Mapping Forest Canopy Fuels in the Western United States with LiDAR–Landsat Covariance

Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral indices...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 12; no. 6; p. 1000
Main Authors: Moran, Christopher J., Kane, Van R., Seielstad, Carl A.
Format: Journal Article
Language:English
Published: Basel MDPI AG 20.03.2020
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral indices to map the canopy fuel attributes needed for wildfire predictions: canopy cover (CC), canopy height (CH), canopy base height (CBH), and canopy bulk density (CBD). A single, gradient boosting machine (GBM) model using data from all landscapes is able to characterize these relationships with only small reductions in model performance (mean 0.04 reduction in R²) compared to local GBM models trained on individual landscapes. Model evaluations on independent LiDAR datasets show the single global model outperforming local models (mean 0.24 increase in R²), indicating improved model generality. The global GBM model significantly improves performance over existing LANDFIRE canopy fuels data products (R² ranging from 0.15 to 0.61 vs. −3.94 to −0.374). The ability to automatically update canopy fuels following wildfire disturbance is also evaluated, and results show intuitive reductions in canopy fuels for high and moderate fire severity classes and little to no change for unburned to low fire severity classes. Improved canopy fuel mapping and the ability to apply the same predictive model on an annual basis enhances forest, fuel, and fire management.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12061000