Big Learning with Bayesian methods

The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine leaming algorithms, systems and applications with Big Data. Bayesian methods represent one important class of sta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:National science review Ročník 4; číslo 4; s. 627 - 651
Hlavní autoři: Zhu, Jun, Chen, Jianfei, Hu, Wenbo, Zhang, Bo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford University Press 01.07.2017
Témata:
ISSN:2095-5138, 2053-714X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine leaming algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine leaming, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This artide provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning0 including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference.
AbstractList The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine leaming algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine leaming, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This artide provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning0 including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference.
Abstract The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine learning, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This article provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning, including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference.
The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine learning, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This article provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning, including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference.
Author Jun Zhu;Jianfei Chen;Wenbo Hu;Bo Zhang
AuthorAffiliation TNList Lab, State Key Lab for Intelligent Technology and Systems, CBICR Center, Department of Computer Science and Technology, Tsinghua University,Beijing 100084,China
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhu
  fullname: Zhu, Jun
  email: dcszj@mail.tsinghua.edu.cn
– sequence: 2
  givenname: Jianfei
  surname: Chen
  fullname: Chen, Jianfei
  organization: TNList Lab, State Key Lab for Intelligent Technology and Systems, CBICR Center, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Wenbo
  surname: Hu
  fullname: Hu, Wenbo
  email: dcszj@mail.tsinghua.edu.cn
  organization: TNList Lab, State Key Lab for Intelligent Technology and Systems, CBICR Center, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
  organization: TNList Lab, State Key Lab for Intelligent Technology and Systems, CBICR Center, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
BookMark eNp9kM1LwzAYxoNMcM5d_AvKwItQlzRv83F0Y35AwYuCt5KmSRfY0plU5v57Ozo8iHh6n8PveeD3XqKRb71B6JrgO4IlnfsY5n7_hQHO0DjDOU05gffRMcs8zQkVF2gao6twnxnnQMZotnBNUhgVvPNNsnfdOlmog4lO-WRrunVbxyt0btUmmunpTtDbw-p1-ZQWL4_Py_si1TSDLq0lq6TIKoUZKFtjW8mKgABdKQBBe4jW3FIJjEqca1mT2ma5ZQBSaGIwnSA87OrQxhiMLbXrVOda3wXlNiXB5VGz7DXLQbOv3P6q7ILbqnD4G74Z4PZz9z83O42uW9989H_5oRmnXBBGBf0GjUtudw
CitedBy_id crossref_primary_10_1016_j_compstruct_2025_119275
crossref_primary_10_3390_math10060898
crossref_primary_10_1016_j_apmate_2025_100333
crossref_primary_10_3390_ijgi9040265
crossref_primary_10_1007_s00180_020_00970_8
crossref_primary_10_1109_TVCG_2017_2744938
crossref_primary_10_1109_ACCESS_2019_2958047
crossref_primary_10_1145_3239540
crossref_primary_10_1002_wcms_1568
crossref_primary_10_1017_asb_2017_15
crossref_primary_10_1002_inf2_12099
crossref_primary_10_1080_17517575_2019_1670361
crossref_primary_10_1016_j_knosys_2019_02_007
crossref_primary_10_1109_TKDE_2025_3552658
crossref_primary_10_3390_sym16050600
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1016_j_jmatprotec_2022_117528
crossref_primary_10_1007_s11431_018_9335_1
crossref_primary_10_1016_j_jprocont_2019_10_010
crossref_primary_10_1109_TII_2021_3073645
crossref_primary_10_1016_j_strusafe_2019_101918
crossref_primary_10_1007_s11432_021_3449_x
crossref_primary_10_1016_j_knosys_2021_107536
crossref_primary_10_1214_22_BA1321
crossref_primary_10_1109_ACCESS_2021_3065965
crossref_primary_10_1007_s40815_019_00627_9
crossref_primary_10_1016_j_patrec_2019_09_007
crossref_primary_10_1038_s41598_024_68175_3
crossref_primary_10_1016_j_apgeochem_2020_104781
crossref_primary_10_1007_s11634_021_00455_6
crossref_primary_10_1007_s11831_023_09886_0
crossref_primary_10_1016_j_ins_2020_12_054
crossref_primary_10_1016_j_trc_2021_103363
crossref_primary_10_3103_S0005105518040064
crossref_primary_10_1016_j_neunet_2019_05_009
Cites_doi 10.1126/science.1236536
10.1093/bjps/31.2.131
10.1007/s11222-006-5196-2
10.1126/science.aab3050
10.1145/2623330.2623756
10.1017/CBO9780511569920.017
10.1038/455016a
10.1007/s11222-007-9028-9
10.1073/pnas.1102900108
10.1109/TPAMI.2013.50
10.1093/biomet/asm071
10.1109/MSP.2012.2205597
10.1038/nature14539
10.1016/j.jmp.2012.02.005
10.1093/bioinformatics/btg427
10.1017/CBO9780511802478
10.1145/2484838.2484843
10.1145/2484425.2484427
10.1080/01621459.1995.10476590
10.1080/01621459.1995.10476572
10.1093/bioinformatics/btg180
10.1145/1807167.1807184
10.1201/b16018
10.1198/016214502753479464
10.1016/j.csda.2009.11.019
10.1109/5.18626
10.2307/2335470
10.1214/009053607000000677
10.1023/A:1020281327116
10.1093/nsr/nwt032
10.1145/2124295.2124312
10.1093/biomet/57.1.97
10.1145/2487575.2487658
10.1109/TPAMI.1984.4767596
10.1198/016214504000000269
10.1093/biomet/ast067
10.1214/aos/1176342871
10.1111/j.1467-9868.2006.00553.x
10.1111/j.1467-9868.2009.00736.x
10.1198/016214508000000409
10.1214/088342304000000017
10.1214/ss/1177011136
10.1093/biomet/87.4.731
10.1145/2939672.2939821
10.1063/1.1699114
10.1214/09-BA412
10.1214/aos/1176342360
10.1162/089976601753195969
10.1080/01621459.1987.10478458
10.1145/2641361.2641367
10.1162/089976698300017746
10.1186/1297-9686-44-29
10.1214/aos/1056562461
10.1561/2200000016
10.1038/469282a
10.1126/science.1197962
10.1080/03610910601096262
10.1016/j.jmp.2011.08.004
10.1145/3037697.3037740
10.1109/78.978374
10.1145/1961189.1961198
10.1214/06-BA104
10.1561/2200000001
10.1198/016214506000000302
10.1214/088342307000000014
10.1109/TSSC.1968.300117
10.1017/CBO9781139042918
10.1023/A:1023562417138
10.1145/1390156.1390294
10.1080/01621459.1998.10473765
10.1080/01621459.1992.10476265
10.1073/pnas.1221839110
10.1017/CBO9780511804441
10.1145/2187836.2187955
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2017
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2017
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1093/nsr/nwx044
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Big Learning with Bayesian methods
EISSN 2053-714X
EndPage 651
ExternalDocumentID 10_1093_nsr_nwx044
10.1093/nsr/nwx044
673781638
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 61620106010; 61621136008; 61332007
– fundername: the National Basic Research Program of China
  grantid: 2013CB329403
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
~WA
-SA
-SC
-S~
0R~
5VR
AAFWJ
AAOGV
AAPXW
AAVAP
AAXDM
ABDBF
ABPTD
ABQLI
ABXVV
ACGFS
AENEX
AFPKN
AFUIB
AFULF
AVWKF
BAYMD
CAJEA
CAJEC
CCEZO
CCVFK
CEKLB
EBS
EJD
ESX
FA0
GROUPED_DOAJ
H13
KSI
O9-
OK1
Q--
ROX
RXO
TOX
U1G
U5K
U5M
AAYXX
ABEJV
ABGNP
ACUHS
ADMLS
AMNDL
CITATION
ID FETCH-LOGICAL-c324t-d96b982ba064afd0fb9b1484cba4483c323d7f39463905c9d1df25f64498c1e03
IEDL.DBID TOX
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412270500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-5138
IngestDate Sat Nov 29 02:00:23 EST 2025
Tue Nov 18 21:54:33 EST 2025
Wed Aug 28 03:21:16 EDT 2024
Wed Feb 14 10:02:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords scalable algorithms
regularized Bayesian inference
Big Bayesian Learning
Bayesian non-parametrics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-d96b982ba064afd0fb9b1484cba4483c323d7f39463905c9d1df25f64498c1e03
Notes Big Bayesian Learning, Bayesian non-parametrics, regularized Bayesian inference, scalablealgorithms
The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine leaming algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine leaming, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This artide provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning0 including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference.
10-1088/N
OpenAccessLink https://academic.oup.com/nsr/article-pdf/4/4/627/20335448/nwx044.pdf
PageCount 25
ParticipantIDs crossref_citationtrail_10_1093_nsr_nwx044
crossref_primary_10_1093_nsr_nwx044
oup_primary_10_1093_nsr_nwx044
chongqing_primary_673781638
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle National science review
PublicationTitleAlternate National Science Review
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chen (2020011102321388800_bib58) 2013
Williamson (2020011102321388800_bib85) 2010
Dean (2020011102321388800_bib182) 2008
Koyejo (2020011102321388800_bib93) 2013
Papaspiliopoulos (2020011102321388800_bib111) 2007; 22
Zhu (2020011102321388800_bib98) 2013
Kraska (2020011102321388800_bib208) 2013
Zhang (2020011102321388800_bib81) 2014
Petrone (2020011102321388800_bib54) 2014; 101
Yu (2020011102321388800_bib113) 2011; 20
Ghahramani (2020011102321388800_bib61) 2013
Blei (2020011102321388800_bib48) 2003; 3
George (2020011102321388800_bib52) 2000; 87
Salihoglu (2020011102321388800_bib187) 2013
Zhu (2020011102321388800_bib91) 2012; 13
Ranganath (2020011102321388800_bib105) 2013
Lauritzen (2020011102321388800_bib138) 1992; 87
Scott (2020011102321388800_bib148) 2016; 11
Geman (2020011102321388800_bib40) 1984; 6
Aitchison (2020011102321388800_bib57) 1980; 67
Efron (2020011102321388800_bib24) 2013; 340
Xu (2020011102321388800_bib153) 2014
Mnih (2020011102321388800_bib114) 2014
Zaharia (2020011102321388800_bib185) 2010
Gershmana (2020011102321388800_bib62) 2012; 56
Teh (2020011102321388800_bib73) 2007
Gopalan (2020011102321388800_bib89) 2013; 110
Zhu (2020011102321388800_bib97) 2014; 15
Donnet (2020011102321388800_bib55) 2014
Deng (2020011102321388800_bib11) 2011
Ferguson (2020011102321388800_bib64) 1973; 1
Kingma (2020011102321388800_bib110) 2014
Zhai (2020011102321388800_bib142) 2012
Le (2020011102321388800_bib14) 2013
Hinton (2020011102321388800_bib12) 2012; 29
Altekar (2020011102321388800_bib180) 2004; 20
Miller (2020011102321388800_bib87) 2009
Rabiner (2020011102321388800_bib130) 1989; 77
Jordan (2020011102321388800_bib34) 1999; 37
Sethuraman (2020011102321388800_bib65) 1994; 4
Beal (2020011102321388800_bib80) 2002
Rasmussen (2020011102321388800_bib76) 2006
Song (2020011102321388800_bib94) 2016
Minsker (2020011102321388800_bib151) 2014
Ma (2020011102321388800_bib124) 2015
Hoffman (2020011102321388800_bib104) 2013; 14
McAuliffe (2020011102321388800_bib53) 2006; 16
Dallaire (2020011102321388800_bib79) 2014
Fan (2020011102321388800_bib4) 2013; 1
Muller (2020011102321388800_bib63) 2004; 19
Boyd (2020011102321388800_bib141) 2011; 3
Thibaux (2020011102321388800_bib72) 2007
Bengio (2020011102321388800_bib59) 2013; 35
Beck (2020011102321388800_bib152) 2015
Canny (2020011102321388800_bib177) 2013
Robert (2020011102321388800_bib36) 2005
Suchard (2020011102321388800_bib145) 2010; 19
Gershman (2020011102321388800_bib86) 2015
Rezende (2020011102321388800_bib16) 2014
Crammer (2020011102321388800_bib134) 2006
Andrieu (2020011102321388800_bib37) 2003; 50
Jaynes (2020011102321388800_bib51) 1968; 4
Pitman (2020011102321388800_bib67) 2002
Zhu (2020011102321388800_bib96) 2013
Chau (2020011102321388800_bib178) 2013; 41
Mitchell (2020011102321388800_bib5) 1997
Broderick (2020011102321388800_bib133) 2013
Chu (2020011102321388800_bib183) 2007
Li (2020011102321388800_bib176) 2017
Theano Development Team (2020011102321388800_bib205) 2016
Beam (2020011102321388800_bib174) 2016
Grelaud (2020011102321388800_bib30) 2009; 4
Williams (2020011102321388800_bib26) 1980; 31
Angelino (2020011102321388800_bib155) 2014
Duan (2020011102321388800_bib83) 2007; 94
Antoniak (2020011102321388800_bib68) 1974; 273
Xin (2020011102321388800_bib189) 2013
Jasra (2020011102321388800_bib42) 2007; 17
Pillai (2020011102321388800_bib118) 2014
Mandt (2020011102321388800_bib107) 2014
Abadi (2020011102321388800_bib204) 2015
Ahmed (2020011102321388800_bib162) 2012
Blei (2020011102321388800_bib84) 2010
Moral (2020011102321388800_bib173) 2006; 68
Blei (2020011102321388800_bib66) 2006; 1
Liu (2020011102321388800_bib136) 1998; 93
Blei (2020011102321388800_bib56) 2006
Ho (2020011102321388800_bib194) 2013
Shi (2020011102321388800_bib129) 2014
Salakhutdinov (2020011102321388800_bib15) 2009
Turnera (2020011102321388800_bib31) 2012; 56
Ghoting (2020011102321388800_bib207) 2011
Kass (2020011102321388800_bib29) 1995; 90
Chen (2020011102321388800_bib164) 2016
Welling (2020011102321388800_bib22) 2013
Wilkinson (2020011102321388800_bib146) 2006
Griffiths (2020011102321388800_bib191) 2004
Power (2020011102321388800_bib193) 2010
Gal (2020011102321388800_bib165) 2014
Reichman (2020011102321388800_bib3) 2011; 331
Amari (2020011102321388800_bib103) 1998; 10
Beal (2020011102321388800_bib35) 2003
Wainwright (2020011102321388800_bib33) 2008; 1
Vincent (2020011102321388800_bib13) 2008
Li (2020011102321388800_bib198) 2014
2020011102321388800_bib170
2020011102321388800_bib171
Zhu (2020011102321388800_bib88) 2012
Kyrola (2020011102321388800_bib190)
Boyd (2020011102321388800_bib100) 2004
Adams (2020011102321388800_bib60) 2010
Dean (2020011102321388800_bib197) 2012
Kingma (2020011102321388800_bib112) 2014
Bishop (2020011102321388800_bib27) 2006
MacEachern (2020011102321388800_bib82) 1999
Bardenet (2020011102321388800_bib127) 2015
Bottou (2020011102321388800_bib99) 2008
Wang (2020011102321388800_bib150) 2013
Bialek (2020011102321388800_bib20) 2001; 13
Strid (2020011102321388800_bib156) 2010; 54
Gelman (2020011102321388800_bib23) 2013
Teh (2020011102321388800_bib78) 2006; 101
Kadane (2020011102321388800_bib28) 2004; 99
2020011102321388800_bib8
Maclaurin (2020011102321388800_bib128) 2014
Neiswanger (2020011102321388800_bib149) 2014
2020011102321388800_bib9
Brockwell (2020011102321388800_bib154) 2006; 15
Marlin (2020011102321388800_bib108) 2011
Roberts (2020011102321388800_bib115) 2002; 4
Neal (2020011102321388800_bib69) 2000; 9
Teh (2020011102321388800_bib119)
Hofmann (2020011102321388800_bib75) 2008; 36
Geyer (2020011102321388800_bib43) 1995; 90
Lloyd (2020011102321388800_bib209) 2014
Bengio (2020011102321388800_bib10) 2010
Gonzalez (2020011102321388800_bib158) 2011
Walker (2020011102321388800_bib70) 2007; 36
Williamson (2020011102321388800_bib147) 2013
Liu (2020011102321388800_bib163) 2011; 2
Zhu (2020011102321388800_bib18) 2014; 15
Wu (2020011102321388800_bib143) 2012; 44
Neal (2020011102321388800_bib46) 2003; 31
Andrieu (2020011102321388800_bib135) 2010; 72
2020011102321388800_bib192
Jordan (2020011102321388800_bib17) 2011; 18
Neal (2020011102321388800_bib41) 2010
Bekkerman (2020011102321388800_bib181) 2011
Patterson (2020011102321388800_bib122) 2013
Doshi-Velez (2020011102321388800_bib74) 2009
Opper (2020011102321388800_bib139) 1999
Wang (2020011102321388800_bib201) 2014
Bardenet (2020011102321388800_bib126) 2014
Li (2020011102321388800_bib49) 2005
2020011102321388800_bib184
Scott (2020011102321388800_bib131) 2002; 97
Korattikara (2020011102321388800_bib125) 2014
LeCun (2020011102321388800_bib203) 2015; 521
Brumfiel (2020011102321388800_bib1) 2011; 469
