title: Ann Stats doi: 10.1214/aos/1176342360 – start-page: 3009 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2020011102321388800_bib123 article-title: Stochastic Gradient Geodesic MCMC Methods – volume: 13 start-page: 2409 year: 2001 ident: 2020011102321388800_bib20 article-title: Predictability, complexity and learning publication-title: Neural Comput doi: 10.1162/089976601753195969 – volume: 82 start-page: 528 year: 1987 ident: 2020011102321388800_bib44 article-title: The calculation of posterior distributions by data augmentation publication-title: JASA doi: 10.1080/01621459.1987.10478458 – volume: 4 start-page: 639 year: 1994 ident: 2020011102321388800_bib65 article-title: A Constructive definition of Dirichlet Priors publication-title: Statistica Sinica – start-page: 253 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib92 article-title: Robust RegBayes: selectively incorporating first-order logic domain knowledge into Bayesian models – start-page: 1223 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 2020011102321388800_bib197 article-title: Large scale distributed deep networks – volume: 41 start-page: 35 year: 2013 ident: 2020011102321388800_bib178 article-title: Accelerating sequential Monte Carlo method for real-time air traffic management publication-title: SIGARCH Comp Arch News doi: 10.1145/2641361.2641367 – volume: 10 start-page: 251 year: 1998 ident: 2020011102321388800_bib103 article-title: Natural gradient works efficiently in learning publication-title: Neural Comput doi: 10.1162/089976698300017746 – start-page: 152 volume-title: Pattern Recognition and Machine Learning year: 2006 ident: 2020011102321388800_bib27 – start-page: 281 volume-title: Advances in Neural Information Processing Systems year: 2007 ident: 2020011102321388800_bib183 article-title: Map-reduce for machine learning on multicore – start-page: 1 ident: 2020011102321388800_bib119 article-title: Consistency and fluctuations for stochastic gradient Langevin dynamics – start-page: 1591 volume-title: International Conference on Machine Learning year: 2012 ident: 2020011102321388800_bib120 article-title: Bayesian posterior sampling via stochastic gradient fisher scoring – start-page: 475 volume-title: Advances in Neural Information Processing Systems year: 2005 ident: 2020011102321388800_bib71 article-title: Infinite latent feature models and the Indian buffet process – start-page: 8595 volume-title: IEEE International Conference on Speech and Signal Processing year: 2013 ident: 2020011102321388800_bib14 article-title: Building high-level features using large scale unsupervised learning – volume: 44 start-page: 29 year: 2012 ident: 2020011102321388800_bib143 article-title: Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics publication-title: Genet Sel Evol doi: 10.1186/1297-9686-44-29 – start-page: 633 volume-title: International Conference on Machine Learning year: 2011 ident: 2020011102321388800_bib108 article-title: Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models – start-page: 1044 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib168 article-title: Distributed Stochastic Gradient MCMC – start-page: 2917 volume-title: Advances in Neural Information Processing Systems year: 2015 ident: 2020011102321388800_bib124 article-title: A complete recipe for stochastic gradient MCMC – volume: 31 start-page: 705 year: 2003 ident: 2020011102321388800_bib46 article-title: Slice sampling publication-title: Ann Statist doi: 10.1214/aos/1056562461 – volume: 3 start-page: 1 year: 2011 ident: 2020011102321388800_bib141 article-title: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers publication-title: Found Trends Mach Learn doi: 10.1561/2200000016 – volume: 469 start-page: 282 year: 2011 ident: 2020011102321388800_bib1 article-title: High-energy physics: down the petabyte highway publication-title: Nature doi: 10.1038/469282a – year: 2013 ident: 2020011102321388800_bib195 article-title: Petuum: A Framework for Iterative-Convergent Distributed ML – volume: 331 start-page: 703 year: 2011 ident: 2020011102321388800_bib3 article-title: Challenges and Opportunities of Open Data in ecology publication-title: Science doi: 10.1126/science.1197962 – start-page: 1081 volume-title: Advances in Neural Information Processing Systems year: 2007 ident: 2020011102321388800_bib160 article-title: Distributed Inference for latent Dirichlet allocation – year: 2014 ident: 2020011102321388800_bib157 article-title: Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching – start-page: 2951 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 2020011102321388800_bib106 article-title: Practical Bayesian optimization of machine learning algorithms – volume: 82 start-page: 35 year: 1960 ident: 2020011102321388800_bib132 article-title: A New Approach to Linear Filtering and Prediction Problems publication-title: J Fluids Eng – start-page: 1223 volume-title: Advances in Neural Information Processing Systems year: 2013 ident: 2020011102321388800_bib194 