Mapping Forest Canopy Fuels in the Western United States with LiDAR–Landsat Covariance

Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral indices...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 12; číslo 6; s. 1000
Hlavní autoři: Moran, Christopher J., Kane, Van R., Seielstad, Carl A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 20.03.2020
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral indices to map the canopy fuel attributes needed for wildfire predictions: canopy cover (CC), canopy height (CH), canopy base height (CBH), and canopy bulk density (CBD). A single, gradient boosting machine (GBM) model using data from all landscapes is able to characterize these relationships with only small reductions in model performance (mean 0.04 reduction in R²) compared to local GBM models trained on individual landscapes. Model evaluations on independent LiDAR datasets show the single global model outperforming local models (mean 0.24 increase in R²), indicating improved model generality. The global GBM model significantly improves performance over existing LANDFIRE canopy fuels data products (R² ranging from 0.15 to 0.61 vs. −3.94 to −0.374). The ability to automatically update canopy fuels following wildfire disturbance is also evaluated, and results show intuitive reductions in canopy fuels for high and moderate fire severity classes and little to no change for unburned to low fire severity classes. Improved canopy fuel mapping and the ability to apply the same predictive model on an annual basis enhances forest, fuel, and fire management.
AbstractList Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral indices to map the canopy fuel attributes needed for wildfire predictions: canopy cover (CC), canopy height (CH), canopy base height (CBH), and canopy bulk density (CBD). A single, gradient boosting machine (GBM) model using data from all landscapes is able to characterize these relationships with only small reductions in model performance (mean 0.04 reduction in R²) compared to local GBM models trained on individual landscapes. Model evaluations on independent LiDAR datasets show the single global model outperforming local models (mean 0.24 increase in R²), indicating improved model generality. The global GBM model significantly improves performance over existing LANDFIRE canopy fuels data products (R² ranging from 0.15 to 0.61 vs. −3.94 to −0.374). The ability to automatically update canopy fuels following wildfire disturbance is also evaluated, and results show intuitive reductions in canopy fuels for high and moderate fire severity classes and little to no change for unburned to low fire severity classes. Improved canopy fuel mapping and the ability to apply the same predictive model on an annual basis enhances forest, fuel, and fire management.
Author Kane, Van R.
Moran, Christopher J.
Seielstad, Carl A.
Author_xml – sequence: 1
  givenname: Christopher J.
  surname: Moran
  fullname: Moran, Christopher J.
– sequence: 2
  givenname: Van R.
  surname: Kane
  fullname: Kane, Van R.
– sequence: 3
  givenname: Carl A.
  surname: Seielstad
  fullname: Seielstad, Carl A.
BookMark eNptkd9qFTEQxoNUsLa98QkC3ohwNH92k93LcuyxhSMFa9G7MJvMtjlskzXJUXrnO_QNfRJTj6KUXmXI_L6P-Waek70QAxLygrM3UvbsbcpcMMUZY0_IvmBaLBrRi73_6mfkKOdNBZiUvGfNPvnyAebZhyu6iglzoUsIcb6lqy1OmfpAyzXSz7WBKdDL4As6elGgYKbffbmma__u-OPPH3drCC5DlcdvkDwEi4fk6QhTxqM_7wG5XJ18Wp4u1ufvz5bH64WVoikLO2g3WNUxDmLg3PVCjj26VtUBB8fV2ErXcc6ssr0GJ1rHBsm44tggaMnlATnb-boIGzMnfwPp1kTw5vdHTFcGUvF2QqOtboUaQAthm5bDgKPSlnUMEDXCWL1e7bzmFL9ua2pz47PFaYKAcZuN6LtWiUbppqIvH6CbuE2hJjVCdkI2TPP74diOsinmnHA01tft-RhKAj8Zzsz95cy_y1XJ6weSv5kegX8B7DyZ2g
