Mapping Forest Canopy Fuels in the Western United States with LiDAR–Landsat Covariance
Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral indices...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 12; číslo 6; s. 1000 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
20.03.2020
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral indices to map the canopy fuel attributes needed for wildfire predictions: canopy cover (CC), canopy height (CH), canopy base height (CBH), and canopy bulk density (CBD). A single, gradient boosting machine (GBM) model using data from all landscapes is able to characterize these relationships with only small reductions in model performance (mean 0.04 reduction in R²) compared to local GBM models trained on individual landscapes. Model evaluations on independent LiDAR datasets show the single global model outperforming local models (mean 0.24 increase in R²), indicating improved model generality. The global GBM model significantly improves performance over existing LANDFIRE canopy fuels data products (R² ranging from 0.15 to 0.61 vs. −3.94 to −0.374). The ability to automatically update canopy fuels following wildfire disturbance is also evaluated, and results show intuitive reductions in canopy fuels for high and moderate fire severity classes and little to no change for unburned to low fire severity classes. Improved canopy fuel mapping and the ability to apply the same predictive model on an annual basis enhances forest, fuel, and fire management. |
|---|---|
| AbstractList | Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest treatments. Here, a collection of light detection and ranging (LiDAR) datasets from the western US are fused with Landsat-derived spectral indices to map the canopy fuel attributes needed for wildfire predictions: canopy cover (CC), canopy height (CH), canopy base height (CBH), and canopy bulk density (CBD). A single, gradient boosting machine (GBM) model using data from all landscapes is able to characterize these relationships with only small reductions in model performance (mean 0.04 reduction in R²) compared to local GBM models trained on individual landscapes. Model evaluations on independent LiDAR datasets show the single global model outperforming local models (mean 0.24 increase in R²), indicating improved model generality. The global GBM model significantly improves performance over existing LANDFIRE canopy fuels data products (R² ranging from 0.15 to 0.61 vs. −3.94 to −0.374). The ability to automatically update canopy fuels following wildfire disturbance is also evaluated, and results show intuitive reductions in canopy fuels for high and moderate fire severity classes and little to no change for unburned to low fire severity classes. Improved canopy fuel mapping and the ability to apply the same predictive model on an annual basis enhances forest, fuel, and fire management. |
| Author | Kane, Van R. Moran, Christopher J. Seielstad, Carl A. |
| Author_xml | – sequence: 1 givenname: Christopher J. surname: Moran fullname: Moran, Christopher J. – sequence: 2 givenname: Van R. surname: Kane fullname: Kane, Van R. – sequence: 3 givenname: Carl A. surname: Seielstad fullname: Seielstad, Carl A. |
| BookMark | eNptkd9qFTEQxoNUsLa98QkC3ohwNH92k93LcuyxhSMFa9G7MJvMtjlskzXJUXrnO_QNfRJTj6KUXmXI_L6P-Waek70QAxLygrM3UvbsbcpcMMUZY0_IvmBaLBrRi73_6mfkKOdNBZiUvGfNPvnyAebZhyu6iglzoUsIcb6lqy1OmfpAyzXSz7WBKdDL4As6elGgYKbffbmma__u-OPPH3drCC5DlcdvkDwEi4fk6QhTxqM_7wG5XJ18Wp4u1ufvz5bH64WVoikLO2g3WNUxDmLg3PVCjj26VtUBB8fV2ErXcc6ssr0GJ1rHBsm44tggaMnlATnb-boIGzMnfwPp1kTw5vdHTFcGUvF2QqOtboUaQAthm5bDgKPSlnUMEDXCWL1e7bzmFL9ua2pz47PFaYKAcZuN6LtWiUbppqIvH6CbuE2hJjVCdkI2TPP74diOsinmnHA01tft-RhKAj8Zzsz95cy_y1XJ6weSv5kegX8B7DyZ2g |
| CitedBy_id | crossref_primary_10_1016_j_ecoinf_2025_103135 crossref_primary_10_1016_j_ecoinf_2025_103168 crossref_primary_10_1016_j_envsoft_2024_106286 crossref_primary_10_1016_j_forpol_2021_102405 crossref_primary_10_1186_s42408_024_00285_9 crossref_primary_10_1002_ecs2_4096 crossref_primary_10_3389_ffgc_2022_818713 crossref_primary_10_1080_10095020_2024_2429376 crossref_primary_10_3390_rs15051378 crossref_primary_10_1007_s10661_024_12703_1 crossref_primary_10_3389_fpls_2023_1237988 crossref_primary_10_1016_j_earscirev_2025_105064 crossref_primary_10_1016_j_jenvman_2023_118736 crossref_primary_10_1109_TGRS_2021_3123585 crossref_primary_10_1007_s40725_024_00223_7 crossref_primary_10_3390_f12081011 crossref_primary_10_3390_f15020225 |
| Cites_doi | 10.3390/fire2030049 10.1186/s13021-018-0104-6 10.1016/j.foreco.2012.11.003 10.1016/j.foreco.2012.06.030 10.1007/978-3-642-40669-0_33 10.1071/WF08132 10.1214/aos/1013203451 10.1016/j.foreco.2011.11.021 10.1109/LGRS.2005.857030 10.1080/07038992.2014.987376 10.14358/PERS.80.2.143-150 10.1191/0309133303pp360ra 10.1007/BF00317729 10.1016/j.rse.2015.09.008 10.1016/j.rse.2014.10.004 10.5194/hess-10-101-2006 10.1139/x04-213 10.1016/j.neucom.2018.11.100 10.1139/x00-142 10.1016/0034-4257(85)90102-6 10.3390/rs10020209 10.3390/rs8070565 10.4996/fireecology.1201103 10.1080/2150704X.2014.915434 10.1016/j.isprsjprs.2014.11.007 10.1016/j.ecoinf.2010.03.004 10.1155/2011/168473 10.1016/j.rse.2003.12.014 10.1016/j.rse.2014.01.023 10.1016/j.rse.2004.10.013 10.1016/j.rse.2016.01.015 10.1126/science.1244693 10.1016/j.rse.2016.02.023 10.1007/978-0-387-21606-5 10.1139/cjfr-2016-0086 10.1080/02827581.2010.496739 10.3390/rs70912563 10.1046/j.1466-822x.2002.00303.x 10.1080/01431160110106113 10.1016/j.rse.2015.12.024 10.1016/j.rse.2009.11.002 10.1139/X09-102 10.1029/2009JG000993 10.1016/j.rse.2006.01.021 10.1016/j.rse.2010.07.008 10.1016/j.foreco.2004.02.049 10.1016/j.rse.2004.12.022 10.1016/j.rse.2013.08.048 10.3390/fire1030049 10.1029/2008JG000870 10.1071/WF11079 10.1016/j.foreco.2015.09.007 10.3390/fire2020035 10.1016/j.foreco.2008.04.014 10.1073/pnas.1607171113 10.1016/j.rse.2015.09.004 10.1016/j.isprsjprs.2014.03.003 10.1073/pnas.1617464114 10.1016/j.rse.2008.09.012 10.1111/j.1365-2699.2009.02268.x 10.2737/RMRS-GTR-220 10.1080/2150704X.2015.1029086 10.1080/01431160110119416 10.1139/cjfr-2015-0006 10.1016/j.foreco.2019.117659 10.1016/S0378-1127(01)00575-8 10.1071/WF08088 10.1145/2934664 10.1016/j.rse.2018.04.005 10.1111/j.1365-2656.2008.01390.x 10.1071/WF07010 10.1016/S0034-4257(02)00056-1 10.1641/0006-3568(2004)054[0511:HSRRSD]2.0.CO;2 10.1371/journal.pone.0147121 10.1021/es902455e 10.1080/01431160903380656 10.1016/j.rse.2007.06.011 10.3133/ofr20131057 10.1016/j.rse.2007.03.032 10.1016/j.rse.2010.02.016 10.1016/j.rse.2012.11.024 10.1139/X10-024 10.1016/j.rse.2017.12.020 10.5589/m09-038 10.1016/0034-4257(92)90056-P 10.1071/WF08086 10.1016/j.rse.2016.01.023 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs12061000 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_7c7526ba722c451abef67c080aee7eaf 10_3390_rs12061000 |
| GeographicLocations | United States--US Western United States |
| GeographicLocations_xml | – name: United States--US – name: Western United States |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c324t-cb7dbc6801a2b11d923f9ed56331bd16f53d8110c6c97ad25d0b30161e4ea7313 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526820600102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:01:29 EDT 2025 Fri Sep 05 11:18:55 EDT 2025 Mon Oct 20 02:42:08 EDT 2025 Sat Nov 29 07:14:30 EST 2025 Tue Nov 18 22:17:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-cb7dbc6801a2b11d923f9ed56331bd16f53d8110c6c97ad25d0b30161e4ea7313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2382340711?pq-origsite=%requestingapplication% |
| PQID | 2382340711 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7c7526ba722c451abef67c080aee7eaf proquest_miscellaneous_2985624674 proquest_journals_2382340711 crossref_citationtrail_10_3390_rs12061000 crossref_primary_10_3390_rs12061000 |
| PublicationCentury | 2000 |
| PublicationDate | 20200320 |
| PublicationDateYYYYMMDD | 2020-03-20 |
| PublicationDate_xml | – month: 03 year: 2020 text: 20200320 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_93 ref_92 Ryan (ref_10) 2013; 294 ref_91 Calkin (ref_14) 2011; 109 Frazier (ref_43) 2014; 92 ref_90 Wiedinmyer (ref_12) 2010; 44 Cochrane (ref_9) 2012; 21 Smith (ref_73) 2009; 35 Stojanova (ref_39) 2010; 5 Erdody (ref_97) 2010; 114 Bell (ref_68) 2015; 358 Sorenson (ref_107) 2006; 10 Friedman (ref_61) 2001; 29 ref_95 Ellsworth (ref_1) 1993; 96 Franklin (ref_2) 2002; 155 ref_19 Roy (ref_103) 2016; 185 Cruz (ref_96) 2010; 19 Lutz (ref_108) 2010; 37 Wilkes (ref_41) 2015; 7 Branco (ref_67) 2019; 343 Natkin (ref_64) 2013; 7 Opperman (ref_17) 2011; 2011 Lefsky (ref_32) 2002; 11 Kennedy (ref_105) 2010; 114 Williams (ref_18) 2013; 294 Baig (ref_78) 2014; 5 Lefsky (ref_83) 2001; 31 Zald (ref_47) 2016; 176 ref_20 Lefsky (ref_44) 2005; 95 Hudak (ref_36) 2002; 82 ref_27 Crist (ref_76) 1985; 17 Mutlu (ref_109) 2008; 253 ref_71 ref_70 Shugart (ref_3) 2010; 115 Makela (ref_25) 2004; 196 Tomppo (ref_24) 2008; 112 Peterson (ref_52) 2015; 6 ref_79 Lim (ref_30) 2003; 27 ref_75 ref_74 Kane (ref_31) 2010; 40 Keane (ref_94) 2005; 35 Pascual (ref_38) 2010; 31 Kane (ref_5) 2019; 454 Ohmann (ref_26) 2014; 151 Elith (ref_60) 2008; 77 ref_82 McRoberts (ref_23) 2010; 25 ref_81 Zaharia (ref_84) 2016; 59 ref_89 Pierce (ref_102) 2009; 39 Ager (ref_15) 2012; 267 ref_88 ref_87 ref_86 ref_85 Strunk (ref_34) 2014; 2 Maltamo (ref_29) 2016; 46 Andersen (ref_53) 2005; 94 Abatzoglou (ref_21) 2016; 113 Hermosilla (ref_100) 2015; 170 Bouvier (ref_33) 2015; 156 Hopkinson (ref_72) 2009; 113 ref_57 Mousivand (ref_59) 2014; 145 ref_56 Riano (ref_54) 2004; 92 Moran (ref_4) 2018; 211 Ahmed (ref_40) 2015; 101 Huang (ref_77) 2002; 23 Popescu (ref_55) 2008; 112 Roy (ref_101) 2016; 176 Chen (ref_63) 2010; 114 Hawbaker (ref_28) 2009; 114 Hansen (ref_42) 2016; 185 Banskota (ref_106) 2014; 40 Schoennagel (ref_22) 2017; 114 Jakubowski (ref_98) 2013; 130 ref_69 ref_66 Shang (ref_6) 2020; 84 ref_62 Liang (ref_13) 2008; 17 Lawrence (ref_58) 2015; 170 Margolis (ref_45) 2015; 45 Collins (ref_8) 2011; 57 LaRue (ref_48) 2018; 73 Ichii (ref_99) 2002; 23 Wulder (ref_7) 2004; 54 Cohen (ref_50) 1992; 41 Hyde (ref_37) 2006; 102 ref_110 Masek (ref_80) 2006; 3 Hansen (ref_35) 2013; 342 Rollins (ref_16) 2009; 18 ref_104 Bell (ref_46) 2018; 13 Matasci (ref_49) 2018; 209 Reeves (ref_51) 2009; 18 Cawley (ref_65) 2010; 11 Drury (ref_11) 2016; 12 |
| References_xml | – ident: ref_74 – ident: ref_20 doi: 10.3390/fire2030049 – volume: 11 start-page: 2079 year: 2010 ident: ref_65 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 15 year: 2018 ident: ref_46 article-title: Multiscale divergence between Landsat and lidar-based biomass mapping is related to regional variation in canopy cover and composition publication-title: Carbon Balance Manag. doi: 10.1186/s13021-018-0104-6 – volume: 294 start-page: 208 year: 2013 ident: ref_10 article-title: LANDFIRE—A national vegetation/fuels data base for use in fuels treatment, restoration, and suppression planning publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.11.003 – ident: ref_88 – volume: 294 start-page: 4 year: 2013 ident: ref_18 article-title: Exploring the onset of high-impact mega-fires through a forest land management prism publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.06.030 – ident: ref_66 doi: 10.1007/978-3-642-40669-0_33 – volume: 19 start-page: 377 year: 2010 ident: ref_96 article-title: Assessing crown fire potential in coniferous forests of western North America: A critique of current approaches and recent simulation studies publication-title: Int. J. Wildland Fire doi: 10.1071/WF08132 – ident: ref_71 – volume: 29 start-page: 1189 year: 2001 ident: ref_61 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 267 start-page: 271 year: 2012 ident: ref_15 article-title: Analyzing wildfire exposure and source-sink relationships on a