article-title: More effective distributed ML via a stale synchronous parallel parameter server – volume: 36 start-page: 45 year: 2007 ident: 2020011102321388800_bib70 article-title: Sampling the Dirichlet mixture model with slices publication-title: Commun Stat doi: 10.1080/03610910601096262 – volume-title: Bayesian Nonparametrics year: , ident: 2020011102321388800_bib25 – volume: 13 start-page: 2237 year: 2012 ident: 2020011102321388800_bib91 article-title: MedLDA: maximum margin supervised topic models publication-title: JMLR – volume-title: ASA proceedings of the section on Bayesian statistical science year: 1999 ident: 2020011102321388800_bib82 article-title: Dependent nonparametric processes – volume-title: Machine Learning year: 1997 ident: 2020011102321388800_bib5 – volume: 19 start-page: 419 year: 2010 ident: 2020011102321388800_bib145 article-title: Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures publication-title: JCGS – volume: 10 start-page: 1 year: 2001 ident: 2020011102321388800_bib45 article-title: The art of data augmentation publication-title: JCGS – start-page: 703 volume-title: Proceedings of the VLDB Endowment year: 2010 ident: 2020011102321388800_bib161 article-title: An architecture for parallel topic models – start-page: 405 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib126 article-title: Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach – volume: 56 start-page: 1 year: 2012 ident: 2020011102321388800_bib62 article-title: A tutorial on Bayesian nonparametric models publication-title: J Math Psychol doi: 10.1016/j.jmp.2011.08.004 – volume-title: International Conference on Learning Representations year: 2014 ident: 2020011102321388800_bib110 article-title: Auto-encoding variational Bayes – start-page: 181 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib125 article-title: Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget – ident: 2020011102321388800_bib171 – volume-title: International Conference on Architectural Support for Programming Languages and Operating Systems year: 2017 ident: 2020011102321388800_bib176 article-title: SaberLDA: Sparsity-Aware Learning of Topic Models on GPUs doi: 10.1145/3037697.3037740 – start-page: 1242 volume-title: Association for the Advancement of Artificial Intelligence year: 2014 ident: 2020011102321388800_bib209 article-title: Automatic Construction and Natural Language Description of Nonparametric Regression Models – start-page: 4763 volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2020011102321388800_bib94 article-title: Kernel Bayesian Inference with posterior regularization – start-page: 3102 volume-title: Advances in Neural Information Processing Systems year: 2013 ident: 2020011102321388800_bib122 article-title: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex – start-page: 1367 volume-title: International Conference on Machine Learning year: 2012 ident: 2020011102321388800_bib109 article-title: Variational Bayesian inference with stochastic search – volume: 50 start-page: 174 year: 2002 ident: 2020011102321388800_bib137 article-title: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking publication-title: IEEE Trans Signal Process doi: 10.1109/78.978374 – volume: 14 start-page: 1303 year: 2013 ident: 2020011102321388800_bib104 article-title: Stochastic variational inference publication-title: JMLR – volume: 2 start-page: 26 year: 2011 ident: 2020011102321388800_bib163 article-title: PLDA+: Parallel latent Dirichlet allocation with data placement and pipeline processing publication-title: TIST doi: 10.1145/1961189.1961198 – volume: 1 start-page: 121 year: 2006 ident: 2020011102321388800_bib66 article-title: Variational inference for Dirichlet process mixtures publication-title: Bayesian Anal doi: 10.1214/06-BA104 – volume: 1 start-page: 1 year: 2008 ident: 2020011102321388800_bib33 article-title: Graphical models, exponential families, and variational inference publication-title: Found Trends Mach Learn doi: 10.1561/2200000001 – start-page: 1791 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib114 article-title: Neural Variational Inference and Learning in Belief Networks – start-page: 551 year: 2006 ident: 2020011102321388800_bib134 article-title: Online Passive-Agressive Algorithms publication-title: JMLR – start-page: 536 volume-title: J Comput Graph Stat year: 2016 ident: 2020011102321388800_bib174 article-title: Fast hamiltonian monte carlo using gpu computing – volume-title: Association for Computational Linguistics year: 2013 ident: 2020011102321388800_bib96 article-title: Improved Bayesian logistic supervised topic models with data augmentation – volume-title: Conference on Computer Vision and Pattern Recognition year: 2005 ident: 2020011102321388800_bib49 article-title: A Bayesian hierarchical model for learning natural scene categories – volume: 101 start-page: 1566 year: 2006 ident: 2020011102321388800_bib78 article-title: Hierarchical Dirichlet processes publication-title: JASA doi: 