Blur Removal Via Blurred-Noisy Image Pair
Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In this article, we propose a novel image deblurring method that does not need to estimate blur kernels. We utilize a pair of images that can be easily acqui...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 30; s. 345 - 359 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In this article, we propose a novel image deblurring method that does not need to estimate blur kernels. We utilize a pair of images that can be easily acquired in low-light situations: (1) a blurred image taken with low shutter speed and low ISO noise; and (2) a noisy image captured with high shutter speed and high ISO noise. Slicing the blurred image into patches, we extend the Gaussian mixture model (GMM) to model the underlying intensity distribution of each patch using the corresponding patches in the noisy image. We compute patch correspondences by analyzing the optical flow between the two images. The Expectation Maximization (EM) algorithm is utilized to estimate the parameters of GMM. To preserve sharp features, we add an additional bilateral term to the objective function in the M-step. We eventually add a detail layer to the deblurred image for refinement. Extensive experiments on both synthetic and real-world data demonstrate that our method outperforms state-of-the-art techniques, in terms of robustness, visual quality, and quantitative metrics. |
|---|---|
| AbstractList | Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In this article, we propose a novel image deblurring method that does not need to estimate blur kernels. We utilize a pair of images that can be easily acquired in low-light situations: (1) a blurred image taken with low shutter speed and low ISO noise; and (2) a noisy image captured with high shutter speed and high ISO noise. Slicing the blurred image into patches, we extend the Gaussian mixture model (GMM) to model the underlying intensity distribution of each patch using the corresponding patches in the noisy image. We compute patch correspondences by analyzing the optical flow between the two images. The Expectation Maximization (EM) algorithm is utilized to estimate the parameters of GMM. To preserve sharp features, we add an additional bilateral term to the objective function in the M-step. We eventually add a detail layer to the deblurred image for refinement. Extensive experiments on both synthetic and real-world data demonstrate that our method outperforms state-of-the-art techniques, in terms of robustness, visual quality, and quantitative metrics. Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In this article, we propose a novel image deblurring method that does not need to estimate blur kernels. We utilize a pair of images that can be easily acquired in low-light situations: (1) a blurred image taken with low shutter speed and low ISO noise; and (2) a noisy image captured with high shutter speed and high ISO noise. Slicing the blurred image into patches, we extend the Gaussian mixture model (GMM) to model the underlying intensity distribution of each patch using the corresponding patches in the noisy image. We compute patch correspondences by analyzing the optical flow between the two images. The Expectation Maximization (EM) algorithm is utilized to estimate the parameters of GMM. To preserve sharp features, we add an additional bilateral term to the objective function in the M-step. We eventually add a detail layer to the deblurred image for refinement. Extensive experiments on both synthetic and real-world data demonstrate that our method outperforms state-of-the-art techniques, in terms of robustness, visual quality, and quantitative metrics.Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In this article, we propose a novel image deblurring method that does not need to estimate blur kernels. We utilize a pair of images that can be easily acquired in low-light situations: (1) a blurred image taken with low shutter speed and low ISO noise; and (2) a noisy image captured with high shutter speed and high ISO noise. Slicing the blurred image into patches, we extend the Gaussian mixture model (GMM) to model the underlying intensity distribution of each patch using the corresponding patches in the noisy image. We compute patch correspondences by analyzing the optical flow between the two images. The Expectation Maximization (EM) algorithm is utilized to estimate the parameters of GMM. To preserve sharp features, we add an additional bilateral term to the objective function in the M-step. We eventually add a detail layer to the deblurred image for refinement. Extensive experiments on both synthetic and real-world data demonstrate that our method outperforms state-of-the-art techniques, in terms of robustness, visual quality, and quantitative metrics. |
| Author | Lu, Xuequan Zhang, Chao He, Ying Gu, Chunzhi |
| Author_xml | – sequence: 1 givenname: Chunzhi orcidid: 0000-0001-7280-337X surname: Gu fullname: Gu, Chunzhi email: gu-cz@monju.fuis.u-fukui.ac.jp organization: School of Engineering, University of Fukui, Fukui, Japan – sequence: 2 givenname: Xuequan orcidid: 0000-0003-0959-408X surname: Lu fullname: Lu, Xuequan email: xuequan.lu@deakin.edu.au organization: School of Information Technology, Deakin University, Geelong, VIC, Australia – sequence: 3 givenname: Ying orcidid: 0000-0002-6749-4485 surname: He fullname: He, Ying email: yhe@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Chao orcidid: 0000-0002-0845-9217 surname: Zhang fullname: Zhang, Chao email: zhang@u-fukui.ac.jp organization: School of Engineering, University of Fukui, Fukui, Japan |
| BookMark | eNp9kMtLw0AQxhep2IfeBS8BL3pInX03Ry0-CkWLVK9hs5nIljSpu4nQ_96UFg89CAMzDL_vm-Ebkl5VV0jIJYUxpZDcLWeLMQMGYw5caSFPyIAmgsYAgvW6GaSONRVJnwxDWAFQIak6I33O6UR1BgNy-1C2PnrHdf1jyujTmWi38JjHr7UL22i2Nl8YLYzz5-S0MGXAi0MfkY-nx-X0JZ6_Pc-m9_PYciaaOAeWcctsriwrEjsxhhWMUiV1Vqgko3mRYZ7bbKJRK4R8AhkVItcSwUhukI_Izd534-vvFkOTrl2wWJamwroNKRMKtOIaVIdeH6GruvVV992OkkLwJJEdBXvK-joEj0W68W5t_DalkO5iTLsY012M6SHGTqKOJNY1pnF11Xjjyv-EV3uhQ8S_OwmTXTH-C4zQfUs |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1007_s00371_024_03632_8 crossref_primary_10_1016_j_icte_2025_06_003 crossref_primary_10_1016_j_patcog_2022_108716 crossref_primary_10_1109_JIOT_2023_3268285 crossref_primary_10_3390_s24196425 crossref_primary_10_1111_mice_70001 crossref_primary_10_1109_TNNLS_2023_3329712 crossref_primary_10_1051_smdo_2025008 crossref_primary_10_1134_S1054661822030270 crossref_primary_10_1007_s11263_022_01633_5 crossref_primary_10_1109_TCSVT_2021_3135337 crossref_primary_10_3390_s23083784 |
| Cites_doi | 10.1109/ICCV.2011.6126544 10.1111/j.1467-8659.2012.03211.x 10.1109/CVPR.2017.35 10.1109/TIP.2020.3015545 10.1109/CVPR.2014.430 10.1007/978-1-4757-5348-6_24 10.1109/CVPR.2005.38 10.1109/CVPR.2017.738 10.1109/ICCV.2015.36 10.1145/1618452.1618491 10.1109/CVPR.2015.7298852 10.1007/s11263-011-0502-7 10.1109/CVPR.2010.5539941 10.1109/CVPR.2010.5540158 10.1109/CVPR.2014.374 10.1007/BF01420984 10.1109/ICCV.2015.76 10.1007/3-540-45103-X_50 10.1109/TIP.2020.2972109 10.1007/3-540-57956-7_5 10.1109/TIP.2014.2362059 10.1109/ICCV.2017.486 10.1109/CVPR.2019.00181 10.1109/CVPR.2018.00345 10.1007/s11263-010-0390-2 10.1109/CVPR.2014.432 10.1109/ICIP.2016.7533014 10.1109/TIP.2015.2442914 10.1109/CVPR.2009.5206815 10.1117/12.766355 10.1109/ICCV.2011.6126278 10.1109/TCOM.1983.1095851 10.1016/j.cviu.2019.102792 10.1109/CVPR.2013.147 10.1145/1141911.1141956 10.1109/CVPR.2010.5540171 10.1109/TIP.2017.2753658 10.1109/TIP.2016.2590318 10.1109/TVCG.2017.2725948 10.1016/j.jcp.2009.04.022 10.1109/MLSP.2016.7738841 10.1109/TIP.2020.3005515 10.1111/j.2517-6161.1977.tb01600.x 10.1109/ICIP.2017.8296824 10.1109/CVPR.2013.140 10.1109/CVPR.2011.5995521 10.5120/20396-2697 10.1364/DIPA.2010.DMC1 10.1109/TIP.2014.2323127 10.1109/ICIP.2016.7532658 10.1145/1360612.1360672 10.1145/1276377.1276379 10.1364/JOSA.62.000055 10.1109/ICCV.1998.710815 10.1109/CVPR.2008.4587834 10.1007/978-3-642-33715-4_46 10.1109/TIP.2018.2874290 10.1109/CVPR.2011.5995351 10.1007/978-3-642-15549-9_12 10.1109/TIP.2011.2108306 10.1109/ICCCI.2016.7479956 10.1109/TIP.2011.2175740 10.1109/TPAMI.2010.46 10.1109/CVPR.2018.00854 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2020.3036745 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 359 |
| ExternalDocumentID | 10_1109_TIP_2020_3036745 9259252 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Grant CY01-251301-F003-PJ03906-PG00447 and Grant PJ06625 – fundername: Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant-in-Aid for Scientific Research) grantid: JP20K19568 funderid: 10.13039/501100001691 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c324t-d02b3c2cd6c2f9c8aa2f211657bf69b1dfbeddcb87e76e0d80b144d75e0a53ae3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595466700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 09:20:04 EDT 2025 Mon Jun 30 10:14:22 EDT 2025 Tue Nov 18 22:32:50 EST 2025 Sat Nov 29 03:21:13 EST 2025 Wed Aug 27 02:27:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-d02b3c2cd6c2f9c8aa2f211657bf69b1dfbeddcb87e76e0d80b144d75e0a53ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0845-9217 0000-0002-6749-4485 0000-0003-0959-408X 0000-0001-7280-337X |
| PMID | 33186109 |
| PQID | 2465443995 |
| PQPubID | 85429 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9259252 crossref_primary_10_1109_TIP_2020_3036745 crossref_citationtrail_10_1109_TIP_2020_3036745 proquest_miscellaneous_2460763706 proquest_journals_2465443995 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref54 ref10 artin (ref1) 2016 bishop (ref6) 1995 wang (ref51) 2014 ref17 ref16 ref19 ref18 ref50 lu (ref34) 2018; 24 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 zoran (ref70) 2012 ref5 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref2 ref39 ref38 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 lu (ref32) 2018 ref60 ref62 ref61 chen (ref11) 2008 |
| References_xml | – ident: ref41 doi: 10.1109/ICCV.2011.6126544 – ident: ref12 doi: 10.1111/j.1467-8659.2012.03211.x – ident: ref38 doi: 10.1109/CVPR.2017.35 – ident: ref61 doi: 10.1109/TIP.2020.3015545 – ident: ref22 doi: 10.1109/CVPR.2014.430 – ident: ref24 doi: 10.1007/978-1-4757-5348-6_24 – ident: ref7 doi: 10.1109/CVPR.2005.38 – ident: ref57 doi: 10.1109/CVPR.2017.738 – ident: ref53 doi: 10.1109/ICCV.2015.36 – ident: ref13 doi: 10.1145/1618452.1618491 – ident: ref15 doi: 10.1109/CVPR.2015.7298852 – ident: ref52 doi: 10.1007/s11263-011-0502-7 – ident: ref68 doi: 10.1109/CVPR.2010.5539941 – ident: ref23 doi: 10.1109/CVPR.2010.5540158 – ident: ref63 doi: 10.1109/CVPR.2014.374 – ident: ref5 doi: 10.1007/BF01420984 – start-page: 7226 year: 2018 ident: ref32 article-title: Unsupervised articulated skeleton extraction from point set sequences captured by a single depth camera publication-title: Proc AAAI – ident: ref10 doi: 10.1109/ICCV.2015.76 – ident: ref19 doi: 10.1007/3-540-45103-X_50 – ident: ref60 doi: 10.1109/TIP.2020.2972109 – ident: ref39 doi: 10.1007/3-540-57956-7_5 – ident: ref27 doi: 10.1109/TIP.2014.2362059 – ident: ref45 doi: 10.1109/ICCV.2017.486 – ident: ref21 doi: 10.1109/CVPR.2019.00181 – ident: ref50 doi: 10.1109/CVPR.2018.00345 – ident: ref4 doi: 10.1007/s11263-010-0390-2 – ident: ref25 doi: 10.1109/CVPR.2014.432 – ident: ref46 doi: 10.1109/ICIP.2016.7533014 – ident: ref16 doi: 10.1109/TIP.2015.2442914 – ident: ref30 doi: 10.1109/CVPR.2009.5206815 – ident: ref14 doi: 10.1117/12.766355 – ident: ref69 doi: 10.1109/ICCV.2011.6126278 – ident: ref8 doi: 10.1109/TCOM.1983.1095851 – ident: ref33 doi: 10.1016/j.cviu.2019.102792 – ident: ref55 doi: 10.1109/CVPR.2013.147 – ident: ref20 doi: 10.1145/1141911.1141956 – ident: ref66 doi: 10.1109/CVPR.2010.5540171 – ident: ref56 doi: 10.1109/TIP.2017.2753658 – start-page: 1736 year: 2012 ident: ref70 article-title: Natural images, Gaussian mixtures and dead leaves publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref35 doi: 10.1109/TIP.2016.2590318 – volume: 24 start-page: 2315 year: 2018 ident: ref34 article-title: GPF: GMM-inspired feature-preserving point set filtering publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2017.2725948 – ident: ref9 doi: 10.1016/j.jcp.2009.04.022 – ident: ref47 doi: 10.1109/MLSP.2016.7738841 – ident: ref59 doi: 10.1109/TIP.2020.3005515 – ident: ref17 doi: 10.1111/j.2517-6161.1977.tb01600.x – year: 2014 ident: ref51 article-title: Recent progress in image deblurring publication-title: arXiv 1409 6838 – ident: ref62 doi: 10.1109/ICIP.2017.8296824 – ident: ref64 doi: 10.1109/CVPR.2013.140 – year: 2016 ident: ref1 publication-title: Geometric Algebra – year: 1995 ident: ref6 publication-title: Neural Networks for Pattern Recognition – ident: ref28 doi: 10.1109/CVPR.2011.5995521 – ident: ref49 doi: 10.5120/20396-2697 – ident: ref44 doi: 10.1364/DIPA.2010.DMC1 – ident: ref65 doi: 10.1109/TIP.2014.2323127 – ident: ref2 doi: 10.1109/ICIP.2016.7532658 – ident: ref42 doi: 10.1145/1360612.1360672 – ident: ref58 doi: 10.1145/1276377.1276379 – ident: ref40 doi: 10.1364/JOSA.62.000055 – ident: ref48 doi: 10.1109/ICCV.1998.710815 – start-page: 1 year: 2008 ident: ref11 article-title: Robust dual motion deblurring publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref26 doi: 10.1109/CVPR.2008.4587834 – ident: ref67 doi: 10.1007/978-3-642-33715-4_46 – ident: ref3 doi: 10.1109/TIP.2018.2874290 – ident: ref31 doi: 10.1109/CVPR.2011.5995351 – ident: ref54 doi: 10.1007/978-3-642-15549-9_12 – ident: ref18 doi: 10.1109/TIP.2011.2108306 – ident: ref36 doi: 10.1109/ICCCI.2016.7479956 – ident: ref43 doi: 10.1109/TIP.2011.2175740 – ident: ref37 doi: 10.1109/TPAMI.2010.46 – ident: ref29 doi: 10.1109/CVPR.2018.00854 |
| SSID | ssj0014516 |
| Score | 2.5170722 |
| Snippet | Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In this article,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 345 |
| SubjectTerms | Algorithms Cameras Estimation Gaussian mixture model Image acquisition Image deblurring Image restoration Kernel Noise measurement optical flow Optical flow (image analysis) Optical imaging Parameter estimation Probabilistic models Robustness (mathematics) Slicing |
| Title | Blur Removal Via Blurred-Noisy Image Pair |
| URI | https://ieeexplore.ieee.org/document/9259252 https://www.proquest.com/docview/2465443995 https://www.proquest.com/docview/2460763706 |
| Volume | 30 |
| WOSCitedRecordID | wos000595466700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB5ck0N6iPNoifNiA70EsrWslfU4tiEhvhhTkuDboicYEm9Y24X--4zk9RJIKfS27I4WMRqN5qVvAL5RwlXQVObBFiJH_ysGmqzPA-eMFBErMITUbEJMJnI2U9MOXLd3Ybz3qfjMf4-PKZfvKruOobKBQludjlDhfhKCb-5qtRmD2HA2ZTZHIhdo9m9TkkQNHsZTdAQp-qeorgWLzWpwFpKnKsR3p1Fqr_JBJ6eD5q73f1Pch73GoMx-bCTgADp-cQi9xrjMmq27PITP75AHj-Dq5_O6zn75lwolLXua6yy-qL3LJ9V8-Scbv6CeyaZ6Xn-Bx7vbh5v7vOmakFs0jla5I9QUllrHLQ3KSq1poBFkR5jAlRm6YLxz1kjhBffESWLQqXJi5IkeFdoXX6G7qBb-GDIzpDZiRQ2tYowZqYixBWOUOcO0LEgfBlvulbaBFI-dLZ7L5FoQVSLry8j6smF9H67aEa8bOI1_0B5F_rZ0DWv7cLZdoLLZb8uSRli46FrhqMv2M-6UmP7QC1-tEw1BbSoIP_n7n09hl8aKlRRgOYPuql77c9ixv1fzZX2BQjeTF0no3gAVds5h |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEB5EhaMP3sX1WuG8CKduNk2b5lFFcVGXRfYcfCu5woJupbsr-O-dZLtFOCL4VtqkhC-TyUxm8g3Ab0oy4STNY6cTHqP_5Q-atI1dljGSeK5A50KxCd7r5U9Por8Af5q7MNbakHxmz_1jiOWbUk_9UVlboK1OU1S4SyljlMxuazUxA19yNsQ2Ux5zNPznQUki2oNuH11Bih4qKmzOfLkaHEeehTzET_tRKLDyn1YOW83N-s8GuQFrtUkZXcxkYBMW7GgL1mvzMqoX73gLVj9xD27D2eXztIoe7UuJshb9G8rIv6isiXvlcPwedV9Q00R9Oax24O_N9eDqNq7rJsQazaNJbAhViabaZJo6oXMpqaOeZocrlwnVMU5ZY7TKueWZJSYnCt0qw1NLZJpIm-zC4qgc2T2IVIdqzxbV0YIxpnJBlE4Qe2YUk3lCWtCeo1fomlTc17Z4LoJzQUSB0Bce-qKGvgVnTY_XGaHGN223Pb5NuxraFhzOJ6ioV9y4oJ4YzjtX2Ou0-YxrxQdA5MiW09CGoD7lJNv_-s8n8Ot28HBf3Hd7dwewQn3-SjhuOYTFSTW1R7Cs3ybDcXUcRO8DIMzQwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blur+Removal+Via+Blurred-Noisy+Image+Pair&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Gu%2C+Chunzhi&rft.au=Lu%2C+Xuequan&rft.au=He%2C+Ying&rft.au=Zhang%2C+Chao&rft.date=2021&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=30&rft.spage=345&rft.epage=359&rft_id=info:doi/10.1109%2FTIP.2020.3036745&rft_id=info%3Apmid%2F33186109&rft.externalDocID=9259252 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |