A Generalized Tensor Formulation for Hyperspectral Image Super-Resolution Under General Spatial Blurring

Hyperspectral super-resolution is commonly accomplished by the fusing of a hyperspectral imaging of low spatial resolution with a multispectral image of high spatial resolution, and many tensor-based approaches to this task have been recently proposed. Yet, it is assumed in such tensor-based methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 47; H. 6; S. 4684 - 4698
Hauptverfasser: Wang, Yinjian, Li, Wei, Gui, Yuanyuan, Du, Qian, Fowler, James E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2025
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hyperspectral super-resolution is commonly accomplished by the fusing of a hyperspectral imaging of low spatial resolution with a multispectral image of high spatial resolution, and many tensor-based approaches to this task have been recently proposed. Yet, it is assumed in such tensor-based methods that the spatial-blurring operation that creates the observed hyperspectral image from the desired super-resolved image is separable into independent horizontal and vertical blurring. Recent work has argued that such separable spatial degradation is ill-equipped to model the operation of real sensors which may exhibit, for example, anisotropic blurring. To accommodate this fact, a generalized tensor formulation based on a Kronecker decomposition is proposed to handle any general spatial-degradation matrix, including those that are not separable as previously assumed. Analysis of the generalized formulation reveals conditions under which exact recovery of the desired super-resolved image is guaranteed, and a practical algorithm for such recovery, driven by a blockwise-group-sparsity regularization, is proposed. Extensive experimental results demonstrate that the proposed generalized tensor approach outperforms not only traditional matrix-based techniques but also state-of-the-art tensor-based methods; the gains with respect to the latter are especially significant in cases of anisotropic spatial blurring.
AbstractList Hyperspectral super-resolution is commonly accomplished by the fusing of a hyperspectral imaging of low spatial resolution with a multispectral image of high spatial resolution, and many tensor-based approaches to this task have been recently proposed. Yet, it is assumed in such tensor-based methods that the spatial-blurring operation that creates the observed hyperspectral image from the desired super-resolved image is separable into independent horizontal and vertical blurring. Recent work has argued that such separable spatial degradation is ill-equipped to model the operation of real sensors which may exhibit, for example, anisotropic blurring. To accommodate this fact, a generalized tensor formulation based on a Kronecker decomposition is proposed to handle any general spatial-degradation matrix, including those that are not separable as previously assumed. Analysis of the generalized formulation reveals conditions under which exact recovery of the desired super-resolved image is guaranteed, and a practical algorithm for such recovery, driven by a blockwise-group-sparsity regularization, is proposed. Extensive experimental results demonstrate that the proposed generalized tensor approach outperforms not only traditional matrix-based techniques but also state-of-the-art tensor-based methods; the gains with respect to the latter are especially significant in cases of anisotropic spatial blurring.
Hyperspectral super-resolution is commonly accomplished by the fusing of a hyperspectral imaging of low spatial resolution with a multispectral image of high spatial resolution, and many tensor-based approaches to this task have been recently proposed. Yet, it is assumed in such tensor-based methods that the spatial-blurring operation that creates the observed hyperspectral image from the desired super-resolved image is separable into independent horizontal and vertical blurring. Recent work has argued that such separable spatial degradation is ill-equipped to model the operation of real sensors which may exhibit, for example, anisotropic blurring. To accommodate this fact, a generalized tensor formulation based on a Kronecker decomposition is proposed to handle any general spatial-degradation matrix, including those that are not separable as previously assumed. Analysis of the generalized formulation reveals conditions under which exact recovery of the desired super-resolved image is guaranteed, and a practical algorithm for such recovery, driven by a blockwise-group-sparsity regularization, is proposed. Extensive experimental results demonstrate that the proposed generalized tensor approach outperforms not only traditional matrix-based techniques but also state-of-the-art tensor-based methods; the gains with respect to the latter are especially significant in cases of anisotropic spatial blurring.Hyperspectral super-resolution is commonly accomplished by the fusing of a hyperspectral imaging of low spatial resolution with a multispectral image of high spatial resolution, and many tensor-based approaches to this task have been recently proposed. Yet, it is assumed in such tensor-based methods that the spatial-blurring operation that creates the observed hyperspectral image from the desired super-resolved image is separable into independent horizontal and vertical blurring. Recent work has argued that such separable spatial degradation is ill-equipped to model the operation of real sensors which may exhibit, for example, anisotropic blurring. To accommodate this fact, a generalized tensor formulation based on a Kronecker decomposition is proposed to handle any general spatial-degradation matrix, including those that are not separable as previously assumed. Analysis of the generalized formulation reveals conditions under which exact recovery of the desired super-resolved image is guaranteed, and a practical algorithm for such recovery, driven by a blockwise-group-sparsity regularization, is proposed. Extensive experimental results demonstrate that the proposed generalized tensor approach outperforms not only traditional matrix-based techniques but also state-of-the-art tensor-based methods; the gains with respect to the latter are especially significant in cases of anisotropic spatial blurring.
Author Li, Wei
Gui, Yuanyuan
Wang, Yinjian
Fowler, James E.
Du, Qian
Author_xml – sequence: 1
  givenname: Yinjian
  surname: Wang
  fullname: Wang, Yinjian
  email: yinjw@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, Beijing, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-7015-7335
  surname: Li
  fullname: Li, Wei
  email: liwei089@ieee.org
  organization: School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, Beijing, China
– sequence: 3
  givenname: Yuanyuan
  surname: Gui
  fullname: Gui, Yuanyuan
  email: 953647315@qq.com
  organization: School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, Beijing, China
– sequence: 4
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  email: du@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
– sequence: 5
  givenname: James E.
  orcidid: 0000-0003-2005-405X
  surname: Fowler
  fullname: Fowler, James E.
  email: fowler@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40031662$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPwzAQhC1UBG3hDyCEcuSSsrYTNzmWij4kEIi2Z8t1NiUoL-zkUH497ktCHLh4beub0WqmRzplVSIhNxQGlEL8sHwbvcwHDFg44GEQCgjPSJdRAX7MYtYhXaCC-VHEokvSs_YTgAYh8AtyGQBwKgTrko-RN8USjcqzb0y8JZa2Mt6kMkWbqyarSi9179m2RmNr1I0DvXmhNugtWvfnv6Ot8nYPrsoEzcnNW9RO7uZj3hqTlZsrcp6q3OL1cfbJavK0HM_859fpfDx69jVnQeNOyjVFQflaaCGGKQ-Ai0hFaxanGKYhuqtmIgnCBEDBmouhcqCIRcD0kPI-uT_41qb6atE2ssisxjxXJVatlZwO95aMO_TuiLbrAhNZm6xQZitP6TggOgDaVNYaTKXOmn0qLocslxTkrgi5L0LuipDHIpyU_ZGe3P8V3R5EGSL-EsTgVhL8B11BlAU
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TGRS_2025_3604437
crossref_primary_10_1109_TIP_2025_3568745
Cites_doi 10.1109/TGRS.2020.2992788
10.1109/JSTSP.2020.3045965
10.1109/CVPR.2014.377
10.1109/TIP.2016.2542360
10.1109/TIP.2021.3061908
10.1117/12.2278004
10.1109/TPAMI.2023.3279050
10.1109/TNNLS.2019.2957527
10.1137/070690729
10.1109/TGRS.2021.3114197
10.1007/978-3-319-10584-0_5
10.1109/TNNLS.2019.2956153
10.1109/TSP.2022.3201330
10.1109/TGRS.2020.3049014
10.1109/TCYB.2019.2910151
10.1109/TGRS.2016.2598784
10.1109/TIP.2020.2968773
10.1109/TGRS.2023.3315970
10.1109/TSP.2018.2876362
10.1109/TSP.2020.2965305
10.1109/TIP.2018.2855418
10.1109/TCYB.2019.2951572
10.1109/TIP.2020.2994411
10.1137/07070111X
10.1109/TGRS.2019.2936486
10.1117/12.2304455
10.1109/TIP.2019.2916734
10.1109/TGRS.2022.3215902
10.1109/TPAMI.2020.3015691
10.1109/TPAMI.2017.2734888
10.1109/CVPR.2015.7298986
10.1109/TIP.2015.2458572
10.1109/TNNLS.2023.3266038
10.1109/MGRS.2016.2637824
10.1109/TGRS.2011.2161320
10.1109/TIP.2018.2836307
10.1109/TSP.2019.2946022
10.1017/9781108779302
10.1109/CVPR52688.2022.00217
10.3390/rs8010013
10.56021/9781421407944
10.1109/TPAMI.2020.3027563
10.1109/TIP.2023.3278080
10.1109/TNNLS.2020.3028772
10.1109/83.743857
10.1109/CVPR.2017.411
10.1109/TIP.2022.3224322
10.1109/ICCV.2015.409
10.1109/TIP.2021.3058590
10.1109/TGRS.2020.2987530
10.1109/TGRS.2017.2766080
10.1109/TIP.2004.829779
10.1109/TPAMI.2022.3163307
10.1109/TNNLS.2022.3181378
10.1109/CVPR.2011.5995457
10.1109/tpami.2022.3213716
10.1109/TGRS.2014.2375320
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TPAMI.2025.3545605
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 4698
ExternalDocumentID 40031662
10_1109_TPAMI_2025_3545605
10904006
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2021YFB3900502
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c324t-c313c1e613b6c667f340368a8b29fe5f5ea8bc26d45d00a0b367ac6669642c713
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484716600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 08:05:48 EDT 2025
Mon Jul 21 06:07:17 EDT 2025
Tue Nov 18 22:27:46 EST 2025
Sat Nov 29 07:54:57 EST 2025
Wed Aug 27 01:53:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-c313c1e613b6c667f340368a8b29fe5f5ea8bc26d45d00a0b367ac6669642c713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7015-7335
0000-0001-8354-7500
0000-0003-2005-405X
PMID 40031662
PQID 3173403623
PQPubID 23479
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2025_3545605
pubmed_primary_40031662
crossref_primary_10_1109_TPAMI_2025_3545605
proquest_miscellaneous_3173403623
ieee_primary_10904006
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref32
  doi: 10.1109/TGRS.2020.2992788
– ident: ref31
  doi: 10.1109/JSTSP.2020.3045965
– ident: ref49
  doi: 10.1109/CVPR.2014.377
– ident: ref11
  doi: 10.1109/TIP.2016.2542360
– ident: ref52
  doi: 10.1109/TIP.2021.3061908
– ident: ref40
  doi: 10.1117/12.2278004
– ident: ref24
  doi: 10.1109/TPAMI.2023.3279050
– ident: ref34
  doi: 10.1109/TNNLS.2019.2957527
– ident: ref43
  doi: 10.1137/070690729
– ident: ref47
  doi: 10.1109/TGRS.2021.3114197
– ident: ref10
  doi: 10.1007/978-3-319-10584-0_5
– ident: ref50
  doi: 10.1109/TNNLS.2019.2956153
– ident: ref54
  doi: 10.1109/TSP.2022.3201330
– ident: ref17
  doi: 10.1109/TGRS.2020.3049014
– ident: ref56
  doi: 10.1109/TCYB.2019.2910151
– ident: ref8
  doi: 10.1109/TGRS.2016.2598784
– ident: ref14
  doi: 10.1109/TIP.2020.2968773
– ident: ref2
  doi: 10.1109/TGRS.2023.3315970
– ident: ref28
  doi: 10.1109/TSP.2018.2876362
– ident: ref30
  doi: 10.1109/TSP.2020.2965305
– ident: ref12
  doi: 10.1109/TIP.2018.2855418
– ident: ref46
  doi: 10.1109/TCYB.2019.2951572
– ident: ref27
  doi: 10.1109/TIP.2020.2994411
– ident: ref44
  doi: 10.1137/07070111X
– ident: ref36
  doi: 10.1109/TGRS.2019.2936486
– ident: ref41
  doi: 10.1117/12.2304455
– ident: ref16
  doi: 10.1109/TIP.2019.2916734
– ident: ref23
  doi: 10.1109/TGRS.2022.3215902
– ident: ref25
  doi: 10.1109/TPAMI.2020.3015691
– ident: ref53
  doi: 10.1109/TPAMI.2017.2734888
– ident: ref19
  doi: 10.1109/CVPR.2015.7298986
– ident: ref20
  doi: 10.1109/TIP.2015.2458572
– ident: ref35
  doi: 10.1109/TNNLS.2023.3266038
– ident: ref1
  doi: 10.1109/MGRS.2016.2637824
– ident: ref6
  doi: 10.1109/TGRS.2011.2161320
– ident: ref29
  doi: 10.1109/TIP.2018.2836307
– ident: ref55
  doi: 10.1109/TSP.2019.2946022
– ident: ref57
  doi: 10.1017/9781108779302
– ident: ref37
  doi: 10.1109/CVPR52688.2022.00217
– ident: ref42
  doi: 10.3390/rs8010013
– ident: ref45
  doi: 10.56021/9781421407944
– ident: ref18
  doi: 10.1109/TPAMI.2020.3027563
– ident: ref22
  doi: 10.1109/TIP.2023.3278080
– ident: ref21
  doi: 10.1109/TNNLS.2020.3028772
– ident: ref3
  doi: 10.1109/83.743857
– ident: ref26
  doi: 10.1109/CVPR.2017.411
– ident: ref38
  doi: 10.1109/TIP.2022.3224322
– ident: ref7
  doi: 10.1109/ICCV.2015.409
– ident: ref15
  doi: 10.1109/TIP.2021.3058590
– ident: ref33
  doi: 10.1109/TGRS.2020.2987530
– ident: ref9
  doi: 10.1109/TGRS.2017.2766080
– ident: ref4
  doi: 10.1109/TIP.2004.829779
– ident: ref39
  doi: 10.1109/TPAMI.2022.3163307
– ident: ref51
  doi: 10.1109/TNNLS.2022.3181378
– ident: ref5
  doi: 10.1109/CVPR.2011.5995457
– ident: ref48
  doi: 10.1109/tpami.2022.3213716
– ident: ref13
  doi: 10.1109/TGRS.2014.2375320
SSID ssj0014503
Score 2.5116925
Snippet Hyperspectral super-resolution is commonly accomplished by the fusing of a hyperspectral imaging of low spatial resolution with a multispectral image of high...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4684
SubjectTerms Anisotropic
Degradation
Hyperspectral imaging
hyperspectral super-resolution
Image fusion
Mathematical models
Matrix decomposition
nonconvex surrogate
Optimization
recoverability
sparse coding
Spatial resolution
Superresolution
tensor factorization
Tensors
Vectors
Title A Generalized Tensor Formulation for Hyperspectral Image Super-Resolution Under General Spatial Blurring
URI https://ieeexplore.ieee.org/document/10904006
https://www.ncbi.nlm.nih.gov/pubmed/40031662
https://www.proquest.com/docview/3173403623
Volume 47
WOSCitedRecordID wos001484716600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60eNCD1Vq1PsoK3iTt5rXbHKtYWtBSsEJvIdlMVNBU-vDgr3d2k5R6qOAlLGF2kzCzmfl2d-YDuEYb_YTz2IolIR0CKKkV2xFaEcckTZXtJJ5JFH6Qw2FnMglGRbK6yYVBRHP4DFu6afbyk6la6qWytj5E6JkC29tSijxZa7Vl4PmGBplCGJrihCPKDBketMej7uOAsKDjt1wdMXDNV-NpexbC-eWQDMPK5mDTOJ1e9Z-vewD7RXTJurk5HMIWZjWolswNrJjINdhbK0N4BK9dVlSffvvGhI0J2U5nrEfRbMHtxSiyZX1CrHliJgmywQf9iNjTku5ZegsgN2BmaJTK0ZjmOyb7ZrfveqExe6nDc-9-fNe3CgYGS1GgtaCr7SobyeXHQgkhU9cjj9eJOrETpOinPlJTOSLxtMIjHrtCRiQoAoI1ivDvMVSyaYanwFJOGN5xYvIN0lOJiAn4SRoChe-h5HYD7FINoSrKk2uWjPfQwBQehEaLodZiWGixATerPp95cY4_petaR2uSuXoacFWqO6S5pTdMogyny3lIsZX5YMdtwEluB6vepfmcbRj1HHb1w_NTZRdQWcyWeAk76mvxNp81yYAnnaYx4B_WSOpI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9kCuqD0_k1PyP4Jp3pV7o-TnFsOIfghL2VNr2qMDvZhw_-9V7SdMwHBV9KKElIuUvvfrnc_QAu0UY_5TyxkoCQDgGUzErsGK2YY5pl0nZSTycK94J-vzkcho8mWV3nwiCivnyGDdXUsfx0LOfqqOxaXSL0dIHtVUWdZdK1FkEDz9dEyOTE0CYnJFHmyPDwevDYeugSGnT8hqt8Bq4Yazyl0UI4P0yS5lj53d3UZqdd_eeCt2HL-JesVSjEDqxgXoNqyd3AzFauweZSIcJdeG0xU3_67QtTNiBsO56wNvmzht2LkW_LOoRZi9RM6si67_QrYk9zemepIEChwkwTKZWzMcV4TBrObkbqqDF_2YPn9t3gtmMZDgZLkqs1o6ftShvJ6CdCChFkrkc2rxk3EyfM0M98pKZ0ROopkcc8cUUQU0cRErCRhID3oZKPczwElnFC8Y6TkHUIPJmKhKBfQFOg8D0MuF0HuxRDJE2BcsWTMYo0UOFhpKUYKSlGRop1uFqM-SjKc_zZe0_JaKlnIZ46XJTijmh3qZBJnON4Po3Iu9If7Lh1OCj0YDG6VJ-jX2Y9h_XO4KEX9br9-2PYUAsp7pidQGU2meMprMnP2dt0cqbV-Busyuyp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generalized+Tensor+Formulation+for+Hyperspectral+Image+Super-Resolution+Under+General+Spatial+Blurring&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wang%2C+Yinjian&rft.au=Li%2C+Wei&rft.au=Gui%2C+Yuanyuan&rft.au=Du%2C+Qian&rft.date=2025-06-01&rft.eissn=1939-3539&rft.volume=47&rft.issue=6&rft.spage=4684&rft_id=info:doi/10.1109%2FTPAMI.2025.3545605&rft_id=info%3Apmid%2F40031662&rft.externalDocID=40031662
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon