CMAS corrosion characteristics of YSZ and Al2O3-YSZ thermal barrier coatings at 1250 °C–1350 °C

The calcium-magnesium-aluminum-silicate (CMAS) corrosion is now a great threat to thermal barrier coatings (TBCs), inducing coating spallation readily. The CMAS corrosion characteristics of both 7YSZ and 20 wt.%Al2O3-YSZ TBCs at a broad temperature range of 1250 °C to 1350 °C were investigated. 7YSZ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the European Ceramic Society Ročník 44; číslo 15; s. 116789
Hlavní autoři: Dou, Mengfan, Gao, Wei, Xue, Ting, Han, Jiasen, Wu, Dongting, Zou, Yong, Zhang, Yongang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2024
Témata:
ISSN:0955-2219
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The calcium-magnesium-aluminum-silicate (CMAS) corrosion is now a great threat to thermal barrier coatings (TBCs), inducing coating spallation readily. The CMAS corrosion characteristics of both 7YSZ and 20 wt.%Al2O3-YSZ TBCs at a broad temperature range of 1250 °C to 1350 °C were investigated. 7YSZ coatings were completely degraded by CMAS at 1250 °C while the increased corrosion temperatures induced more serious destruction. This is due to that the viscosity of CMAS melt significantly decreased with corrosion temperature increasing, promoting melt fluidity and infiltration. The Al2O3-YSZ composite TBCs demonstrated superior resistance to CMAS corrosion at 1250°C-1350 °C. The intensive chemical reactions between Al2O3 and CMAS melt promoted the formation of anorthite products with either short rod-shaped or blocky morphologies. These products closely interconnected and stacked up to generate a dense layer, physically blocking CMAS melt infiltration and effectively improving the anti-CMAS corrosion properties of TBCs at higher temperatures. Furthermore, the corrosion temperatures critically influenced anorthite formation and present morphologies.
AbstractList The calcium-magnesium-aluminum-silicate (CMAS) corrosion is now a great threat to thermal barrier coatings (TBCs), inducing coating spallation readily. The CMAS corrosion characteristics of both 7YSZ and 20 wt.%Al2O3-YSZ TBCs at a broad temperature range of 1250 °C to 1350 °C were investigated. 7YSZ coatings were completely degraded by CMAS at 1250 °C while the increased corrosion temperatures induced more serious destruction. This is due to that the viscosity of CMAS melt significantly decreased with corrosion temperature increasing, promoting melt fluidity and infiltration. The Al2O3-YSZ composite TBCs demonstrated superior resistance to CMAS corrosion at 1250°C-1350 °C. The intensive chemical reactions between Al2O3 and CMAS melt promoted the formation of anorthite products with either short rod-shaped or blocky morphologies. These products closely interconnected and stacked up to generate a dense layer, physically blocking CMAS melt infiltration and effectively improving the anti-CMAS corrosion properties of TBCs at higher temperatures. Furthermore, the corrosion temperatures critically influenced anorthite formation and present morphologies.
ArticleNumber 116789
Author Han, Jiasen
Gao, Wei
Wu, Dongting
Zhang, Yongang
Dou, Mengfan
Xue, Ting
Zou, Yong
Author_xml – sequence: 1
  givenname: Mengfan
  surname: Dou
  fullname: Dou, Mengfan
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
– sequence: 2
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
– sequence: 3
  givenname: Ting
  surname: Xue
  fullname: Xue, Ting
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
– sequence: 4
  givenname: Jiasen
  surname: Han
  fullname: Han, Jiasen
  organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 5
  givenname: Dongting
  surname: Wu
  fullname: Wu, Dongting
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
– sequence: 6
  givenname: Yong
  surname: Zou
  fullname: Zou, Yong
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
– sequence: 7
  givenname: Yongang
  surname: Zhang
  fullname: Zhang, Yongang
  email: yongang.zhang@sdu.edu.cn
  organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
BookMark eNqNkDtOAzEYhF0EiSRwB4t-Fz_ifVARhacUlCJQQGN5vf8mXm3WyDZIdLkDB4EzcJSchI0CEqJKNZpiPmm-Aeq1tgWETiiJKaHJaR3X8OI0OLXyVseMsFFMaZJmeQ_1SS5ExBjND9HA-5oQmpI876PF5G48x9o6Z72xLdZL5ZQO4IwPRntsK_w4f8KqLfG4YTMebVtYglupBhfKOQOum6tg2oXHKmDKBNmsP74-J5v1O-W_5QgdVKrxcPyTQ_RwdXk_uYmms-vbyXgaac5GISoqktIqV6ApKzNRcKEBNAgAMQJIWMqSrMwgpaKgvMizUivBFa9EwkVaZRUforMdV3eHvINKPjuzUu5NUiK3mmQt_2qSW01yp6kbn_8baxO6a7YNTplmP8TFDgHdyddOjvTaQKuhNA50kKU1-2C-ASwmlc0
CitedBy_id crossref_primary_10_3390_app142310877
crossref_primary_10_1016_j_jeurceramsoc_2025_117405
crossref_primary_10_1111_ijac_15011
Cites_doi 10.1016/j.tsf.2004.05.073
10.1016/j.matlet.2018.06.066
10.1016/j.actamat.2006.06.026
10.1016/j.corsci.2023.111529
10.1016/j.actamat.2010.09.013
10.1016/j.ceramint.2021.03.288
10.1016/j.jnoncrysol.2022.121508
10.1016/j.surfcoat.2021.128007
10.1016/j.corsci.2022.110322
10.1016/j.surfcoat.2012.07.074
10.1016/j.surfcoat.2021.128006
10.1016/j.surfcoat.2009.09.055
10.1016/j.actamat.2004.11.028
10.1016/j.jeurceramsoc.2020.03.016
10.1016/j.jeurceramsoc.2023.03.004
10.1016/j.surfcoat.2022.128799
10.1007/s11666-022-01330-2
10.1007/s40145-020-0449-7
10.1016/j.corsci.2024.112048
10.1016/j.jeurceramsoc.2021.09.008
10.1016/j.jeurceramsoc.2021.10.022
10.1016/j.corsci.2023.111369
10.1016/j.surfcoat.2021.127071
10.1016/j.jeurceramsoc.2019.12.046
10.1016/j.actamat.2015.12.044
10.1016/j.apsusc.2018.11.087
10.1016/j.jeurceramsoc.2011.04.006
10.1016/j.corsci.2019.04.014
10.1016/j.ceramint.2021.07.117
10.1016/j.ceramint.2016.05.203
10.1016/j.surfcoat.2014.08.079
10.1016/j.jeurceramsoc.2018.06.039
10.1111/jace.16498
10.1016/j.rinp.2021.104365
10.1016/j.corsci.2023.111689
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jeurceramsoc.2024.116789
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jeurceramsoc_2024_116789
S0955221924006629
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c324t-bf071f9aec12d85b35ceece5ee54ee627268d8e715b13b98dca53a3f56357f8f3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284320500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0955-2219
IngestDate Sat Nov 29 03:42:04 EST 2025
Tue Nov 18 22:32:02 EST 2025
Sat Aug 24 15:41:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords CMAS corrosion
Al2O3-7YSZ composite coating
Thermal barrier coating
Interfacial reactions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-bf071f9aec12d85b35ceece5ee54ee627268d8e715b13b98dca53a3f56357f8f3
ParticipantIDs crossref_primary_10_1016_j_jeurceramsoc_2024_116789
crossref_citationtrail_10_1016_j_jeurceramsoc_2024_116789
elsevier_sciencedirect_doi_10_1016_j_jeurceramsoc_2024_116789
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Journal of the European Ceramic Society
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Roncallo, Barbareschi, Cacciamani, Vacchieri (bib10) 2021; 412
Drexler, Shinoda, Ortiz, Li, Vasiliev, Gledhill, Sampath, Padture (bib13) 2010; 58
Naraparaju, Schulz, Mechnich, Döbber, Seidel (bib15) 2014; 260
Mohan, Yao, Patterson, Sohn (bib29) 2009; 204
Vaßen, Bakan, Mack, Guillon (bib2) 2022; 31
Zhou, Chen, Yuan, Deng, Zhang, Jiang, Cao (bib20) 2019; 102
Yu, Poerschke (bib3) 2022; 431
Li, Wang, Wei, Vaidya, Zhang, Sampath (bib32) 2004; 468
Zhang, Han, Wu, Zou (bib27) 2023; 221
Krause, Garces, Padture (bib5) 2021; 47
Vidal-Setif, Chellah, Rio, Sanchez, Lavigne (bib19) 2012; 208
Li, Xie, Yang, Zhou, Zhu (bib4) 2021; 47
Mercer, Faulhaber, Evans, Darolia (bib18) 2005; 53
Steinberg, Naraparaju, Heckert, Mikulla, Schulz, Leyens (bib11) 2018; 38
Webster, Opila (bib35) 2022; 584
Kang, Bai, Du, Yu, Bao, Wang, Ding (bib8) 2018; 229
Lin, Wang, Yang, Sun, Wu, Zhang, Liu, Zeng (bib24) 2023; 224
Zhang, Matthews, Hyland (bib33) 2019; 469
Han, Zou, Wu, Zhang (bib30) 2023; 43
Vasiliev, Padture (bib16) 2006; 54
Tu, Liu, Zhou, Liang, Zhang (bib22) 2022; 42
Zhang, Matthews, Wu, Zou (bib31) 2022; 431
Zhang, Dou, Gao, Han, Wu, Zou (bib28) 2024; 232
Guo, Yan, Yu, Yang, Li (bib23) 2019; 154
Yin, Sun, Zhu, Yang, Zhou (bib12) 2021; 26
Guo, Zhang, Gao, Yan (bib21) 2024; 226
Loghman-Estarki, Shoja Razavi, Jamali (bib9) 2016; 42
Cong, Li, Guo, Wang, Song, Gu, Zhang (bib25) 2022; 203
Xiao, Huang, Robertson, Tang, Kearsey (bib7) 2020; 40
Guo, Li, Gan (bib14) 2021; 10
Wu, Guo, Gao, Gong (bib17) 2011; 31
Krause, Garces, Dwivedi, Ortiz, Sampath, Padture (bib34) 2016; 105
Lashmi, Ananthapadmanabhan, Unnikrishnan, Aruna (bib1) 2020; 40
Yin, Lai, Zhang, Zhang, Wang, Wang, Deng, Zhuo, He, Deng (bib6) 2021; 41
Han, Zou, Wu, Chen, Zhang (bib26) 2022; 446
Tu (10.1016/j.jeurceramsoc.2024.116789_bib22) 2022; 42
Cong (10.1016/j.jeurceramsoc.2024.116789_bib25) 2022; 203
Guo (10.1016/j.jeurceramsoc.2024.116789_bib23) 2019; 154
Yin (10.1016/j.jeurceramsoc.2024.116789_bib6) 2021; 41
Drexler (10.1016/j.jeurceramsoc.2024.116789_bib13) 2010; 58
Yu (10.1016/j.jeurceramsoc.2024.116789_bib3) 2022; 431
Lashmi (10.1016/j.jeurceramsoc.2024.116789_bib1) 2020; 40
Han (10.1016/j.jeurceramsoc.2024.116789_bib30) 2023; 43
Zhang (10.1016/j.jeurceramsoc.2024.116789_bib31) 2022; 431
Krause (10.1016/j.jeurceramsoc.2024.116789_bib34) 2016; 105
Vaßen (10.1016/j.jeurceramsoc.2024.116789_bib2) 2022; 31
Li (10.1016/j.jeurceramsoc.2024.116789_bib4) 2021; 47
Krause (10.1016/j.jeurceramsoc.2024.116789_bib5) 2021; 47
Naraparaju (10.1016/j.jeurceramsoc.2024.116789_bib15) 2014; 260
Mercer (10.1016/j.jeurceramsoc.2024.116789_bib18) 2005; 53
Zhang (10.1016/j.jeurceramsoc.2024.116789_bib28) 2024; 232
Han (10.1016/j.jeurceramsoc.2024.116789_bib26) 2022; 446
Li (10.1016/j.jeurceramsoc.2024.116789_bib32) 2004; 468
Guo (10.1016/j.jeurceramsoc.2024.116789_bib14) 2021; 10
Vasiliev (10.1016/j.jeurceramsoc.2024.116789_bib16) 2006; 54
Zhang (10.1016/j.jeurceramsoc.2024.116789_bib27) 2023; 221
Wu (10.1016/j.jeurceramsoc.2024.116789_bib17) 2011; 31
Steinberg (10.1016/j.jeurceramsoc.2024.116789_bib11) 2018; 38
Mohan (10.1016/j.jeurceramsoc.2024.116789_bib29) 2009; 204
Lin (10.1016/j.jeurceramsoc.2024.116789_bib24) 2023; 224
Guo (10.1016/j.jeurceramsoc.2024.116789_bib21) 2024; 226
Xiao (10.1016/j.jeurceramsoc.2024.116789_bib7) 2020; 40
Webster (10.1016/j.jeurceramsoc.2024.116789_bib35) 2022; 584
Zhou (10.1016/j.jeurceramsoc.2024.116789_bib20) 2019; 102
Vidal-Setif (10.1016/j.jeurceramsoc.2024.116789_bib19) 2012; 208
Roncallo (10.1016/j.jeurceramsoc.2024.116789_bib10) 2021; 412
Loghman-Estarki (10.1016/j.jeurceramsoc.2024.116789_bib9) 2016; 42
Yin (10.1016/j.jeurceramsoc.2024.116789_bib12) 2021; 26
Zhang (10.1016/j.jeurceramsoc.2024.116789_bib33) 2019; 469
Kang (10.1016/j.jeurceramsoc.2024.116789_bib8) 2018; 229
References_xml – volume: 224
  year: 2023
  ident: bib24
  article-title: CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials
  publication-title: Corros. Sci.
– volume: 43
  start-page: 4124
  year: 2023
  end-page: 4135
  ident: bib30
  article-title: Investigating the thermal, mechanical and thermal cyclic properties of plasma-sprayed Al2O3-7YSZ/7YSZ double ceramic layer TBCs
  publication-title: J. Eur. Ceram. Soc.
– volume: 40
  start-page: 2731
  year: 2020
  end-page: 2745
  ident: bib1
  article-title: Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems
  publication-title: J. Eur. Ceram. Soc.
– volume: 54
  start-page: 4921
  year: 2006
  end-page: 4928
  ident: bib16
  article-title: Coatings of metastable ceramics deposited by solution-precursor plasma spray: II. Ternary ZrO2–Y2O3–Al2O3 system
  publication-title: Acta Mater.
– volume: 208
  start-page: 39
  year: 2012
  end-page: 45
  ident: bib19
  article-title: Calcium–magnesium–alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs
  publication-title: Surf. Coat. Technol.
– volume: 47
  start-page: 29490
  year: 2021
  end-page: 29498
  ident: bib4
  article-title: Study on cyclic thermal corrosion behavior of APS-7YSZ thermal barrier coating at room- and high temperature
  publication-title: Ceram. Int.
– volume: 105
  start-page: 355
  year: 2016
  end-page: 366
  ident: bib34
  article-title: Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings
  publication-title: Acta Mater.
– volume: 10
  start-page: 472
  year: 2021
  end-page: 481
  ident: bib14
  article-title: Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications
  publication-title: J. Adv. Ceram.
– volume: 260
  start-page: 73
  year: 2014
  end-page: 81
  ident: bib15
  article-title: Degradation study of 7 wt% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO–MgO–Al 2 O 3 –SiO 2 variants
  publication-title: Surf. Coat. Technol.
– volume: 102
  start-page: 6357
  year: 2019
  end-page: 6371
  ident: bib20
  article-title: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits
  publication-title: J. Am. Ceram. Soc.
– volume: 58
  start-page: 6835
  year: 2010
  end-page: 6844
  ident: bib13
  article-title: Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits
  publication-title: Acta Mater.
– volume: 203
  year: 2022
  ident: bib25
  article-title: Calcium magnesium aluminosilicate (CMAS) corrosion behaviors of apatite Ca2La8(SiO4)6O2 thermal barrier coating material
  publication-title: Corros. Sci.
– volume: 204
  start-page: 797
  year: 2009
  end-page: 801
  ident: bib29
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf. Coat. Technol.
– volume: 154
  start-page: 111
  year: 2019
  end-page: 122
  ident: bib23
  article-title: CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 degrees C-1350 degrees C
  publication-title: Corros. Sci.
– volume: 232
  year: 2024
  ident: bib28
  article-title: Wetting kinetics and corrosion of CMAS and CMAS-NaCl to plasma-sprayed YSZ and Al2O3-YSZ thermal barrier coatings
  publication-title: Corros. Sci.
– volume: 31
  start-page: 1881
  year: 2011
  end-page: 1888
  ident: bib17
  article-title: Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits
  publication-title: J. Eur. Ceram. Soc.
– volume: 40
  start-page: 2030
  year: 2020
  end-page: 2041
  ident: bib7
  article-title: Sintering resistance of suspension plasma sprayed 7YSZ TBC under isothermal and cyclic oxidation
  publication-title: J. Eur. Ceram. Soc.
– volume: 221
  year: 2023
  ident: bib27
  article-title: Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings
  publication-title: Corros. Sci.
– volume: 468
  start-page: 113
  year: 2004
  end-page: 119
  ident: bib32
  article-title: Substrate melting during thermal spray splat quenching
  publication-title: Thin Solid Films
– volume: 42
  start-page: 649
  year: 2022
  end-page: 657
  ident: bib22
  article-title: Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material
  publication-title: J. Eur. Ceram. Soc.
– volume: 47
  start-page: 19505
  year: 2021
  end-page: 19514
  ident: bib5
  article-title: High-temperature interactions between Yttria-stabilized zirconia thermal barrier coatings and Na-Rich calcia-magnesia-aluminosilicate deposits
  publication-title: Ceram. Int.
– volume: 584
  year: 2022
  ident: bib35
  article-title: Viscosity of CaO-MgO-Al2O3-SiO2 (CMAS) melts: Experimental measurements and comparison to model calculations
  publication-title: J. Non-Cryst. Solids
– volume: 229
  start-page: 40
  year: 2018
  end-page: 43
  ident: bib8
  article-title: High temperature wettability between CMAS and YSZ coating with tailored surface microstructures
  publication-title: Mater. Lett.
– volume: 412
  year: 2021
  ident: bib10
  article-title: Effect of cooling rate on phase transformation in 6–8 wt% YSZ APS TBCs
  publication-title: Surf. Coat. Technol.
– volume: 446
  year: 2022
  ident: bib26
  article-title: Improving CMAS-corrosion resistance of YSZ-based thermal barrier coatings with Al2O3 addition
  publication-title: Surf. Coat. Technol.
– volume: 26
  year: 2021
  ident: bib12
  article-title: Wetting and spreading behaviour of molten CMAS towards thermal barrier coatings and its influencing factors
  publication-title: Results Phys.
– volume: 469
  start-page: 691
  year: 2019
  end-page: 702
  ident: bib33
  article-title: Understanding the formation of plasma-sprayed Ni20Cr splats through interface observation
  publication-title: Appl. Surf. Sci.
– volume: 31
  start-page: 685
  year: 2022
  end-page: 698
  ident: bib2
  article-title: A perspective on thermally sprayed thermal barrier coatings: current status and trends
  publication-title: J. Therm. Spray. Technol.
– volume: 42
  start-page: 14374
  year: 2016
  end-page: 14383
  ident: bib9
  article-title: Thermal stability and sintering behavior of plasma sprayed nanostructured 7YSZ, 15YSZ and 5.5SYSZ coatings at elevated temperatures
  publication-title: Ceram. Int.
– volume: 431
  year: 2022
  ident: bib31
  article-title: Interactions between successive high-velocity impact droplets during plasma spraying
  publication-title: Surf. Coat. Technol.
– volume: 41
  start-page: 315
  year: 2021
  end-page: 323
  ident: bib6
  article-title: Microstructural and columnar growth characteristics of 7YSZ thermal barrier coatings fabricated by plasma spray physical vapor deposition
  publication-title: J. Eur. Ceram. Soc.
– volume: 38
  start-page: 5101
  year: 2018
  end-page: 5112
  ident: bib11
  article-title: Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry
  publication-title: J. Eur. Ceram. Soc.
– volume: 53
  start-page: 1029
  year: 2005
  end-page: 1039
  ident: bib18
  article-title: A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration
  publication-title: Acta Mater.
– volume: 431
  year: 2022
  ident: bib3
  article-title: Design of thermal and environmental barrier coatings for Nb-based alloys for high-temperature operation
  publication-title: Surf. Coat. Technol.
– volume: 226
  year: 2024
  ident: bib21
  article-title: Interaction laws of RE2O3 and CMAS and rare earth selection criterions for RE-containing thermal barrier coatings against CMAS attack
  publication-title: Corros. Sci.