fire prone forest landscape publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2011.11.021 – volume: 3 start-page: 68 year: 2006 ident: ref_80 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geo. Remote Sens. Lett. doi: 10.1109/LGRS.2005.857030 – volume: 7 start-page: 1 year: 2013 ident: ref_64 article-title: Gradient boosting machines, a tutorial publication-title: Front. Neurorob. – ident: ref_56 – volume: 40 start-page: 362 year: 2014 ident: ref_106 article-title: Forest monitoring using Landsat time series data: A review publication-title: Can. J. Rem. Sens. doi: 10.1080/07038992.2014.987376 – volume: 2 start-page: 143 year: 2014 ident: ref_34 article-title: Prediction of forest attributes with field plots, Landsat, and a sample of lidar strips: A case study on the Kenai Peninsula, Alaska publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.80.2.143-150 – volume: 27 start-page: 88 year: 2003 ident: ref_30 article-title: LiDAR remote sensing of forest structure publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133303pp360ra – volume: 96 start-page: 169 year: 1993 ident: ref_1 article-title: Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest publication-title: Oecologia doi: 10.1007/BF00317729 – volume: 170 start-page: 115 year: 2015 ident: ref_58 article-title: The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.008 – volume: 156 start-page: 322 year: 2015 ident: ref_33 article-title: Generalizing predictive models of forestry inventory attributes using an area-based approach with airborne LiDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.004 – volume: 10 start-page: 101 year: 2006 ident: ref_107 article-title: On the calculation of the topographic wetness index: Evaluation of different methods based on field observations publication-title: Hydrol. Earth Syst. Sci. Discuss. doi: 10.5194/hess-10-101-2006 – volume: 35 start-page: 724 year: 2005 ident: ref_94 article-title: Estimating forest canopy bulk density using six indirect methods publication-title: Can. J. For. Res. doi: 10.1139/x04-213 – volume: 343 start-page: 76 year: 2019 ident: ref_67 article-title: Pre-processing approaches for imbalanced distributions in regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.100 – volume: 31 start-page: 78 year: 2001 ident: ref_83 article-title: An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon publication-title: Can. J. For. Res. doi: 10.1139/x00-142 – volume: 17 start-page: 301 year: 1985 ident: ref_76 article-title: A TM Tasseled Cap equivalent transformation for reflectance factor data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(85)90102-6 – ident: ref_82 doi: 10.3390/rs10020209 – ident: ref_27 doi: 10.3390/rs8070565 – volume: 12 start-page: 103 year: 2016 ident: ref_11 article-title: The interagency fuels treatment decision support system: Functionality for fuels treatment planning publication-title: Fire Ecol. doi: 10.4996/fireecology.1201103 – volume: 5 start-page: 423 year: 2014 ident: ref_78 article-title: Derivation of tasseled cap transformation based on Landsat 8 at-satellite reflectance publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2014.915434 – ident: ref_86 – ident: ref_92 – volume: 73 start-page: 420 year: 2018 ident: ref_48 article-title: Linking Landsat to terrestrial LiDAR: Vegetation metrics of forest greenness are correlated with canopy structural complexity publication-title: Int. J. Appl. Earth Obs. – volume: 101 start-page: 89 year: 2015 ident: ref_40 article-title: Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the random forest algorithm publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2014.11.007 – volume: 5 start-page: 256 year: 2010 ident: ref_39 article-title: Estimating vegetation height and canopy cover from remotely sensed data with machine learning publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2010.03.004 – volume: 2011 start-page: 168473 year: 2011 ident: ref_17 article-title: Developing the US Wildland Fire Decision Support System publication-title: J. Combust. doi: 10.1155/2011/168473 – volume: 92 start-page: 345 year: 2004 ident: ref_54 article-title: Generation of crown bulk density for Pinus sylvestris L. from Lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.014 – volume: 145 start-page: 131 year: 2014 ident: ref_59 article-title: Global sensitivity analysis of spectral radiance of a soil-vegetation system publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.023 – volume: 94 start-page: 441 year: 2005 ident: ref_53 article-title: Estimating forest canopy fuel parameters using LIDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.10.013 – ident: ref_75 – volume: 176 start-page: 188 year: 2016 ident: ref_47 article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.015 – volume: 342 start-page: 850 year: 2013 ident: ref_35 article-title: High-resolution global maps of 21-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – volume: 185 start-page: 221 year: 2016 ident: ref_42 article-title: Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.023 – ident: ref_62 doi: 10.1007/978-0-387-21606-5 – volume: 109 start-page: 274 year: 2011 ident: ref_14 article-title: A real-time risk assessment tool supporting wildland fire decisionmaking publication-title: J. For. – volume: 46 start-page: 1138 year: 2016 ident: ref_29 article-title: Large-scale prediction of aboveground biomass in heterogeneous mountain forests by means of airborne laser scanning publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2016-0086 – ident: ref_89 – volume: 25 start-page: 368 year: 2010 ident: ref_23 article-title: Advances and emerging issues in national forest inventories publication-title: Scand. J. For. Res. doi: 10.1080/02827581.2010.496739 – ident: ref_70 – volume: 7 start-page: 12563 year: 2015 ident: ref_41 article-title: Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite data publication-title: Remote Sens. doi: 10.3390/rs70912563 – ident: ref_95 – volume: 11 start-page: 393 year: 2002 ident: ref_32 article-title: Lidar remote sensing of above-ground biomass in three biomes publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822x.2002.00303.x – volume: 23 start-page: 1741 year: 2002 ident: ref_77 article-title: Derivation of tasseled cap transformation based on Landsat 7 at-satellite reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110106113 – volume: 185 start-page: 57 year: 2016 ident: ref_103 article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.024 – volume: 114 start-page: 725 year: 2010 ident: ref_97 article-title: Fusion of LiDAR and imagery for estimating forest canopy fuels publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.11.002 – ident: ref_90 – volume: 39 start-page: 1901 year: 2009 ident: ref_102 article-title: Mapping wildland fuels and forest structure for land management: A comparison of nearest neighbor imputation and other methods publication-title: Can. J. For. Res. doi: 10.1139/X09-102 – volume: 115 start-page: 1 year: 2010 ident: ref_3 article-title: Importance of structure and its measurement in quantifying function of forest ecoystems publication-title: J. Geophys. Res. doi: 10.1029/2009JG000993 – volume: 84 start-page: 101956 year: 2020 ident: ref_6 article-title: Update and spatial extension of strategic forest inventories using time series remote sensing and modeling publication-title: Int. J. Appl. Earth Obs. – volume: 102 start-page: 63 year: 2006 ident: ref_37 article-title: Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.01.021 – volume: 114 start-page: 2897 year: 2010 ident: ref_105 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.008 – volume: 196 start-page: 245 year: 2004 ident: ref_25 article-title: Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2004.02.049 – volume: 95 start-page: 549 year: 2005 ident: ref_44 article-title: Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.12.022 – volume: 151 start-page: 3 year: 2014 ident: ref_26 article-title: Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.048 – ident: ref_19 doi: 10.3390/fire1030049 – volume: 114 start-page: G00E04 year: 2009 ident: ref_28 article-title: Improved estimates of forest vegetation structure and biomass with a LiDAR-optimized sampling design publication-title: J. Geophys. Res. doi: 10.1029/2008JG000870 – ident: ref_69 – volume: 21 start-page: 357 year: 2012 ident: ref_9 article-title: Estimation of wildfire size and risk changes due to fuels treatments publication-title: Int. J. Wildland Fire doi: 10.1071/WF11079 – volume: 358 start-page: 154 year: 2015 ident: ref_68 article-title: Imputed forest structure uncertainty varies across elevational and longitudinal gradients in the western Cascade Mountains, Oregon, USA publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.09.007 – ident: ref_87 – ident: ref_93 doi: 10.3390/fire2020035 – volume: 253 start-page: 289 year: 2008 ident: ref_109 article-title: Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2008.04.014 – volume: 113 start-page: 11770 year: 2016 ident: ref_21 article-title: Impact of anthropogenic climate change on wildfire across western US forests publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1607171113 – volume: 170 start-page: 121 year: 2015 ident: ref_100 article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.004 – volume: 92 start-page: 137 year: 2014 ident: ref_43 article-title: Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2014.03.003 – volume: 114 start-page: 4582 year: 2017 ident: ref_22 article-title: Adapt to more wildfire in western North American forests as climate changes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1617464114 – ident: ref_110 – volume: 113 start-page: 275 year: 2009 ident: ref_72 article-title: Testing LiDAR models of fractional cover across multiple forest ecozones publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.012 – volume: 37 start-page: 936 year: 2010 ident: ref_108 article-title: Climatic water deficit, tree species ranges, and climate change in Yosemite National Park publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2009.02268.x – ident: ref_57 doi: 10.2737/RMRS-GTR-220 – volume: 6 start-page: 247 year: 2015 ident: ref_52 article-title: Automated integration of lidar into the LANDFIRE product suite publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2015.1029086 – volume: 23 start-page: 3873 year: 2002 ident: ref_99 article-title: Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990 publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110119416 – volume: 45 start-page: 838 year: 2015 ident: ref_45 article-title: Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2015-0006 – volume: 454 start-page: 117659 year: 2019 ident: ref_5 article-title: First-entry wildfires can create opening and tree clump patterns characteristic of resilient forests publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.117659 – volume: 155 start-page: 399 year: 2002 ident: ref_2 article-title: Disturbance and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(01)00575-8 – volume: 18 start-page: 235 year: 2009 ident: ref_16 article-title: LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment publication-title: Int. J. Wildland Fire doi: 10.1071/WF08088 – volume: 59 start-page: 56 year: 2016 ident: ref_84 article-title: Apache spark: A unified engine for big data processing publication-title: Commun. ACM doi: 10.1145/2934664 – volume: 211 start-page: 154 year: 2018 ident: ref_4 article-title: A data-driven framework to identify and compare forest structure classes using LiDAR publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.005 – volume: 77 start-page: 802 year: 2008 ident: ref_60 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – volume: 17 start-page: 650 year: 2008 ident: ref_13 article-title: Factors influencing large wildland fire suppression expenditures publication-title: Int. J. Wildland Fire doi: 10.1071/WF07010 – volume: 82 start-page: 397 year: 2002 ident: ref_36 article-title: Integrationg of lidar and Landsat ETM+ data for estimating and mapping forest canopy height publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00056-1 – volume: 54 start-page: 511 year: 2004 ident: ref_7 article-title: High spatial resolution remotely sensed data for ecosystem characterization publication-title: BioScience doi: 10.1641/0006-3568(2004)054[0511:HSRRSD]2.0.CO;2 – ident: ref_104 doi: 10.1371/journal.pone.0147121 – volume: 44 start-page: 1926 year: 2010 ident: ref_12 article-title: Prescribed fire as a means of reducing forest carbon emissions in the western United States publication-title: Environ. Sci. Tech. doi: 10.1021/es902455e – ident: ref_79 – volume: 31 start-page: 1261 year: 2010 ident: ref_38 article-title: Relationship between LiDAR-derived forest canopy height and Landsat images publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903380656 – volume: 112 start-page: 767 year: 2008 ident: ref_55 article-title: A voxel-based lidar method for estimating crown base height for deciduous and pine trees publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.06.011 – ident: ref_81 doi: 10.3133/ofr20131057 – volume: 112 start-page: 1982 year: 2008 ident: ref_24 article-title: Combining national forest inventory field plot and remote sensing data for forest databases publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.03.032 – volume: 114 start-page: 1610 year: 2010 ident: ref_63 article-title: Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.02.016 – ident: ref_85 – volume: 130 start-page: 245 year: 2013 ident: ref_98 article-title: Tradeoffs between lidar pulse density and forest measurement accuracy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.11.024 – volume: 40 start-page: 761 year: 2010 ident: ref_31 article-title: Comparisons between field- and LiDAR-based measures of stand structural complexity publication-title: Can. J. For. Res. doi: 10.1139/X10-024 – volume: 57 start-page: 77 year: 2011 ident: ref_8 article-title: Simulating fire and forest dynamics for a landscape fuel treatment project in the Sierra Nevada publication-title: For. Sci. – volume: 209 start-page: 90 year: 2018 ident: ref_49 article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.12.020 – volume: 35 start-page: 447 year: 2009 ident: ref_73 article-title: A cross-comparison of field, spectral, and lidar estimates of forest canopy cover publication-title: Can. J. Remote Sens. doi: 10.5589/m09-038 – ident: ref_91 – volume: 41 start-page: 1 year: 1992 ident: ref_50 article-title: Estimating structural attributes of douglas-fir/western hemlock forest stands from Landsat and SPOT imagery publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90056-P – volume: 18 start-page: 250 year: 2009 ident: ref_51 article-title: Spatial fuel data products of the LANDFIRE project publication-title: Int. J. Wildland Fire doi: 10.1071/WF08086 – volume: 176 start-page: 255 year: 2016 ident: ref_101 article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.023 |
| SSID | ssj0000331904 |
| Score | 2.3247635 |
| Snippet | Comprehensive spatial coverage of forest canopy fuels is relied upon by fire management in the US to predict fire behavior, assess risk, and plan forest... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1000 |
| SubjectTerms | Accuracy Algorithms als Bulk density Canopies canopy base height canopy bulk density canopy cover canopy fuel mapping canopy height Covariance data collection Datasets fire behavior fire severity Forest & brush fires forest canopy Forest management Forests Fuels fuels (fire ecology) gradient boosting machine Landsat Landsat satellites landscapes Lidar Machine learning Mapping model validation Performance enhancement prediction Prediction models Prescribed fire Remote sensing Risk assessment Risk taking Spatial data Variables Western United States Wildfires |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4igl7EJ64vInrxUGyStmmPvhYPKiKKeyuTR3VBuss-BG_-B_-hv8SZtq4LCl68tlNIZ5KZ72uabxg7gNCAUIULQGZhEMWFCkyBxNWoLAbSyxIFVM0m9PV12ulkN1OtvuifsFoeuHbckbY6lokBLaWNYgHGF4kmeWzwXnsoKPuGOpsiU1UOVji1wqjWI1XI648GQyGxdoV0lG2qAlVC_T_ycFVc2ktssUGF_LgezTKb8eUKm28alD-9rrLOFZCQwiOnVprDET-Fstd_5e0xljbeLTnCOP5Qix7wGkbyGkZy-tDKL7tnx7cfb--XdLAX8PHeC3JkCvgau2-f351eBE1ThMAi9hkF1mhnbIKFBaQRwiFAKzLv4gTf2DiRFLFyKdZ0m9hMg5OxC40iXOcjD1oJtc5my17pNxg3GBokJDa1IUSR8yZJPVZsa7JIg4ySFjv8clRuG8VwalzxnCNzIKfm305tsf2Jbb_WyfjV6oT8PbEgbevqAkY8byKe_xXxFtv-ilbeLLhhLmk_k8ipaLG9yW1cKrT_AaXvjdEmSxHtUXuVzf8YxxZbkES-Q4WpZpvNjgZjv8Pm7MuoOxzsVvPxE6pO5n0 priority: 102 providerName: Directory of Open Access Journals |
| Title | Mapping Forest Canopy Fuels in the Western United States with LiDAR–Landsat Covariance |
| URI | https://www.proquest.com/docview/2382340711 https://www.proquest.com/docview/2985624674 https://doaj.org/article/7c7526ba722c451abef67c080aee7eaf |
| Volume | 12 |
| WOSCitedRecordID | wos000526820600102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRaIX3qgL7coILhyixnYSJyfUx65AaldRAbFwicaPlJVQsmx2K_WC-A_8Q34JM0l2iwTiwsWHeBJFnrHnm7H9DWMvIDQgVOkCkFkYRHGpAlNi4GpUFgPxZYkS2mITejJJp9Ms7xNuTX-scr0mtgu1qy3lyA8kbVhR9CFezb8GVDWKdlf7Eho32TaxJIj26N7bTY4lVGhgYdSxkiqM7g8WjZDowUK60PabH2rp-v9YjVsXM777vz93j93pwSU_7KzhPrvhqwfsdl_n_PPVQzY9A-JjuOBUkbNZ8mOo6vkVH6_QQ_JZxREN8g8ddwLv0Cjv0CinfC0_nZ0cnv_8_uOU7gcDvl5fYqhNdvOIvR-P3h2_DvraCoFFCLUMrNHO2AT9E0gjhEOcV2bexQkOmXEiKWPlUoQGNrGZBidjFxpF8NBHHrQS6jHbqurK7zJuUMMY19jUhhBFzpsk9ej4rckiDTJKBuzleqQL2xOPU_2LLwUGIKSV4lorA_Z8Izvv6Db-KnVECttIEEV2-6BeXBT9jCu01bFMDGgpbRQLML5MNPGqg_faQzlge2tdFv28bYprRQ7Ys003zjjaRoHK1yuUyVIEjVSl5cm_P_GU7UiKzkOFa9Ee21ouVn6f3bKXy1mzGLLto9EkPx-2WYBha7jUfhthm8efsD9_c5Z__AXSWfm1 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKVLZ8EYECgwCFiysemb8XCBUWqJGTaIIFRFW7sx4XCIhO9hJUXb8A__BR_El3OtHigRi1wVbezyS7eN7z73jOQfguXK14jJLHSVi1_H8TDo6w8JVy9hXpJfFM1WbTYSTSTSbxdMt-NHthaHfKruYWAfqtDDUI98TtGBF1Qd_vfjikGsUra52FhoNLI7t-iuWbNWr4SG-3xdCDN6eHBw5rauAY5A8LB2jw1SbACOzEprzFBlOFtvUD6TkOuVB5ss0wqRoAhOHKhV-6mpJxMh6VoWSS5z3Cmx7BPYebE-H4-nHTVfHxUli12t0UKWM3b2y4gJzpktb6H7LfLVBwB_xv05qgxv_2-O4Cddb-sz2G7zfgi2b34ad1sn90_oOzMaKFCfOGHmOVkt2oPJisWaDFXIANs8Z8l32oVGHYA3fZg3fZtSRZqP54f67n9--j2gHtMLLi3NVUt_H3oX3l3Jj96CXF7m9D0wjhrFyM5FxleelVgeRRWpjdOyFSnhBH152bzYxrbQ6OXx8TrDEIhQkFyjow7PN2EUjKPLXUW8IIJsRJAJeHyjKs6SNKUloQl8EWoVCGM_nStssCEk5XlkbWpX1YbfDTtJGpiq5AE4fnm5OY0yhhSKV22KFY-IIaTH50Dz49xRPYOfoZDxKRsPJ8UO4JqgX4UqMvLvQW5Yr-wiumvPlvCoftx8Kg9PLBuMv85lQ_A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tCwIu_KMtLGAEHDhEje0kTg4ILVsqVluqCoGo9hJsx9mthJLStIt64x14Gx6HJ2EmP10kELc9cE0mlhJ_mflmbM8H8FT7RnOZZ54Wie8FYS49k2PiamQSauqXxXNdi02o8TieTpPJFvzozsLQtsrOJ9aOOist1cj7ghasKPvg_bzdFjEZDF_Ov3ikIEUrrZ2cRgORQ7f-iulb9eJggHP9TIjh6_f7b7xWYcCzSCSWnjUqMzZCL62F4TxDtpMnLgsjKbnJeJSHMosxQNrIJkpnIsx8I4kkucBpJbnEcS_ARYU5Jm0nnIRHm_qOj0MkftB0RJUy8fuLiguMnj4dpvstBtZSAX9Egjq8Da__zx_mBlxrSTXba_6Cm7DliltwpdV3P1nfhulbTX0ojhkpkVZLtq-Lcr5mwxUyAzYrGLJg9rHpGcEaFs4aFs6oTs1Gs8Heu5_fvo_oXLTGx8tTvaBqkLsDH87lxe7CdlEWbgeYQWRjPmdj6-sgyJyJYoeEx5okUFoEUQ-ed7Oc2rbhOul-fE4x8SJEpGeI6MGTje28aTPyV6tXBJaNBbUGry-Ui-O09TSpsioUkdFKCBuEXBuXR4r6yWvnlNN5D3Y7HKWtv6rSMxD14PHmNnoaWj7ShStXaJPESJZJnebev4d4BJcRgenoYHx4H64KKlD4Et3xLmwvFyv3AC7Z0-WsWjys_xgGn84bib8AE_xYXw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Forest+Canopy+Fuels+in+the+Western+United+States+with+LiDAR%E2%80%93Landsat+Covariance&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Moran%2C+Christopher+J.&rft.au=Kane%2C+Van+R.&rft.au=Seielstad%2C+Carl+A.&rft.date=2020-03-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=6&rft.spage=1000&rft_id=info:doi/10.3390%2Frs12061000&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12061000 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |