A Generalized Forward-Backward Splitting

This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \sum_{i=1}^n A_i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit (forward) step and the parallel computation of the resolvents of the $...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on imaging sciences Ročník 6; číslo 3; s. 1199 - 1226
Hlavní autoři: Raguet, Hugo, Fadili, Jalal, Peyré, Gabriel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Témata:
ISSN:1936-4954, 1936-4954
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \sum_{i=1}^n A_i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit (forward) step and the parallel computation of the resolvents of the $A_i$'s in a subsequent implicit (backward) step. We prove the algorithm's convergence in infinite dimension and its robustness to summable errors on the computed operators in the explicit and implicit steps. In particular, this allows efficient minimization of the sum of convex functions $f + \sum_{i=1}^n g_i$, where $f$ has a Lipschitz-continuous gradient and each $g_i$ is simple in the sense that its proximity operator is easy to compute. The resulting method makes use of the regularity of $f$ in the forward step, and the proximity operators of the $g_i$'s are applied in parallel in the backward step. While the forward-backward algorithm cannot deal with more than $n = 1$ nonsmooth function, we generalize it to the case of arbitrary $n$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms. [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1936-4954
1936-4954
DOI:10.1137/120872802