CitedBy_id crossref_primary_10_1016_j_ecoinf_2025_103135
crossref_primary_10_1016_j_ecoinf_2025_103168
crossref_primary_10_1016_j_envsoft_2024_106286
crossref_primary_10_1016_j_forpol_2021_102405
crossref_primary_10_1186_s42408_024_00285_9
crossref_primary_10_1002_ecs2_4096
crossref_primary_10_3389_ffgc_2022_818713
crossref_primary_10_1080_10095020_2024_2429376
crossref_primary_10_3390_rs15051378
crossref_primary_10_1007_s10661_024_12703_1
crossref_primary_10_3389_fpls_2023_1237988
crossref_primary_10_1016_j_earscirev_2025_105064
crossref_primary_10_1016_j_jenvman_2023_118736
crossref_primary_10_1109_TGRS_2021_3123585
crossref_primary_10_1007_s40725_024_00223_7
crossref_primary_10_3390_f12081011
crossref_primary_10_3390_f15020225
Cites_doi 10.3390/fire2030049
10.1186/s13021-018-0104-6
10.1016/j.foreco.2012.11.003
10.1016/j.foreco.2012.06.030
10.1007/978-3-642-40669-0_33
10.1071/WF08132
10.1214/aos/1013203451
10.1016/j.foreco.2011.11.021
10.1109/LGRS.2005.857030
10.1080/07038992.2014.987376
10.14358/PERS.80.2.143-150
10.1191/0309133303pp360ra
10.1007/BF00317729
10.1016/j.rse.2015.09.008
10.1016/j.rse.2014.10.004
10.5194/hess-10-101-2006
10.1139/x04-213
10.1016/j.neucom.2018.11.100
10.1139/x00-142
10.1016/0034-4257(85)90102-6
10.3390/rs10020209
10.3390/rs8070565
10.4996/fireecology.1201103
10.1080/2150704X.2014.915434
10.1016/j.isprsjprs.2014.11.007
10.1016/j.ecoinf.2010.03.004
10.1155/2011/168473
10.1016/j.rse.2003.12.014
10.1016/j.rse.2014.01.023
10.1016/j.rse.2004.10.013
10.1016/j.rse.2016.01.015
10.1126/science.1244693
10.1016/j.rse.2016.02.023
10.1007/978-0-387-21606-5
10.1139/cjfr-2016-0086
10.1080/02827581.2010.496739
10.3390/rs70912563
10.1046/j.1466-822x.2002.00303.x
10.1080/01431160110106113
10.1016/j.rse.2015.12.024
10.1016/j.rse.2009.11.002
10.1139/X09-102
10.1029/2009JG000993
10.1016/j.rse.2006.01.021
10.1016/j.rse.2010.07.008
10.1016/j.foreco.2004.02.049
10.1016/j.rse.2004.12.022
10.1016/j.rse.2013.08.048
10.3390/fire1030049
10.1029/2008JG000870
10.1071/WF11079
10.1016/j.foreco.2015.09.007
10.3390/fire2020035
10.1016/j.foreco.2008.04.014
10.1073/pnas.1607171113
10.1016/j.rse.2015.09.004
10.1016/j.isprsjprs.2014.03.003
10.1073/pnas.1617464114
10.1016/j.rse.2008.09.012
10.1111/j.1365-2699.2009.02268.x
10.2737/RMRS-GTR-220
10.1080/2150704X.2015.1029086
10.1080/01431160110119416
10.1139/cjfr-2015-0006
10.1016/j.foreco.2019.117659
10.1016/S0378-1127(01)00575-8
10.1071/WF08088
10.1145/2934664
10.1016/j.rse.2018.04.005
10.1111/j.1365-2656.2008.01390.x
10.1071/WF07010
10.1016/S0034-4257(02)00056-1
10.1641/0006-3568(2004)054[0511:HSRRSD]2.0.CO;2
10.1371/journal.pone.0147121
10.1021/es902455e
10.1080/01431160903380656
10.1016/j.rse.2007.06.011
10.3133/ofr20131057
10.1016/j.rse.2007.03.032
10.1016/j.rse.2010.02.016
10.1016/j.rse.2012.11.024
10.1139/X10-024
10.1016/j.rse.2017.12.020
10.5589/m09-038
10.1016/0034-4257(92)90056-P
10.1071/WF08086
10.1016/j.rse.2016.01.023
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12061000
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7c7526ba722c451abef67c080aee7eaf
10_3390_rs12061000
GeographicLocations United States--US
Western United States
GeographicLocations_xml – name: United States--US
– name: Western United States
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c324t-cb7dbc6801a2b11d923f9ed56331bd16f53d8110c6c97ad25d0b30161e4ea7313
IEDL.DBID M7S
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526820600102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:01:29 EDT 2025
Fri Sep 05 11:18:55 EDT 2025
Mon Oct 20 02:42:08 EDT 2025
Sat Nov 29 07:14:30 EST 2025
Tue Nov 18 22:17:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-cb7dbc6801a2b11d923f9ed56331bd16f53d8110c6c97ad25d0b30161e4ea7313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2382340711?pq-origsite=%requestingapplication%
PQID 2382340711
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7c7526ba722c451abef67c080aee7eaf
proquest_miscellaneous_2985624674
proquest_journals_2382340711
crossref_citationtrail_10_3390_rs12061000
crossref_primary_10_3390_rs12061000
PublicationCentury 2000
PublicationDate 20200320
PublicationDateYYYYMMDD 2020-03-20
PublicationDate_xml – month: 03
  year: 2020
  text: 20200320
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_93
ref_92
Ryan (ref_10) 2013; 294
ref_91
Calkin (ref_14) 2011; 109
Frazier (ref_43) 2014; 92
ref_90
Wiedinmyer (ref_12) 2010; 44
Cochrane (ref_9) 2012; 21
Smith (ref_73) 2009; 35
Stojanova (ref_39) 2010; 5
Erdody (ref_97) 2010; 114
Bell (ref_68) 2015; 358
Sorenson (ref_107) 2006; 10
Friedman (ref_61) 2001; 29
ref_95
Ellsworth (ref_1) 1993; 96
Franklin (ref_2) 2002; 155
ref_19
Roy (ref_103) 2016; 185
Cruz (ref_96) 2010; 19
Lutz (ref_108) 2010; 37
Wilkes (ref_41) 2015; 7
Branco (ref_67) 2019; 343
Natkin (ref_64) 2013; 7
Opperman (ref_17) 2011; 2011
Lefsky (ref_32) 2002; 11
Kennedy (ref_105) 2010; 114
Williams (ref_18) 2013; 294
Baig (ref_78) 2014; 5
Lefsky (ref_83) 2001; 31
Zald (ref_47) 2016; 176
ref_20
Lefsky (ref_44) 2005; 95
Hudak (ref_36) 2002; 82
ref_27
Crist (ref_76) 1985; 17
Mutlu (ref_109) 2008; 253
ref_71
ref_70
Shugart (ref_3) 2010; 115
Makela (ref_25) 2004; 196
Tomppo (ref_24) 2008; 112
Peterson (ref_52) 2015; 6
ref_79
Lim (ref_30) 2003; 27
ref_75
ref_74
Kane (ref_31) 2010; 40
Keane (ref_94) 2005; 35
Pascual (ref_38) 2010; 31
Kane (ref_5) 2019; 454
Ohmann (ref_26) 2014; 151
Elith (ref_60) 2008; 77
ref_82
McRoberts (ref_23) 2010; 25
ref_81
Zaharia (ref_84) 2016; 59
ref_89
Pierce (ref_102) 2009; 39
Ager (ref_15) 2012; 267
ref_88
ref_87
ref_86
ref_85
Strunk (ref_34) 2014; 2
Maltamo (ref_29) 2016; 46
Andersen (ref_53) 2005; 94
Abatzoglou (ref_21) 2016; 113
Hermosilla (ref_100) 2015; 170
Bouvier (ref_33) 2015; 156
Hopkinson (ref_72) 2009; 113
ref_57
Mousivand (ref_59) 2014; 145
ref_56
Riano (ref_54) 2004; 92
Moran (ref_4) 2018; 211
Ahmed (ref_40) 2015; 101
Huang (ref_77) 2002; 23
Popescu (ref_55) 2008; 112
Roy (ref_101) 2016; 176
Chen (ref_63) 2010; 114
Hawbaker (ref_28) 2009; 114
Hansen (ref_42) 2016; 185
Banskota (ref_106) 2014; 40
Schoennagel (ref_22) 2017; 114
Jakubowski (ref_98) 2013; 130
ref_69
ref_66
Shang (ref_6) 2020; 84
ref_62
Liang (ref_13) 2008; 17
Lawrence (ref_58) 2015; 170
Margolis (ref_45) 2015; 45
Collins (ref_8) 2011; 57
LaRue (ref_48) 2018; 73
Ichii (ref_99) 2002; 23
Wulder (ref_7) 2004; 54
Cohen (ref_50) 1992; 41
Hyde (ref_37) 2006; 102
ref_110
Masek (ref_80) 2006; 3
Hansen (ref_35) 2013; 342
Rollins (ref_16) 2009; 18
ref_104
Bell (ref_46) 2018; 13
Matasci (ref_49) 2018; 209
Reeves (ref_51) 2009; 18
Cawley (ref_65) 2010; 11
Drury (ref_11) 2016; 12
References_xml – ident: ref_74
– ident: ref_20
  doi: 10.3390/fire2030049
– volume: 11
  start-page: 2079
  year: 2010
  ident: ref_65
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 15
  year: 2018
  ident: ref_46
  article-title: Multiscale divergence between Landsat and lidar-based biomass mapping is related to regional variation in canopy cover and composition
  publication-title: Carbon Balance Manag.