10.1198/016214506000000302 – volume: 22 start-page: 59 year: 2007 ident: 2020011102321388800_bib111 article-title: A general framework for the parametrization of hierarchical models publication-title: Stat Sci doi: 10.1214/088342307000000014 – volume: 4 start-page: 227 year: 1968 ident: 2020011102321388800_bib51 article-title: Prior probabilities publication-title: IEEE Trans Sys Sci Cybern doi: 10.1109/TSSC.1968.300117 – volume-title: Scaling up machine learning: Parallel and distributed approaches year: 2011 ident: 2020011102321388800_bib181 doi: 10.1017/CBO9781139042918 – volume: 4 start-page: 337 year: 2002 ident: 2020011102321388800_bib115 article-title: Langevin Diffusions and Metropolis-Hastings algorithms publication-title: Methodol Comput Appl Probab doi: 10.1023/A:1023562417138 – start-page: 1096 volume-title: International Conference on Machine Learning year: 2008 ident: 2020011102321388800_bib13 article-title: Extracting and composing robust features with denoising autoencoders doi: 10.1145/1390156.1390294 – volume: 93 start-page: 1032 year: 1998 ident: 2020011102321388800_bib136 article-title: Sequential Monte Carlo Methods for Dynamic Systems publication-title: JASA doi: 10.1080/01621459.1998.10473765 – volume: 87 start-page: 1098 year: 1992 ident: 2020011102321388800_bib138 article-title: Propagation of probabilities, means and variances in mixed graphical association models publication-title: JASA doi: 10.1080/01621459.1992.10476265 – start-page: 1656 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib151 article-title: Scalable and Robust Bayesian Inference via the Median Posterior – volume: 110 start-page: 14534 year: 2013 ident: 2020011102321388800_bib89 article-title: Efficient discovery of overlapping communities in massive networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1221839110 – start-page: 1683 volume-title: International Conference on Machine Learning year: 2014 ident: 2020011102321388800_bib117 article-title: Stochastic gradient Hamiltonian Monte Carlo – volume: 3 start-page: 993 year: 2003 ident: 2020011102321388800_bib48 article-title: Latent Dirichlet allocation publication-title: JMLR – year: 2004 ident: 2020011102321388800_bib100 publication-title: Convex Optimization doi: 10.1017/CBO9780511804441 – start-page: 1276 volume-title: Advances in Neural Information Processing Systems year: 2009 ident: 2020011102321388800_bib87 article-title: Nonparametric latent feature models for link prediction – start-page: 879 volume-title: International World Wide Web Conference year: 2012 ident: 2020011102321388800_bib142 article-title: Mr. LDA: a flexible large scale topic modeling package using variational inference in MapReduce doi: 10.1145/2187836.2187955 – year: 2014 ident: 2020011102321388800_bib118 article-title: Ergodicity of approximate MCMC Chains with applications to large data sets – volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems year: 2015 ident: 2020011102321388800_bib204 – start-page: 675 year: 2014 ident: 2020011102321388800_bib206 article-title: Caffe: Convolutional architecture for fast feature embedding |
| SSID | ssib051367741 ssib050735980 ssj0001257732 |
| Score | 2.347132 |
| SecondaryResourceType | review_article |
| Snippet | The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield... Abstract The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging... |
| SourceID | crossref oup chongqing |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 627 |
| Title | Big Learning with Bayesian methods |
| URI | http://lib.cqvip.com/qk/72283X/201704/673781638.html |
| Volume | 4 |
| WOSCitedRecordID | wos000412270500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2053-714X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050735980 issn: 2095-5138 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2053-714X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257732 issn: 2095-5138 databaseCode: TOX dateStart: 20140301 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60ePDiAxVrtQT14iE0-0g3e7TS4sXqoUJvIbvZrQWJ2tTXxd_ubB7FQlHPGZbwMTDf7Mx-H8C5TZQbXgnsTQzzeaKtH4VSYpdCdYol0AiuCrMJMRxG47G8q5Zo8hUjfMk6WT7rZO8fAXeqnySMnE_B6HZcZw0SGqdCt8i60ImQ1X4y5U1LKEThVEaRT_j4Pap1SpdOd-oKD0_Z5AVrxlKVci_ffhSdwfY_f3cHtipW6V2WabALaybbg9PedOJV-qkTz124er3k07hXk15pHJ3vw_2gP7q69itLBF8j85n7qewqGVGVIIyJTQOrpMKGhmuVYJ_FMIilwjLJkXgEoZYpSS0NLZIeGWliAnYAjewpM4fgSa4I1ndJNSdcUKNSog0RxlKhdJeoJrQWcMTPpfSF2wITkaNwTbioAYp1pSbuTC0e43KqzWLEIS5xaMLZIrY-aFVUG3H-JeDor4AWbFJXdItl2mNozGev5gQ29Nt8ms_asH7z1W8XqfMNV6q7cQ |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Learning+with+Bayesian+methods&rft.jtitle=%E5%9B%BD%E5%AE%B6%E7%A7%91%E5%AD%A6%E8%AF%84%E8%AE%BA%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Jun+Zhu%3BJianfei+Chen%3BWenbo+Hu%3BBo+Zhang&rft.date=2017-07-01&rft.issn=2095-5138&rft.volume=4&rft.issue=4&rft.spage=627&rft.epage=651&rft_id=info:doi/10.1093%2Fnsr%2Fnwx044&rft.externalDocID=673781638 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F72283X%2F72283X.jpg |