Ahn (2020011102321388800_bib120) 2012
Banterle (2020011102321388800_bib157) 2014
Malewicz (2020011102321388800_bib186) 2010
Kalman (2020011102321388800_bib132) 1960; 82
Arulampalam (2020011102321388800_bib137) 2002; 50
Johnson (2020011102321388800_bib159) 2013
Dyk (2020011102321388800_bib45) 2001; 10
Hjort (2020011102321388800_bib19) 2010
Schraudolph (2020011102321388800_bib121) 2007
Ronquist (2020011102321388800_bib179) 2003; 19
Li (2020011102321388800_bib196) 2014
Srivastava (2020011102321388800_bib21) 2014; 15
Liu (2020011102321388800_bib123) 2016
Newman (2020011102321388800_bib160) 2007
Robert (2020011102321388800_bib32) 2011; 108
Jeffreys (2020011102321388800_bib50) 1945
Lawrence (2020011102321388800_bib77) 2005; 6
Jia (2020011102321388800_bib206) 2014
Kim (2020011102321388800_bib90) 2013
Chen (2020011102321388800_bib117) 2014
Yan (2020011102321388800_bib175) 2009
Tan (2020011102321388800_bib7) 2014; 15
Niu (2020011102321388800_bib167) 2011
Tanner (2020011102321388800_bib44) 1987; 82
Guhaniyogi (2020011102321388800_bib140) 2014
Ghosh (2020011102321388800_bib25)
Zinkevich (2020011102321388800_bib166) 2010
Paisley (2020011102321388800_bib109) 2012
Bottou (2020011102321388800_bib102) 1998
Yang (2020011102321388800_bib169) 2016
Lake (2020011102321388800_bib202) 2015; 350
Welling (2020011102321388800_bib116) 2011
Ahn (2020011102321388800_bib168) 2014
Smola (2020011102321388800_bib161) 2010
Zheng (2020011102321388800_bib200) 2014
Hastings (2020011102321388800_bib39) 1970; 57
Low (2020011102321388800_bib188) 2013
Metropolis (2020011102321388800_bib38) 1953; 21
Duchi (2020011102321388800_bib101) 2011; 12
Gelman (2020011102321388800_bib144) 1992; 7
Snoek (2020011102321388800_bib106) 2012
Weinberger (2020011102321388800_bib6) 2009
Mei (2020011102321388800_bib92) 2014
Lee (2020011102321388800_bib199) 2014
Blei (2020011102321388800_bib95) 2007
Lee (2020011102321388800_bib172) 2010; 19
Dai (2020011102321388800_bib195) 2013
Griffiths (2020011102321388800_bib71) 2005
Doctorow (2020011102321388800_bib2) 2008; 455
van Dyk (2020011102321388800_bib47) 2008; 103
References_xml – volume: 15
  start-page: 1073
  year: 2014
  ident: 2020011102321388800_bib97
  article-title: Gibbs Max-margin topic models with data augmentation
  publication-title: JMLR
– start-page: 2445
  volume-title: Advances in Neural Information Processing Systems
  year: 2013
  ident: 2020011102321388800_bib58
  article-title: Scalable Inference for Logistic-Normal Topic Models
– volume: 340
  start-page: 1177
  year: 2013
  ident: 2020011102321388800_bib24
  article-title: Bayes’ Theorem in the 21st Century
  publication-title: Science
  doi: 10.1126/science.1236536
– volume: 31
  year: 1980
  ident: 2020011102321388800_bib26
  article-title: Bayesian Conditionalisation and the Principle of Minimum Information
  publication-title: Br J Philos Sci
  doi: 10.1093/bjps/31.2.131
– volume: 16
  start-page: 5
  year: 2006
  ident: 2020011102321388800_bib53
  article-title: Nonparametric empirical Bayes for the Dirichlet process mixture model
  publication-title: Statist Comput
  doi: 10.1007/s11222-006-5196-2
– start-page: 2134
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: 2020011102321388800_bib175
  article-title: Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units
– volume: 9
  start-page: 249
  year: 2000
  ident: 2020011102321388800_bib69
  article-title: Markov chain sampling methods for Dirichlet process mixture models
  publication-title: JCGS
– start-page: 1113
  volume-title: International Conference on Machine Learning
  year: 2009
  ident: 2020011102321388800_bib6
  article-title: Feature hashing for large scale multitask learning
– volume: 350
  start-page: 1332
  year: 2015
  ident: 2020011102321388800_bib202
  article-title: Human-level concept learning through probabilistic program induction
  publication-title: Science
  doi: 10.1126/science.aab3050
– start-page: 891
  volume-title: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
  year: 2014
  ident: 2020011102321388800_bib198
  article-title: Reducing the sampling complexity of topic models
  doi: 10.1145/2623330.2623756
– start-page: 1361
  year: 2015
  ident: 2020011102321388800_bib127
  article-title: Concentration inequalities for sampling without replacement
– volume-title: Online Algorithms and Stochastic Approximations. Online Learning and Neural Networks
  year: 1998
  ident: 2020011102321388800_bib102
– start-page: 334
  volume-title: IEEE transactions on pattern analysis and machine intelligence
  year: 2015
  ident: 2020011102321388800_bib86
  article-title: Distance dependent infinite latent feature models
– volume-title: On-Line Learning in Neural Networks
  year: 1999
  ident: 2020011102321388800_bib139
  article-title: A Bayesian approach to on-line learning
  doi: 10.1017/CBO9780511569920.017
– year: 2013
  ident: 2020011102321388800_bib150
  article-title: Parallelizing MCMC via Weierstrass Sampler
– start-page: 208
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib165
  article-title: Pitfalls in the use of Parallel Inference for the Dirichlet Process
– volume: 455
  start-page: 16
  year: 2008
  ident: 2020011102321388800_bib2
  article-title: Big data: Welcome to the petacentre
  publication-title: Nature
  doi: 10.1038/455016a
– volume: 18
  start-page: 1
  year: 2011
  ident: 2020011102321388800_bib17
  article-title: The era of Big Data
  publication-title: ISBA Bulletin
– start-page: 378
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib129
  article-title: Online Bayesian passive-aggressive learning
– ident: 2020011102321388800_bib170
– ident: 2020011102321388800_bib9
– volume-title: Technical Report No. 621
  year: 2002
  ident: 2020011102321388800_bib67
  article-title: Combinatorial Stochastic Processes
– start-page: 1
  volume-title: J Opt Theory Appl
  year: 2015
  ident: 2020011102321388800_bib152
  article-title: Weiszfelds method: old and new results
– volume: 17
  start-page: 263
  year: 2007
  ident: 2020011102321388800_bib42
  article-title: On population-based simulation for static inference
  publication-title: Stat Comput
  doi: 10.1007/s11222-007-9028-9
– start-page: 340
  volume-title: Conference on Uncertainty in Artificial Intelligence
  year: 2013
  ident: 2020011102321388800_bib188
  article-title: Graphlab: A new framework for parallel machine learning
– start-page: 298
  volume-title: International Conference on Machine Learning
  year: 2013
  ident: 2020011102321388800_bib105
  article-title: An adaptive learning rate for stochastic variational inference
– start-page: 324
  volume-title: Artificial Intelligence and Statistics Conference
  year: 2011
  ident: 2020011102321388800_bib158
  article-title: Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees
– start-page: 477
  volume-title: Statistics Textbooks and Monographs
  year: 2006
  ident: 2020011102321388800_bib146
  article-title: Parallel bayesian computation
– year: 2014
  ident: 2020011102321388800_bib155
  article-title: Accelerating MCMC via Parallel Predictive Prefetching
– volume-title: Ph.D. Thesis
  year: 2003
  ident: 2020011102321388800_bib35
  article-title: Variational Algorithms for approximate Bayesian inference
– start-page: 719
  volume-title: International Conference on Machine Learning
  year: 2012
  ident: 2020011102321388800_bib88
  article-title: Max-Margin Nonparametric latent feature models for link prediction
– volume: 108
  start-page: 15112
  year: 2011
  ident: 2020011102321388800_bib32
  article-title: Lack of confidence in approximate Bayesian computation model choice
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1102900108
– volume: 15
  start-page: 246
  year: 2006
  ident: 2020011102321388800_bib154
  article-title: Parallel Markov chain Monte Carlo Simulation by Pre-Fetching
  publication-title: JCGS
– year: 2014
  ident: 2020011102321388800_bib199
  article-title: Primitives for Dynamic Big Model Parallelism
– start-page: 556
  volume-title: Artificial Intelligence and Statistics Conference
  year: 2007
  ident: 2020011102321388800_bib73
  article-title: Stick-breaking construction for the Indian buffet process
– start-page: 577
  volume-title: Advances in Neural Information Processing Systems
  year: 2002
  ident: 2020011102321388800_bib80
  article-title: The infinite hidden Markov model
– year: 2014
  ident: 2020011102321388800_bib201
  article-title: Towards Topic Modeling for Big Data
– ident: 2020011102321388800_bib8
– volume: 35
  start-page: 1798
  year: 2013
  ident: 2020011102321388800_bib59
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans PAMI
  doi: 10.1109/TPAMI.2013.50
– volume: 94
  start-page: 809
  year: 2007
  ident: 2020011102321388800_bib83
  article-title: Generalized spatial Dirichlet process models
  publication-title: Biometrika
  doi: 10.1093/biomet/asm071
– volume: 15
  start-page: 1799
  year: 2014
  ident: 2020011102321388800_bib18
  article-title: Bayesian inference with posterior regularization and applications to infinite latent SVMs
  publication-title: JMLR
– start-page: 1
  volume-title: Artificial Intelligence and Statistics Conference
  year: 2010
  ident: 2020011102321388800_bib60
  article-title: Learning the structure of deep sparse graphical models
– volume: 29
  start-page: 82
  year: 2012
  ident: 2020011102321388800_bib12
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– start-page: 163
  volume-title: Advances in Neural Information Processing Systems
  year: 2010
  ident: 2020011102321388800_bib10
  article-title: Label embedding trees for large multi-class tasks
– start-page: 341
  volume-title: Conference on Uncertainty in Artificial Intelligence
  year: 2013
  ident: 2020011102321388800_bib93
  article-title: Constrained Bayesian inference for low rank multitask learning
– volume-title: Hot Topics in Cloud Computing
  year: 2010
  ident: 2020011102321388800_bib185
  article-title: Spark: cluster computing with working sets
– volume: 521
  start-page: 436
  year: 2015
  ident: 2020011102321388800_bib203
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 56
  start-page: 69
  year: 2012
  ident: 2020011102321388800_bib31
  article-title: A tutorial on approximate Bayesian computation
  publication-title: J Math Psychol
  doi: 10.1016/j.jmp.2012.02.005
– start-page: 1
  volume-title: Operating Systems Design and Implementation
  year: 2010
  ident: 2020011102321388800_bib193
  article-title: Piccolo: Building Fast, Distributed Programs with Partitioned Tables
– volume: 20
  start-page: 407
  year: 2004
  ident: 2020011102321388800_bib180
  article-title: Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg427
– start-page: 1782
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib112
  article-title: Efficient gradient-based inference through Transformations between Bayes nets and neural nets
– start-page: 567
  year: 2011
  ident: 2020011102321388800_bib11
  article-title: Fast and balanced: efficient label tree learning for large scale object recognition
  publication-title: Advances in Neural Information Processing Systems
– volume-title: Bayesian Nonparametrics: Principles and Practice
  year: 2010
  ident: 2020011102321388800_bib19
  doi: 10.1017/CBO9780511802478
– start-page: 2595
  volume-title: Advances in Neural Information Processing Systems
  year: 2010
  ident: 2020011102321388800_bib166
  article-title: Parallelized StochasticGradient Descent
– start-page: 924
  volume-title: Artificial Intelligence and Statistics Conference
  year: 2010
  ident: 2020011102321388800_bib85
  article-title: Dependent Indian buffet processes
– start-page: 3356
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 2020011102321388800_bib153
  article-title: Distributed Bayesian Posterior Sampling via Moment Sharing
– start-page: 2438
  year: 2014
  ident: 2020011102321388800_bib107
  article-title: Smoothed gradients for stochastic variational inference
– volume-title: Conference on Innovative Data Systems Research
  year: 2013
  ident: 2020011102321388800_bib208
  article-title: MLbase: A Distributed Machine-learning System
– volume: 6
  start-page: 1783
  year: 2005
  ident: 2020011102321388800_bib77
  article-title: Probabilistic non-linear principal component analysis with gaussian process latent variable models
  publication-title: JMLR
– volume-title: Conference on Scientific and Statistical Database Management
  year: 2013
  ident: 2020011102321388800_bib187
  article-title: GPS: A Graph Processing System
  doi: 10.1145/2484838.2484843
– start-page: 744
  volume-title: Proceedings of the VLDB Endowment
  year: 2016
  ident: 2020011102321388800_bib164
  article-title: WarpLDA: a cache efficient O (1) algorithm for latent dirichlet allocation
– start-page: 2461
  volume-title: International Conference on Machine Learning
  year: 2010
  ident: 2020011102321388800_bib84
  article-title: Distance dependent Chinese restaurant processes
– volume: 15
  start-page: 1371
  year: 2014
  ident: 2020011102321388800_bib7
  article-title: Towards ultrahigh dimensional feature selection for big data
  publication-title: JMLR
– start-page: 693
  volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: 2020011102321388800_bib167
  article-title: Hogwild: A lock-free approach to parallelizing stochastic gradient descent
– year: 2014
  ident: 2020011102321388800_bib200
  article-title: Model-Parallel Inference for Big Topic Models
– volume-title: Workshop on Graph Data Management Experiences and Systems
  year: 2013
  ident: 2020011102321388800_bib189
  article-title: Graphx: A resilient distributed graph system on spark
  doi: 10.1145/2484425.2484427
– volume: 90
  start-page: 909
  year: 1995
  ident: 2020011102321388800_bib43
  article-title: Annealing Markov Chain Monte Carlo with applications to ancestral inference
  publication-title: JASA
  doi: 10.1080/01621459.1995.10476590
– volume: 90
  start-page: 773
  year: 1995
  ident: 2020011102321388800_bib29
  publication-title: JASA
  doi: 10.1080/01621459.1995.10476572
– volume: 19
  start-page: 1572
  year: 2003
  ident: 2020011102321388800_bib179
  article-title: MrBayes: Bayesian inference of phylogenetic trees
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg180
– volume-title: Advances in Neural Information Processing Systems
  year: 2013
  ident: 2020011102321388800_bib133
  article-title: Streaming Variational Bayes
– volume-title: Advances in Neural Information Processing Systems
  year: 2013
  ident: 2020011102321388800_bib159
  article-title: Analyzing Hogwild Parallel Gaussian Gibbs Sampling
– volume-title: Special Interest Group on Management of Data
  year: 2010
  ident: 2020011102321388800_bib186
  article-title: Pregel: a system for large-scale graph processing
  doi: 10.1145/1807167.1807184
– year: 2016
  ident: 2020011102321388800_bib205
  article-title: Theano: A Python framework for fast computation of mathematical expressions
– volume-title: Operating Systems Design and Implementation
  ident: 2020011102321388800_bib190
  article-title: GraphChi: Large-Scale Graph Computation on Just a PC
– volume-title: Advances in Neural Information Processing Systems. Big Learning Workshop
  year: 2013
  ident: 2020011102321388800_bib177
  article-title: BIDMach: Large-scale Learning with Zero Memory Allocation
– volume-title: Artificial Intelligence and Statistics Conference
  year: 2009
  ident: 2020011102321388800_bib74
  article-title: Variational inference for the Indian buffet process
– volume-title: Bayesian Data Analysis
  year: 2013
  ident: 2020011102321388800_bib23
  doi: 10.1201/b16018
– volume: 11
  start-page: 78
  year: 2016
  ident: 2020011102321388800_bib148
  article-title: Bayes and big data: the consensus Monte Carlo algorithm
  publication-title: Int J Manage Sci Eng Manage
– volume: 97
  start-page: 337
  year: 2002
  ident: 2020011102321388800_bib131
  article-title: Bayesian Methods for Hidden Markov Models
  publication-title: JASA
  doi: 10.1198/016214502753479464
– volume: 54
  start-page: 2814
  year: 2010
  ident: 2020011102321388800_bib156
  article-title: Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.11.019
– start-page: 20110553
  volume-title: Phil Trans Royal Soc
  year: 2013
  ident: 2020011102321388800_bib61
  article-title: Bayesian nonparametrics and the probabilistic approach to modelling
– volume: 77
  start-page: 257
  year: 1989
  ident: 2020011102321388800_bib130
  article-title: A tutorial on hidden Markov Models and selected applications in speech recognition
  publication-title: Proc of the IEEE
  doi: 10.1109/5.18626
– volume: 67
  start-page: 261
  year: 1980
  ident: 2020011102321388800_bib57
  article-title: Logistic-normal distributions: some properties and uses
  publication-title: Biometrika
  doi: 10.2307/2335470
– volume: 36
  start-page: 1171
  year: 2008
  ident: 2020011102321388800_bib75
  article-title: Kernel methods in machine learning
  publication-title: Ann Statist
  doi: 10.1214/009053607000000677
– volume: 50
  start-page: 5
  year: 2003
  ident: 2020011102321388800_bib37
  article-title: An introduction to MCMC for machine learning
  publication-title: Mach Learn
  doi: 10.1023/A:1020281327116
– start-page: 4289
  volume-title: Conference on Uncertainty in Artificial Intelligence
  year: 2014
  ident: 2020011102321388800_bib128
  article-title: Firefly Monte Carlo: exact MCMC with Subsets of Data
– ident: 2020011102321388800_bib192
– volume: 1
  start-page: 293
  year: 2013
  ident: 2020011102321388800_bib4
  article-title: Challenges of Big Data analysis
  publication-title: Nat Sci Rev
  doi: 10.1093/nsr/nwt032
– start-page: 962
  volume-title: Advances in Neural Information Processing Systems
  year: 2013
  ident: 2020011102321388800_bib90
  article-title: Efficient online inference for bayesian nonparametric relational models
– start-page: 123
  volume-title: International Conference on Web Search and Data Mining
  year: 2012
  ident: 2020011102321388800_bib162
  article-title: Scalable inference in latent variable models
  doi: 10.1145/2124295.2124312
– start-page: 231
  volume-title: International Conference on Data Engineering
  year: 2011
  ident: 2020011102321388800_bib207
  article-title: SystemML: Declarative machine learning on MapReduce
– volume: 57
  start-page: 97
  year: 1970
  ident: 2020011102321388800_bib39
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– start-page: 453
  volume-title: Proceedings of the Royal Society of London Series A, Math Phys Sci
  year: 1945
  ident: 2020011102321388800_bib50
  article-title: An invariant form for the prior probability in estimation problems
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 2020011102321388800_bib76
– start-page: 964
  volume-title: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining
  year: 2013
  ident: 2020011102321388800_bib98
  article-title: Scalable inference in max-margin topic models
  doi: 10.1145/2487575.2487658
– volume: 37
  start-page: 183
  year: 1999
  ident: 2020011102321388800_bib34
  article-title: An Introduction to variational methods for graphical models
  publication-title: MLJ
– volume: 20
  start-page: 531
  year: 2011
  ident: 2020011102321388800_bib113
  article-title: To center or not to center: That is not the question–an Ancillarity–Sufficiency Interweaving Strategy (ASIS) for boosting MCMC efficiency
  publication-title: JCGS
– volume: 19
  start-page: 769
  year: 2010
  ident: 2020011102321388800_bib172
  article-title: On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods
  publication-title: JCGS
– year: 2006
  ident: 2020011102321388800_bib56
  article-title: Correlated topic models
  publication-title: Advances in Neural Information Processing Systems
– start-page: 98
  volume-title: International Conference on Machine Learning
  year: 2013
  ident: 2020011102321388800_bib147
  article-title: Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models
– start-page: 583
  volume-title: Operating Systems Design and Implementation
  year: 2014
  ident: 2020011102321388800_bib196
  article-title: Scaling Distributed Machine Learning with the Parameter Server
– volume: 6
  start-page: 721
  year: 1984
  ident: 2020011102321388800_bib40
  article-title: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
  publication-title: IEEE Trans PAMI
  doi: 10.1109/TPAMI.1984.4767596
– volume: 99
  start-page: 279
  year: 2004
  ident: 2020011102321388800_bib28
  article-title: Methods and criteria for model selection
  publication-title: JASA
  doi: 10.1198/016214504000000269
– start-page: 1774
  volume-title: Association for the Advancement of Artificial Intelligence
  year: 2014
  ident: 2020011102321388800_bib79
  article-title: Learning the structure of probabilistic graphical models with an extended cascading indian buffet process
– volume-title: Monte Carlo Statistical Methods
  year: 2005
  ident: 2020011102321388800_bib36
– volume: 101
  start-page: 1
  year: 2014
  ident: 2020011102321388800_bib54
  article-title: Bayes and empirical Bayes: Do they merge?
  publication-title: Biometrika
  doi: 10.1093/biomet/ast067
– volume-title: Ph.D. Thesis
  year: 2009
  ident: 2020011102321388800_bib15
  article-title: Learning deep generative models
– volume-title: Neural Information Processing Systems workshop on ‘Probabilistic Models for Big Data’
  year: 2013
  ident: 2020011102321388800_bib22
  article-title: Exploiting the statistics of learning and inference
– volume-title: International Conference on Machine Learning
  year: 2011
  ident: 2020011102321388800_bib116
  article-title: Bayesian learning via Stochastic gradient langevin dynamics
– volume: 15
  start-page: 1929
  year: 2014
  ident: 2020011102321388800_bib21
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: JMLR
– start-page: 564
  volume-title: Artificial Intelligence and Statistics Conference
  year: 2007
  ident: 2020011102321388800_bib72
  article-title: Hierarchical beta processes and the Indian buffet process
– start-page: 121
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: 2020011102321388800_bib95
  article-title: Supervised topic models
– start-page: 315
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib81
  article-title: Max-margin Infinite Hidden Markov Models
– ident: 2020011102321388800_bib184
– year: 2014
  ident: 2020011102321388800_bib140
  article-title: Bayesian Conditional Density Filtering for Big Data
– volume: 273
  start-page: 1152
  year: 1974
  ident: 2020011102321388800_bib68
  article-title: Mixture of Dirichlet Process with Applications to Bayesian Nonparametric Problems
  publication-title: Ann Stats
  doi: 10.1214/aos/1176342871
– start-page: 101
  volume-title: Proc Natl Acad Sci USA
  year: 2004
  ident: 2020011102321388800_bib191
  article-title: Finding scientific topics
– start-page: 623
  volume-title: Conference on Uncertainty in Artificial Intelligence
  year: 2014
  ident: 2020011102321388800_bib149
  article-title: Asymptotically Exact, Embarrassingly Parallel MCMC
– volume-title: 47th Scientific Meeting of the Italian Statistical Society
  year: 2014
  ident: 2020011102321388800_bib55
  article-title: On convergence rates of empirical Bayes Procedures
– volume: 12
  start-page: 2121
  year: 2011
  ident: 2020011102321388800_bib101
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: JMLR
– volume: 68
  start-page: 411
  year: 2006
  ident: 2020011102321388800_bib173
  article-title: Sequential Monte Carlo samplers
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.1467-9868.2006.00553.x
– start-page: 436
  volume-title: Artificial Intelligence and Statistics Conference
  year: 2007
  ident: 2020011102321388800_bib121
  article-title: A Stochastic Quasi-Newton method for online convex optimization
– volume: 72
  start-page: 269
  year: 2010
  ident: 2020011102321388800_bib135
  article-title: Particle Markov chain Monte Carlo methods
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.1467-9868.2009.00736.x
– start-page: 1278
  year: 2014
  ident: 2020011102321388800_bib16
  article-title: Stochastic backpropagation and approximate inference in deep generative models
  publication-title: International Conference on Machine Learning
– volume: 103
  start-page: 790
  year: 2008
  ident: 2020011102321388800_bib47
  article-title: Partially collapsed gibbs samplers: theory and methods
  publication-title: JASA
  doi: 10.1198/016214508000000409
– volume: 19
  start-page: 95
  year: 2004
  ident: 2020011102321388800_bib63
  article-title: Nonparametric Bayesian Data Analysis
  publication-title: Stat Sci
  doi: 10.1214/088342304000000017
– volume: 7
  start-page: 457
  year: 1992
  ident: 2020011102321388800_bib144
  article-title: Inference from iterative simulation using multiple simulations
  publication-title: Stat Sci
  doi: 10.1214/ss/1177011136
– volume: 87
  start-page: 731
  year: 2000
  ident: 2020011102321388800_bib52
  article-title: Calibration and empirical Bayes variable selection
  publication-title: Biometrika
  doi: 10.1093/biomet/87.4.731
– start-page: 1975
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2020011102321388800_bib169
  article-title: Distributing the Stochastic Gradient Sampler for Large-Scale LDA
  doi: 10.1145/2939672.2939821
– volume: 21
  start-page: 1087
  year: 1953
  ident: 2020011102321388800_bib38
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– start-page: 107
  volume-title: Communications of the ACM
  year: 2008
  ident: 2020011102321388800_bib182
  article-title: MapReduce: simplified data processing on large clusters
– volume: 4
  start-page: 317
  year: 2009
  ident: 2020011102321388800_bib30
  article-title: Likelihood-free methods for model choice in Gibbs random fields
  publication-title: Bayesian Anal
  doi: 10.1214/09-BA412
– start-page: 161
  volume-title: Advances in Neural Information Processing Systems
  year: 2008
  ident: 2020011102321388800_bib99
  article-title: The Tradeoffs of large scale learning
– volume-title: Handbook of Markov Chain Monte Carlo
  year: 2010
  ident: 2020011102321388800_bib41
  article-title: MCMC using Hamiltonian Dynamics
– volume: 1
  start-page: 209
  year: 1973
  ident: 2020011102321388800_bib64
  article-title: A Bayesian analysis of some nonparametric problems
  publication-title: Ann Stats
  doi: 10.1214/aos/1176342360
– start-page: 3009
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 2020011102321388800_bib123
  article-title: Stochastic Gradient Geodesic MCMC Methods
– volume: 13
  start-page: 2409
  year: 2001
  ident: 2020011102321388800_bib20
  article-title: Predictability, complexity and learning
  publication-title: Neural Comput
  doi: 10.1162/089976601753195969
– volume: 82
  start-page: 528
  year: 1987
  ident: 2020011102321388800_bib44
  article-title: The calculation of posterior distributions by data augmentation
  publication-title: JASA
  doi: 10.1080/01621459.1987.10478458
– volume: 4
  start-page: 639
  year: 1994
  ident: 2020011102321388800_bib65
  article-title: A Constructive definition of Dirichlet Priors
  publication-title: Statistica Sinica
– start-page: 253
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib92
  article-title: Robust RegBayes: selectively incorporating first-order logic domain knowledge into Bayesian models
– start-page: 1223
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 2020011102321388800_bib197
  article-title: Large scale distributed deep networks
– volume: 41
  start-page: 35
  year: 2013
  ident: 2020011102321388800_bib178
  article-title: Accelerating sequential Monte Carlo method for real-time air traffic management
  publication-title: SIGARCH Comp Arch News
  doi: 10.1145/2641361.2641367
– volume: 10
  start-page: 251
  year: 1998
  ident: 2020011102321388800_bib103
  article-title: Natural gradient works efficiently in learning
  publication-title: Neural Comput
  doi: 10.1162/089976698300017746
– start-page: 152
  volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: 2020011102321388800_bib27
– start-page: 281
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: 2020011102321388800_bib183
  article-title: Map-reduce for machine learning on multicore
– start-page: 1
  ident: 2020011102321388800_bib119
  article-title: Consistency and fluctuations for stochastic gradient Langevin dynamics
– start-page: 1591
  volume-title: International Conference on Machine Learning
  year: 2012
  ident: 2020011102321388800_bib120
  article-title: Bayesian posterior sampling via stochastic gradient fisher scoring
– start-page: 475
  volume-title: Advances in Neural Information Processing Systems
  year: 2005
  ident: 2020011102321388800_bib71
  article-title: Infinite latent feature models and the Indian buffet process
– start-page: 8595
  volume-title: IEEE International Conference on Speech and Signal Processing
  year: 2013
  ident: 2020011102321388800_bib14
  article-title: Building high-level features using large scale unsupervised learning
– volume: 44
  start-page: 29
  year: 2012
  ident: 2020011102321388800_bib143
  article-title: Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-44-29
– start-page: 633
  volume-title: International Conference on Machine Learning
  year: 2011
  ident: 2020011102321388800_bib108
  article-title: Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models
– start-page: 1044
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib168
  article-title: Distributed Stochastic Gradient MCMC
– start-page: 2917
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: 2020011102321388800_bib124
  article-title: A complete recipe for stochastic gradient MCMC
– volume: 31
  start-page: 705
  year: 2003
  ident: 2020011102321388800_bib46
  article-title: Slice sampling
  publication-title: Ann Statist
  doi: 10.1214/aos/1056562461
– volume: 3
  start-page: 1
  year: 2011
  ident: 2020011102321388800_bib141
  article-title: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000016
– volume: 469
  start-page: 282
  year: 2011
  ident: 2020011102321388800_bib1
  article-title: High-energy physics: down the petabyte highway
  publication-title: Nature
  doi: 10.1038/469282a
– year: 2013
  ident: 2020011102321388800_bib195
  article-title: Petuum: A Framework for Iterative-Convergent Distributed ML
– volume: 331
  start-page: 703
  year: 2011
  ident: 2020011102321388800_bib3
  article-title: Challenges and Opportunities of Open Data in ecology
  publication-title: Science
  doi: 10.1126/science.1197962
– start-page: 1081
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: 2020011102321388800_bib160
  article-title: Distributed Inference for latent Dirichlet allocation
– year: 2014
  ident: 2020011102321388800_bib157
  article-title: Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching
– start-page: 2951
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 2020011102321388800_bib106
  article-title: Practical Bayesian optimization of machine learning algorithms
– volume: 82
  start-page: 35
  year: 1960
  ident: 2020011102321388800_bib132
  article-title: A New Approach to Linear Filtering and Prediction Problems
  publication-title: J Fluids Eng
– start-page: 1223
  volume-title: Advances in Neural Information Processing Systems
  year: 2013
  ident: 2020011102321388800_bib194
  article-title: More effective distributed ML via a stale synchronous parallel parameter server
– volume: 36
  start-page: 45
  year: 2007
  ident: 2020011102321388800_bib70
  article-title: Sampling the Dirichlet mixture model with slices
  publication-title: Commun Stat
  doi: 10.1080/03610910601096262
– volume-title: Bayesian Nonparametrics
  year: ,
  ident: 2020011102321388800_bib25
– volume: 13
  start-page: 2237
  year: 2012
  ident: 2020011102321388800_bib91
  article-title: MedLDA: maximum margin supervised topic models
  publication-title: JMLR
– volume-title: ASA proceedings of the section on Bayesian statistical science
  year: 1999
  ident: 2020011102321388800_bib82
  article-title: Dependent nonparametric processes
– volume-title: Machine Learning
  year: 1997
  ident: 2020011102321388800_bib5
– volume: 19
  start-page: 419
  year: 2010
  ident: 2020011102321388800_bib145
  article-title: Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures
  publication-title: JCGS
– volume: 10
  start-page: 1
  year: 2001
  ident: 2020011102321388800_bib45
  article-title: The art of data augmentation
  publication-title: JCGS
– start-page: 703
  volume-title: Proceedings of the VLDB Endowment
  year: 2010
  ident: 2020011102321388800_bib161
  article-title: An architecture for parallel topic models
– start-page: 405
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib126
  article-title: Towards scaling up Markov chain Monte Carlo: an adaptive subsampling approach
– volume: 56
  start-page: 1
  year: 2012
  ident: 2020011102321388800_bib62
  article-title: A tutorial on Bayesian nonparametric models
  publication-title: J Math Psychol
  doi: 10.1016/j.jmp.2011.08.004
– volume-title: International Conference on Learning Representations
  year: 2014
  ident: 2020011102321388800_bib110
  article-title: Auto-encoding variational Bayes
– start-page: 181
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib125
  article-title: Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
– ident: 2020011102321388800_bib171
– volume-title: International Conference on Architectural Support for Programming Languages and Operating Systems
  year: 2017
  ident: 2020011102321388800_bib176
  article-title: SaberLDA: Sparsity-Aware Learning of Topic Models on GPUs
  doi: 10.1145/3037697.3037740
– start-page: 1242
  volume-title: Association for the Advancement of Artificial Intelligence
  year: 2014
  ident: 2020011102321388800_bib209
  article-title: Automatic Construction and Natural Language Description of Nonparametric Regression Models
– start-page: 4763
  volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 2020011102321388800_bib94
  article-title: Kernel Bayesian Inference with posterior regularization
– start-page: 3102
  volume-title: Advances in Neural Information Processing Systems
  year: 2013
  ident: 2020011102321388800_bib122
  article-title: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex
– start-page: 1367
  volume-title: International Conference on Machine Learning
  year: 2012
  ident: 2020011102321388800_bib109
  article-title: Variational Bayesian inference with stochastic search
– volume: 50
  start-page: 174
  year: 2002
  ident: 2020011102321388800_bib137
  article-title: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.978374
– volume: 14
  start-page: 1303
  year: 2013
  ident: 2020011102321388800_bib104
  article-title: Stochastic variational inference
  publication-title: JMLR
– volume: 2
  start-page: 26
  year: 2011
  ident: 2020011102321388800_bib163
  article-title: PLDA+: Parallel latent Dirichlet allocation with data placement and pipeline processing
  publication-title: TIST
  doi: 10.1145/1961189.1961198
– volume: 1
  start-page: 121
  year: 2006
  ident: 2020011102321388800_bib66
  article-title: Variational inference for Dirichlet process mixtures
  publication-title: Bayesian Anal
  doi: 10.1214/06-BA104
– volume: 1
  start-page: 1
  year: 2008
  ident: 2020011102321388800_bib33
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000001
– start-page: 1791
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib114
  article-title: Neural Variational Inference and Learning in Belief Networks
– start-page: 551
  year: 2006
  ident: 2020011102321388800_bib134
  article-title: Online Passive-Agressive Algorithms
  publication-title: JMLR
– start-page: 536
  volume-title: J Comput Graph Stat
  year: 2016
  ident: 2020011102321388800_bib174
  article-title: Fast hamiltonian monte carlo using gpu computing
– volume-title: Association for Computational Linguistics
  year: 2013
  ident: 2020011102321388800_bib96
  article-title: Improved Bayesian logistic supervised topic models with data augmentation
– volume-title: Conference on Computer Vision and Pattern Recognition
  year: 2005
  ident: 2020011102321388800_bib49
  article-title: A Bayesian hierarchical model for learning natural scene categories
– volume: 101
  start-page: 1566
  year: 2006
  ident: 2020011102321388800_bib78
  article-title: Hierarchical Dirichlet processes
  publication-title: JASA
  doi: 10.1198/016214506000000302
– volume: 22
  start-page: 59
  year: 2007
  ident: 2020011102321388800_bib111
  article-title: A general framework for the parametrization of hierarchical models
  publication-title: Stat Sci
  doi: 10.1214/088342307000000014
– volume: 4
  start-page: 227
  year: 1968
  ident: 2020011102321388800_bib51
  article-title: Prior probabilities
  publication-title: IEEE Trans Sys Sci Cybern
  doi: 10.1109/TSSC.1968.300117
– volume-title: Scaling up machine learning: Parallel and distributed approaches
  year: 2011
  ident: 2020011102321388800_bib181
  doi: 10.1017/CBO9781139042918
– volume: 4
  start-page: 337
  year: 2002
  ident: 2020011102321388800_bib115
  article-title: Langevin Diffusions and Metropolis-Hastings algorithms
  publication-title: Methodol Comput Appl Probab
  doi: 10.1023/A:1023562417138
– start-page: 1096
  volume-title: International Conference on Machine Learning
  year: 2008
  ident: 2020011102321388800_bib13
  article-title: Extracting and composing robust features with denoising autoencoders
  doi: 10.1145/1390156.1390294
– volume: 93
  start-page: 1032
  year: 1998
  ident: 2020011102321388800_bib136
  article-title: Sequential Monte Carlo Methods for Dynamic Systems
  publication-title: JASA
  doi: 10.1080/01621459.1998.10473765
– volume: 87
  start-page: 1098
  year: 1992
  ident: 2020011102321388800_bib138
  article-title: Propagation of probabilities, means and variances in mixed graphical association models
  publication-title: JASA
  doi: 10.1080/01621459.1992.10476265
– start-page: 1656
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib151
  article-title: Scalable and Robust Bayesian Inference via the Median Posterior
– volume: 110
  start-page: 14534
  year: 2013
  ident: 2020011102321388800_bib89
  article-title: Efficient discovery of overlapping communities in massive networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1221839110
– start-page: 1683
  volume-title: International Conference on Machine Learning
  year: 2014
  ident: 2020011102321388800_bib117
  article-title: Stochastic gradient Hamiltonian Monte Carlo
– volume: 3
  start-page: 993
  year: 2003
  ident: 2020011102321388800_bib48
  article-title: Latent Dirichlet allocation
  publication-title: JMLR
– year: 2004
  ident: 2020011102321388800_bib100
  publication-title: Convex Optimization
  doi: 10.1017/CBO9780511804441
– start-page: 1276
  volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: 2020011102321388800_bib87
  article-title: Nonparametric latent feature models for link prediction
– start-page: 879
  volume-title: International World Wide Web Conference
  year: 2012
  ident: 2020011102321388800_bib142
  article-title: Mr. LDA: a flexible large scale topic modeling package using variational inference in MapReduce
  doi: 10.1145/2187836.2187955
– year: 2014
  ident: 2020011102321388800_bib118
  article-title: Ergodicity of approximate MCMC Chains with applications to large data sets
– volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: 2020011102321388800_bib204
– start-page: 675
  year: 2014
  ident: 2020011102321388800_bib206
  article-title: Caffe: Convolutional architecture for fast feature embedding
SSID ssib051367741
ssib050735980
ssj0001257732
Score 2.3470411
SecondaryResourceType review_article
Snippet The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield...
Abstract The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging...
SourceID crossref
oup
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 627
Title Big Learning with Bayesian methods
URI http://lib.cqvip.com/qk/72283X/201704/673781638.html
Volume 4
WOSCitedRecordID wos000412270500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2053-714X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050735980
  issn: 2095-5138
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2053-714X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257732
  issn: 2095-5138
  databaseCode: TOX
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BxcDCQ4AohSoCFgaraew49khRKwYoDEXqFjmJXSqhFJrwWvjtnPOoqFQBS4bkbEWfT7rv7PN3AOcuxyyZaUE4knnClKeI1MolCcUnpwoZR7HSN8FwKMZjeV8V0WQrjvAl7aTZvJO-f7jMqn52fWH7FIzuxrXXIKGxKnQLr_OtCFndT6bcafGDoOhU5iGfIPhd1DqlS7NbdYXHWTp5wZixFKXszbcfQWew_c_f3YGtilU6l6Ub7MKaTvfgtDedOJV-6sSxG65OT31qe2vSKRtHZ_vwMOiPrq5J1RKBxMh8cpJIHknhRYgjUyZxTSQjTGhYHCnMsyga0SQwVDIkHq4fy6SbGM83SHqkiLvapQfQSGepPgSH49rhG0RH4diICcMj7ie2qhQ5iZFNaC3gCJ9L6QtbBRYIS-GacFEDFMaVmrhtavEUlqfaNEQcwhKHJpwtbOuJVlm1EedfDI7-MmjBpmeDblFMewyNfP6qT2Ajfsun2bwN67df_XbhOt9WT7rw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Learning+with+Bayesian+methods&rft.jtitle=%E5%9B%BD%E5%AE%B6%E7%A7%91%E5%AD%A6%E8%AF%84%E8%AE%BA%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Jun+Zhu%3BJianfei+Chen%3BWenbo+Hu%3BBo+Zhang&rft.date=2017-07-01&rft.issn=2095-5138&rft.volume=4&rft.issue=4&rft.spage=627&rft.epage=651&rft_id=info:doi/10.1093%2Fnsr%2Fnwx044&rft.externalDocID=673781638
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F72283X%2F72283X.jpg