  doi: 10.1186/s13021-018-0104-6
– volume: 294
  start-page: 208
  year: 2013
  ident: ref_10
  article-title: LANDFIRE—A national vegetation/fuels data base for use in fuels treatment, restoration, and suppression planning
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2012.11.003
– ident: ref_88
– volume: 294
  start-page: 4
  year: 2013
  ident: ref_18
  article-title: Exploring the onset of high-impact mega-fires through a forest land management prism
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2012.06.030
– ident: ref_66
  doi: 10.1007/978-3-642-40669-0_33
– volume: 19
  start-page: 377
  year: 2010
  ident: ref_96
  article-title: Assessing crown fire potential in coniferous forests of western North America: A critique of current approaches and recent simulation studies
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08132
– ident: ref_71
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_61
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 267
  start-page: 271
  year: 2012
  ident: ref_15
  article-title: Analyzing wildfire exposure and source-sink relationships on a fire prone forest landscape
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2011.11.021
– volume: 3
  start-page: 68
  year: 2006
  ident: ref_80
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geo. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.857030
– volume: 7
  start-page: 1
  year: 2013
  ident: ref_64
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front. Neurorob.
– ident: ref_56
– volume: 40
  start-page: 362
  year: 2014
  ident: ref_106
  article-title: Forest monitoring using Landsat time series data: A review
  publication-title: Can. J. Rem. Sens.
  doi: 10.1080/07038992.2014.987376
– volume: 2
  start-page: 143
  year: 2014
  ident: ref_34
  article-title: Prediction of forest attributes with field plots, Landsat, and a sample of lidar strips: A case study on the Kenai Peninsula, Alaska
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.80.2.143-150
– volume: 27
  start-page: 88
  year: 2003
  ident: ref_30
  article-title: LiDAR remote sensing of forest structure
  publication-title: Prog. Phys. Geogr.
  doi: 10.1191/0309133303pp360ra
– volume: 96
  start-page: 169
  year: 1993
  ident: ref_1
  article-title: Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest
  publication-title: Oecologia
  doi: 10.1007/BF00317729
– volume: 170
  start-page: 115
  year: 2015
  ident: ref_58
  article-title: The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.008
– volume: 156
  start-page: 322
  year: 2015
  ident: ref_33
  article-title: Generalizing predictive models of forestry inventory attributes using an area-based approach with airborne LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.004
– volume: 10
  start-page: 101
  year: 2006
  ident: ref_107
  article-title: On the calculation of the topographic wetness index: Evaluation of different methods based on field observations
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
  doi: 10.5194/hess-10-101-2006
– volume: 35
  start-page: 724
  year: 2005
  ident: ref_94
  article-title: Estimating forest canopy bulk density using six indirect methods
  publication-title: Can. J. For. Res.
  doi: 10.1139/x04-213
– volume: 343
  start-page: 76
  year: 2019
  ident: ref_67
  article-title: Pre-processing approaches for imbalanced distributions in regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.100
– volume: 31
  start-page: 78
  year: 2001
  ident: ref_83
  article-title: An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon
  publication-title: Can. J. For. Res.
  doi: 10.1139/x00-142
– volume: 17
  start-page: 301
  year: 1985
  ident: ref_76
  article-title: A TM Tasseled Cap equivalent transformation for reflectance factor data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(85)90102-6
– ident: ref_82
  doi: 10.3390/rs10020209
– ident: ref_27
  doi: 10.3390/rs8070565
– volume: 12
  start-page: 103
  year: 2016
  ident: ref_11
  article-title: The interagency fuels treatment decision support system: Functionality for fuels treatment planning
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.1201103
– volume: 5
  start-page: 423
  year: 2014
  ident: ref_78
  article-title: Derivation of tasseled cap transformation based on Landsat 8 at-satellite reflectance
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2014.915434
– ident: ref_86
– ident: ref_92
– volume: 73
  start-page: 420
  year: 2018
  ident: ref_48
  article-title: Linking Landsat to terrestrial LiDAR: Vegetation metrics of forest greenness are correlated with canopy structural complexity
  publication-title: Int. J. Appl. Earth Obs.