– volume: 468
  start-page: 113
  year: 2004
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib32
  article-title: Substrate melting during thermal spray splat quenching
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.05.073
– volume: 229
  start-page: 40
  year: 2018
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib8
  article-title: High temperature wettability between CMAS and YSZ coating with tailored surface microstructures
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.06.066
– volume: 54
  start-page: 4921
  year: 2006
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib16
  article-title: Coatings of metastable ceramics deposited by solution-precursor plasma spray: II. Ternary ZrO2–Y2O3–Al2O3 system
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.06.026
– volume: 224
  year: 2023
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib24
  article-title: CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2023.111529
– volume: 58
  start-page: 6835
  year: 2010
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib13
  article-title: Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.09.013
– volume: 47
  start-page: 19505
  year: 2021
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib5
  article-title: High-temperature interactions between Yttria-stabilized zirconia thermal barrier coatings and Na-Rich calcia-magnesia-aluminosilicate deposits
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.03.288
– volume: 584
  year: 2022
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib35
  article-title: Viscosity of CaO-MgO-Al2O3-SiO2 (CMAS) melts: Experimental measurements and comparison to model calculations
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2022.121508
– volume: 431
  year: 2022
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib3
  article-title: Design of thermal and environmental barrier coatings for Nb-based alloys for high-temperature operation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.128007
– volume: 203
  year: 2022
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib25
  article-title: Calcium magnesium aluminosilicate (CMAS) corrosion behaviors of apatite Ca2La8(SiO4)6O2 thermal barrier coating material
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2022.110322
– volume: 208
  start-page: 39
  year: 2012
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib19
  article-title: Calcium–magnesium–alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.07.074
– volume: 431
  year: 2022
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib31
  article-title: Interactions between successive high-velocity impact droplets during plasma spraying
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.128006
– volume: 204
  start-page: 797
  year: 2009
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib29
  article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.09.055
– volume: 53
  start-page: 1029
  year: 2005
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib18
  article-title: A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.11.028
– volume: 40
  start-page: 2731
  year: 2020
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib1
  article-title: Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.03.016
– volume: 43
  start-page: 4124
  year: 2023
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib30
  article-title: Investigating the thermal, mechanical and thermal cyclic properties of plasma-sprayed Al2O3-7YSZ/7YSZ double ceramic layer TBCs
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2023.03.004
– volume: 446
  year: 2022
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib26
  article-title: Improving CMAS-corrosion resistance of YSZ-based thermal barrier coatings with Al2O3 addition
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.128799
– volume: 31
  start-page: 685
  year: 2022
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib2
  article-title: A perspective on thermally sprayed thermal barrier coatings: current status and trends
  publication-title: J. Therm. Spray. Technol.
  doi: 10.1007/s11666-022-01330-2
– volume: 10
  start-page: 472
  year: 2021
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib14
  article-title: Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-020-0449-7
– volume: 232
  year: 2024
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib28
  article-title: Wetting kinetics and corrosion of CMAS and CMAS-NaCl to plasma-sprayed YSZ and Al2O3-YSZ thermal barrier coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2024.112048
– volume: 41
  start-page: 315
  year: 2021
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib6
  article-title: Microstructural and columnar growth characteristics of 7YSZ thermal barrier coatings fabricated by plasma spray physical vapor deposition
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.09.008
– volume: 42
  start-page: 649
  year: 2022
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib22
  article-title: Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.10.022
– volume: 221
  year: 2023
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib27
  article-title: Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2023.111369
– volume: 412
  year: 2021
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib10
  article-title: Effect of cooling rate on phase transformation in 6–8 wt% YSZ APS TBCs
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.127071
– volume: 40
  start-page: 2030
  year: 2020
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib7
  article-title: Sintering resistance of suspension plasma sprayed 7YSZ TBC under isothermal and cyclic oxidation
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.12.046
– volume: 105
  start-page: 355
  year: 2016
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib34
  article-title: Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.12.044
– volume: 469
  start-page: 691
  year: 2019
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib33
  article-title: Understanding the formation of plasma-sprayed Ni20Cr splats through interface observation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.11.087
– volume: 31
  start-page: 1881
  year: 2011
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib17
  article-title: Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2011.04.006
– volume: 154
  start-page: 111
  year: 2019
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib23
  article-title: CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 degrees C-1350 degrees C
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.04.014
– volume: 47
  start-page: 29490
  year: 2021
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib4
  article-title: Study on cyclic thermal corrosion behavior of APS-7YSZ thermal barrier coating at room- and high temperature
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.07.117
– volume: 42
  start-page: 14374
  year: 2016
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib9
  article-title: Thermal stability and sintering behavior of plasma sprayed nanostructured 7YSZ, 15YSZ and 5.5SYSZ coatings at elevated temperatures
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.05.203
– volume: 260
  start-page: 73
  year: 2014
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib15
  article-title: Degradation study of 7 wt% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO–MgO–Al 2 O 3 –SiO 2 variants
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.08.079
– volume: 38
  start-page: 5101
  year: 2018
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib11
  article-title: Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.06.039
– volume: 102
  start-page: 6357
  year: 2019
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib20
  article-title: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16498
– volume: 26
  year: 2021
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib12
  article-title: Wetting and spreading behaviour of molten CMAS towards thermal barrier coatings and its influencing factors
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.104365
– volume: 226
  year: 2024
  ident: 10.1016/j.jeurceramsoc.2024.116789_bib21
  article-title: Interaction laws of RE2O3 and CMAS and rare earth selection criterions for RE-containing thermal barrier coatings against CMAS attack
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2023.111689
SSID ssj0017099
Score 2.4804537
Snippet The calcium-magnesium-aluminum-silicate (CMAS) corrosion is now a great threat to thermal barrier coatings (TBCs), inducing coating spallation readily. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116789
SubjectTerms Al2O3-7YSZ composite coating
CMAS corrosion
Interfacial reactions
Thermal barrier coating
Title CMAS corrosion characteristics of YSZ and Al2O3-YSZ thermal barrier coatings at 1250 °C–1350 °C
URI https://dx.doi.org/10.1016/j.jeurceramsoc.2024.116789
Volume 44
WOSCitedRecordID wos001284320500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0955-2219
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017099
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZKxwVcIH61jR_5gl1NqZq4buwLLkq08SMYSBtQuIkc25lalXTq0mmXewceBB6AKx5lT8JxbKehY6IgcRM1jnzS5Hz1-Xp8_Bmhx7HQnCgVBlQoHvQgBAU8zkWgmYoyCN-qX0kKvX8V7-2x4ZC_bbW--7UwJ5O4KNjpKT_6r66GNnC2WTr7F-6ujUIDfAanwxHcDseVHJ-8Huxvw39KCH_GtXJJkRnI4cf9T9WcwWASvSGBOTMs8DM4KxOzagc7ORVltZ-nKLeBm3RdScRgdyuJtp52E18iQUJy8eIlfNcw3Dr3n-iZMFX5rmi0ptPTeZWh1cVhvoDtM1Hlcz_okW8Zzq1YsI-71RBqV5mMICwXzVxG1GvUhfikJA0iP4i68dnqQ3oc0sZoa-aQ7AZEFwKBzUmMO2NtpkDgkQDrHXPLzqLTr-rbS1GxrlX0ZXDjtGkrNbZSa-sKWotiylkbrQ1e7Axf1rNYcZc7rUf7VF70tqovvOyb_Z4gNUjPwU10w3kPDyzKbqGWLm6j6w0Nyzvo0OAN13jDS3jD0xwDwjDgDdd4ww5v2OENe7xhUWKDt_Ozrz--JednXwy-7Mld9G535yB5HrjdOwIJJL0MshzYa86FlmGkGM0IBT4mNdWa9rTuR3HUZ4rpOKRZSDLOlBSUCJJTo5CYs5zcQ-1iWuh1hJkUPCRggGayB_a4DJUM-13NYsVCojcQ968slU7a3uywMkn_7LwNROq-R1bgZaVeT7xnUkdVLQVNAYAr9N_8p7veR9cWv5oHqF3O5vohuipPytHx7JFD30_bQLpA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMAS+corrosion+characteristics+of+YSZ+and+Al2O3-YSZ+thermal+barrier+coatings+at+1250%E2%80%AF%C2%B0C%E2%80%931350%E2%80%AF%C2%B0C&rft.jtitle=Journal+of+the+European+Ceramic+Society&rft.au=Dou%2C+Mengfan&rft.au=Gao%2C+Wei&rft.au=Xue%2C+Ting&rft.au=Han%2C+Jiasen&rft.date=2024-12-01&rft.issn=0955-2219&rft.volume=44&rft.issue=15&rft.spage=116789&rft_id=info:doi/10.1016%2Fj.jeurceramsoc.2024.116789&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jeurceramsoc_2024_116789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-2219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-2219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-2219&client=summon