– volume: 101
  start-page: 89
  year: 2015
  ident: ref_40
  article-title: Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the random forest algorithm
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2014.11.007
– volume: 5
  start-page: 256
  year: 2010
  ident: ref_39
  article-title: Estimating vegetation height and canopy cover from remotely sensed data with machine learning
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2010.03.004
– volume: 2011
  start-page: 168473
  year: 2011
  ident: ref_17
  article-title: Developing the US Wildland Fire Decision Support System
  publication-title: J. Combust.
  doi: 10.1155/2011/168473
– volume: 92
  start-page: 345
  year: 2004
  ident: ref_54
  article-title: Generation of crown bulk density for Pinus sylvestris L. from Lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.014
– volume: 145
  start-page: 131
  year: 2014
  ident: ref_59
  article-title: Global sensitivity analysis of spectral radiance of a soil-vegetation system
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.023
– volume: 94
  start-page: 441
  year: 2005
  ident: ref_53
  article-title: Estimating forest canopy fuel parameters using LIDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.10.013
– ident: ref_75
– volume: 176
  start-page: 188
  year: 2016
  ident: ref_47
  article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.015
– volume: 342
  start-page: 850
  year: 2013
  ident: ref_35
  article-title: High-resolution global maps of 21-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– volume: 185
  start-page: 221
  year: 2016
  ident: ref_42
  article-title: Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.023
– ident: ref_62
  doi: 10.1007/978-0-387-21606-5
– volume: 109
  start-page: 274
  year: 2011
  ident: ref_14
  article-title: A real-time risk assessment tool supporting wildland fire decisionmaking
  publication-title: J. For.
– volume: 46
  start-page: 1138
  year: 2016
  ident: ref_29
  article-title: Large-scale prediction of aboveground biomass in heterogeneous mountain forests by means of airborne laser scanning
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2016-0086
– ident: ref_89
– volume: 25
  start-page: 368
  year: 2010
  ident: ref_23
  article-title: Advances and emerging issues in national forest inventories
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827581.2010.496739
– ident: ref_70
– volume: 7
  start-page: 12563
  year: 2015
  ident: ref_41
  article-title: Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data
  publication-title: Remote Sens.
  doi: 10.3390/rs70912563
– ident: ref_95
– volume: 11
  start-page: 393
  year: 2002
  ident: ref_32
  article-title: Lidar remote sensing of above-ground biomass in three biomes
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822x.2002.00303.x
– volume: 23
  start-page: 1741
  year: 2002
  ident: ref_77
  article-title: Derivation of tasseled cap transformation based on Landsat 7 at-satellite reflectance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110106113
– volume: 185
  start-page: 57
  year: 2016
  ident: ref_103
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.024
– volume: 114
  start-page: 725
  year: 2010
  ident: ref_97
  article-title: Fusion of LiDAR and imagery for estimating forest canopy fuels
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.11.002
– ident: ref_90
– volume: 39
  start-page: 1901
  year: 2009
  ident: ref_102
  article-title: Mapping wildland fuels and forest structure for land management: A comparison of nearest neighbor imputation and other methods
  publication-title: Can. J. For. Res.
  doi: 10.1139/X09-102
– volume: 115
  start-page: 1
  year: 2010
  ident: ref_3
  article-title: Importance of structure and its measurement in quantifying function of forest ecoystems
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JG000993
– volume: 84
  start-page: 101956
  year: 2020
  ident: ref_6
  article-title: Update and spatial extension of strategic forest inventories using time series remote sensing and modeling
  publication-title: Int. J. Appl. Earth Obs.
– volume: 102
  start-page: 63
  year: 2006
  ident: ref_37
  article-title: Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.01.021
– volume: 114
  start-page: 2897
  year: 2010
  ident: ref_105
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
– volume: 196
  start-page: 245
  year: 2004
  ident: ref_25
  article-title: Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2004.02.049
– volume: 95
  start-page: 549
  year: 2005
  ident: ref_44
  article-title: Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.12.022
– volume: 151
  start-page: 3
  year: 2014
  ident: ref_26
  article-title: Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.048
– ident: ref_19
  doi: 10.3390/fire1030049
– volume: 114
  start-page: G00E04
  year: 2009
  ident: ref_28
  article-title: Improved estimates of forest vegetation structure and biomass with a LiDAR-optimized sampling design
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JG000870
– ident: ref_69
– volume: 21
  start-page: 357
  year: 2012
  ident: ref_9
  article-title: Estimation of wildfire size and risk changes due to fuels treatments
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF11079
– volume: 358
  start-page: 154
  year: 2015
  ident: ref_68
  article-title: Imputed forest structure uncertainty varies across elevational and longitudinal gradients in the western Cascade Mountains, Oregon, USA
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.09.007
– ident: ref_87
– ident: ref_93
  doi: 10.3390/fire2020035
– volume: 253
  start-page: 289
  year: 2008
  ident: ref_109
  article-title: Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2008.04.014
– volume: 113
  start-page: 11770
  year: 2016
  ident: ref_21
  article-title: Impact of anthropogenic climate change on wildfire across western US forests
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1607171113
– volume: 170
  start-page: 121
  year: 2015
  ident: ref_100
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.004
– volume: 92
  start-page: 137
  year: 2014
  ident: ref_43
  article-title: Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2014.03.003
– volume: 114
  start-page: 4582
  year: 2017
  ident: ref_22
  article-title: Adapt to more wildfire in western North American forests as climate changes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1617464114
– ident: ref_110
– volume: 113
  start-page: 275
  year: 2009
  ident: ref_72
  article-title: Testing LiDAR models of fractional cover across multiple forest ecozones
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.012
– volume: 37
  start-page: 936
  year: 2010
  ident: ref_108
  article-title: Climatic water deficit, tree species ranges, and climate change in Yosemite National Park
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2009.02268.x
– ident: ref_57
  doi: 10.2737/RMRS-GTR-220
– volume: 6
  start-page: 247
  year: 2015
  ident: ref_52
  article-title: Automated integration of lidar into the LANDFIRE product suite
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2015.1029086
– volume: 23
  start-page: 3873
  year: 2002
  ident: ref_99
  article-title: Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110119416
– volume: 45
  start-page: 838
  year: 2015
  ident: ref_45
  article-title: Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2015-0006
– volume: 454
  start-page: 117659
  year: 2019
  ident: ref_5
  article-title: First-entry wildfires can create opening and tree clump patterns characteristic of resilient forests
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.117659
– volume: 155
  start-page: 399
  year: 2002
  ident: ref_2
  article-title: Disturbance and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(01)00575-8
– volume: 18
  start-page: 235
  year: 2009
  ident: ref_16
  article-title: LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08088
– volume: 59
  start-page: 56
  year: 2016
  ident: ref_84
  article-title: Apache spark: A unified engine for big data processing
  publication-title: Commun. ACM
  doi: 10.1145/2934664
– volume: 211
  start-page: 154
  year: 2018
  ident: ref_4
  article-title: A data-driven framework to identify and compare forest structure classes using LiDAR
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.005
– volume: 77
  start-page: 802
  year: 2008
  ident: ref_60
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 17
  start-page: 650
  year: 2008
  ident: ref_13
  article-title: Factors influencing large wildland fire suppression expenditures
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07010
– volume: 82
  start-page: 397
  year: 2002
  ident: ref_36
  article-title: Integrationg of lidar and Landsat ETM+ data for estimating and mapping forest canopy height
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00056-1
– volume: 54
  start-page: 511
  year: 2004
  ident: ref_7
  article-title: High spatial resolution remotely sensed data for ecosystem characterization
  publication-title: BioScience
  doi: 10.1641/0006-3568(2004)054[0511:HSRRSD]2.0.CO;2
– ident: ref_104
  doi: 10.1371/journal.pone.0147121
– volume: 44
  start-page: 1926
  year: 2010
  ident: ref_12
  article-title: Prescribed fire as a means of reducing forest carbon emissions in the western United States
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es902455e
– ident: ref_79
– volume: 31
  start-page: 1261
  year: 2010
  ident: ref_38
  article-title: Relationship between LiDAR-derived forest canopy height and Landsat images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903380656
– volume: 112
  start-page: 767
  year: 2008
  ident: ref_55
  article-title: A voxel-based lidar method for estimating crown base height for deciduous and pine trees
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.06.011
– ident: ref_81
  doi: 10.3133/ofr20131057
– volume: 112
  start-page: 1982
  year: 2008
  ident: ref_24
  article-title: Combining national forest inventory field plot and remote sensing data for forest databases
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.03.032
– volume: 114
  start-page: 1610
  year: 2010
  ident: ref_63
  article-title: Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.02.016
– ident: ref_85
– volume: 130
  start-page: 245
  year: 2013
  ident: ref_98
  article-title: Tradeoffs between lidar pulse density and forest measurement accuracy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.11.024
– volume: 40
  start-page: 761
  year: 2010
  ident: ref_31
  article-title: Comparisons between field- and LiDAR-based measures of stand structural complexity
  publication-title: Can. J. For. Res.
  doi: 10.1139/X10-024
– volume: 57
  start-page: 77
  year: 2011
  ident: ref_8
  article-title: Simulating fire and forest dynamics for a landscape fuel treatment project in the Sierra Nevada
  publication-title: For. Sci.
– volume: 209
  start-page: 90
  year: 2018
  ident: ref_49
  article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.020
– volume: 35
  start-page: 447
  year: 2009
  ident: ref_73
  article-title: A cross-comparison of field, spectral, and lidar estimates of forest canopy cover
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m09-038
– ident: ref_91
– volume: 41
  start-page: 1
  year: 1992
  ident: ref_50
  article-title: Estimating structural attributes of douglas-fir/western hemlock forest stands from Landsat and SPOT imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90056-P
– volume: 18
  start-page: 250
  year: 2009
  ident: ref_51
  article-title: Spatial fuel data products of the LANDFIRE project
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF08086
– volume: 176
  start-page: 255
  year: 2016
  ident: ref_101
  article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.023
SSID ssj0000331904
Score 2.3247635
Snippet Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1000
SubjectTerms Accuracy
Algorithms
als
Bulk density
Canopies
canopy base height
canopy bulk density
canopy cover
canopy fuel mapping
canopy height
Covariance
data collection
Datasets
fire behavior
fire severity
Forest & brush fires
forest canopy
Forest management
Forests
Fuels
fuels (fire ecology)
gradient boosting machine
Landsat
Landsat satellites
landscapes
Lidar
Machine learning
Mapping
model validation
Performance enhancement
prediction
Prediction models
Prescribed fire
Remote sensing
Risk assessment
Risk taking
Spatial data
Variables
Western United States
Wildfires
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4igl7EJ64vInrxUGyStmmPvhYPKiKKeyuTR3VBuss-BG_-B_-hv8SZtq4LCl68tlNIZ5KZ72uabxg7gNCAUIULQGZhEMWFCkyBxNWoLAbSyxIFVM0m9PV12ulkN1OtvuifsFoeuHbckbY6lokBLaWNYgHGF4kmeWzwXnsoKPuGOpsiU1UOVji1wqjWI1XI648GQyGxdoV0lG2qAlVC_T_ycFVc2ktssUGF_LgezTKb8eUKm28alD-9rrLOFZCQwiOnVprDET-Fstd_5e0xljbeLTnCOP5Qix7wGkbyGkZy-tDKL7tnx7cfb--XdLAX8PHeC3JkCvgau2-f351eBE1ThMAi9hkF1mhnbIKFBaQRwiFAKzLv4gTf2DiRFLFyKdZ0m9hMg5OxC40iXOcjD1oJtc5my17pNxg3GBokJDa1IUSR8yZJPVZsa7JIg4ySFjv8clRuG8VwalzxnCNzIKfm305tsf2Jbb_WyfjV6oT8PbEgbevqAkY8byKe_xXxFtv-ilbeLLhhLmk_k8ipaLG9yW1cKrT_AaXvjdEmSxHtUXuVzf8YxxZbkES-Q4WpZpvNjgZjv8Pm7MuoOxzsVvPxE6pO5n0
  priority: 102
  providerName: Directory of Open Access Journals
Title Mapping Forest Canopy Fuels in the Western United States with LiDAR–Landsat Covariance
URI https://www.proquest.com/docview/2382340711
https://www.proquest.com/docview/2985624674
https://doaj.org/article/7c7526ba722c451abef67c080aee7eaf
Volume 12
WOSCitedRecordID wos000526820600102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRaIX3qgL7coILhyixnYSJyfUx65AaldRAbFwicaPlJVQsmx2K_WC-A_8Q34JM0l2iwTiwsWHeBJFnrHnm7H9DWMvIDQgVOkCkFkYRHGpAlNi4GpUFgPxZYkS2mITejJJp9Ms7xNuTX-scr0mtgu1qy3lyA8kbVhR9CFezb8GVDWKdlf7Eho32TaxJIj26N7bTY4lVGhgYdSxkiqM7g8WjZDowUK60PabH2rp-v9YjVsXM777vz93j93pwSU_7KzhPrvhqwfsdl_n_PPVQzY9A-JjuOBUkbNZ8mOo6vkVH6_QQ_JZxREN8g8ddwLv0Cjv0CinfC0_nZ0cnv_8_uOU7gcDvl5fYqhNdvOIvR-P3h2_DvraCoFFCLUMrNHO2AT9E0gjhEOcV2bexQkOmXEiKWPlUoQGNrGZBidjFxpF8NBHHrQS6jHbqurK7zJuUMMY19jUhhBFzpsk9ej4rckiDTJKBuzleqQL2xOPU_2LLwUGIKSV4lorA_Z8Izvv6Db-KnVECttIEEV2-6BeXBT9jCu01bFMDGgpbRQLML5MNPGqg_faQzlge2tdFv28bYprRQ7Ys003zjjaRoHK1yuUyVIEjVSl5cm_P_GU7UiKzkOFa9Ee21ouVn6f3bKXy1mzGLLto9EkPx-2WYBha7jUfhthm8efsD9_c5Z__AXSWfm1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKVLZ8EYECgwCFiysemb8XCBUWqJGTaIIFRFW7sx4XCIhO9hJUXb8A__BR_El3OtHigRi1wVbezyS7eN7z73jOQfguXK14jJLHSVi1_H8TDo6w8JVy9hXpJfFM1WbTYSTSTSbxdMt-NHthaHfKruYWAfqtDDUI98TtGBF1Qd_vfjikGsUra52FhoNLI7t-iuWbNWr4SG-3xdCDN6eHBw5rauAY5A8LB2jw1SbACOzEprzFBlOFtvUD6TkOuVB5ss0wqRoAhOHKhV-6mpJxMh6VoWSS5z3Cmx7BPYebE-H4-nHTVfHxUli12t0UKWM3b2y4gJzpktb6H7LfLVBwB_xv05qgxv_2-O4Cddb-sz2G7zfgi2b34ad1sn90_oOzMaKFCfOGHmOVkt2oPJisWaDFXIANs8Z8l32oVGHYA3fZg3fZtSRZqP54f67n9--j2gHtMLLi3NVUt_H3oX3l3Jj96CXF7m9D0wjhrFyM5FxleelVgeRRWpjdOyFSnhBH152bzYxrbQ6OXx8TrDEIhQkFyjow7PN2EUjKPLXUW8IIJsRJAJeHyjKs6SNKUloQl8EWoVCGM_nStssCEk5XlkbWpX1YbfDTtJGpiq5AE4fnm5OY0yhhSKV22KFY-IIaTH50Dz49xRPYOfoZDxKRsPJ8UO4JqgX4UqMvLvQW5Yr-wiumvPlvCoftx8Kg9PLBuMv85lQ_A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tCwIu_KMtLGAEHDhEje0kTg4ILVsqVluqCoGo9hJsx9mthJLStIt64x14Gx6HJ2EmP10kELc9cE0mlhJ_mflmbM8H8FT7RnOZZ54Wie8FYS49k2PiamQSauqXxXNdi02o8TieTpPJFvzozsLQtsrOJ9aOOist1cj7ghasKPvg_bzdFjEZDF_Ov3ikIEUrrZ2cRgORQ7f-iulb9eJggHP9TIjh6_f7b7xWYcCzSCSWnjUqMzZCL62F4TxDtpMnLgsjKbnJeJSHMosxQNrIJkpnIsx8I4kkucBpJbnEcS_ARYU5Jm0nnIRHm_qOj0MkftB0RJUy8fuLiguMnj4dpvstBtZSAX9Egjq8Da__zx_mBlxrSTXba_6Cm7DliltwpdV3P1nfhulbTX0ojhkpkVZLtq-Lcr5mwxUyAzYrGLJg9rHpGcEaFs4aFs6oTs1Gs8Heu5_fvo_oXLTGx8tTvaBqkLsDH87lxe7CdlEWbgeYQWRjPmdj6-sgyJyJYoeEx5okUFoEUQ-ed7Oc2rbhOul-fE4x8SJEpGeI6MGTje28aTPyV6tXBJaNBbUGry-Ui-O09TSpsioUkdFKCBuEXBuXR4r6yWvnlNN5D3Y7HKWtv6rSMxD14PHmNnoaWj7ShStXaJPESJZJnebev4d4BJcRgenoYHx4H64KKlD4Et3xLmwvFyv3AC7Z0-WsWjys_xgGn84bib8AE_xYXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Forest+Canopy+Fuels+in+the+Western+United+States+with+LiDAR%E2%80%93Landsat+Covariance&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Moran%2C+Christopher+J.&rft.au=Kane%2C+Van+R.&rft.au=Seielstad%2C+Carl+A.&rft.date=2020-03-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=6&rft.spage=1000&rft_id=info:doi/10.3390%2Frs12061000&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12061000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon