CMAS corrosion characteristics of YSZ and Al2O3-YSZ thermal barrier coatings at 1250 °C–1350 °C
The calcium-magnesium-aluminum-silicate (CMAS) corrosion is now a great threat to thermal barrier coatings (TBCs), inducing coating spallation readily. The CMAS corrosion characteristics of both 7YSZ and 20 wt.%Al2O3-YSZ TBCs at a broad temperature range of 1250 °C to 1350 °C were investigated. 7YSZ...
Saved in:
| Published in: | Journal of the European Ceramic Society Vol. 44; no. 15; p. 116789 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2024
|
| Subjects: | |
| ISSN: | 0955-2219 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The calcium-magnesium-aluminum-silicate (CMAS) corrosion is now a great threat to thermal barrier coatings (TBCs), inducing coating spallation readily. The CMAS corrosion characteristics of both 7YSZ and 20 wt.%Al2O3-YSZ TBCs at a broad temperature range of 1250 °C to 1350 °C were investigated. 7YSZ coatings were completely degraded by CMAS at 1250 °C while the increased corrosion temperatures induced more serious destruction. This is due to that the viscosity of CMAS melt significantly decreased with corrosion temperature increasing, promoting melt fluidity and infiltration. The Al2O3-YSZ composite TBCs demonstrated superior resistance to CMAS corrosion at 1250°C-1350 °C. The intensive chemical reactions between Al2O3 and CMAS melt promoted the formation of anorthite products with either short rod-shaped or blocky morphologies. These products closely interconnected and stacked up to generate a dense layer, physically blocking CMAS melt infiltration and effectively improving the anti-CMAS corrosion properties of TBCs at higher temperatures. Furthermore, the corrosion temperatures critically influenced anorthite formation and present morphologies. |
|---|---|
| AbstractList | The calcium-magnesium-aluminum-silicate (CMAS) corrosion is now a great threat to thermal barrier coatings (TBCs), inducing coating spallation readily. The CMAS corrosion characteristics of both 7YSZ and 20 wt.%Al2O3-YSZ TBCs at a broad temperature range of 1250 °C to 1350 °C were investigated. 7YSZ coatings were completely degraded by CMAS at 1250 °C while the increased corrosion temperatures induced more serious destruction. This is due to that the viscosity of CMAS melt significantly decreased with corrosion temperature increasing, promoting melt fluidity and infiltration. The Al2O3-YSZ composite TBCs demonstrated superior resistance to CMAS corrosion at 1250°C-1350 °C. The intensive chemical reactions between Al2O3 and CMAS melt promoted the formation of anorthite products with either short rod-shaped or blocky morphologies. These products closely interconnected and stacked up to generate a dense layer, physically blocking CMAS melt infiltration and effectively improving the anti-CMAS corrosion properties of TBCs at higher temperatures. Furthermore, the corrosion temperatures critically influenced anorthite formation and present morphologies. |
| ArticleNumber | 116789 |
| Author | Han, Jiasen Gao, Wei Wu, Dongting Zhang, Yongang Dou, Mengfan Xue, Ting Zou, Yong |
| Author_xml | – sequence: 1 givenname: Mengfan surname: Dou fullname: Dou, Mengfan organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China – sequence: 2 givenname: Wei surname: Gao fullname: Gao, Wei organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China – sequence: 3 givenname: Ting surname: Xue fullname: Xue, Ting organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China – sequence: 4 givenname: Jiasen surname: Han fullname: Han, Jiasen organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 5 givenname: Dongting surname: Wu fullname: Wu, Dongting organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China – sequence: 6 givenname: Yong surname: Zou fullname: Zou, Yong organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China – sequence: 7 givenname: Yongang surname: Zhang fullname: Zhang, Yongang email: yongang.zhang@sdu.edu.cn organization: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China |
| BookMark | eNqNkDtOAzEYhF0EiSRwB4t-Fz_ifVARhacUlCJQQGN5vf8mXm3WyDZIdLkDB4EzcJSchI0CEqJKNZpiPmm-Aeq1tgWETiiJKaHJaR3X8OI0OLXyVseMsFFMaZJmeQ_1SS5ExBjND9HA-5oQmpI876PF5G48x9o6Z72xLdZL5ZQO4IwPRntsK_w4f8KqLfG4YTMebVtYglupBhfKOQOum6tg2oXHKmDKBNmsP74-J5v1O-W_5QgdVKrxcPyTQ_RwdXk_uYmms-vbyXgaac5GISoqktIqV6ApKzNRcKEBNAgAMQJIWMqSrMwgpaKgvMizUivBFa9EwkVaZRUforMdV3eHvINKPjuzUu5NUiK3mmQt_2qSW01yp6kbn_8baxO6a7YNTplmP8TFDgHdyddOjvTaQKuhNA50kKU1-2C-ASwmlc0 |
| CitedBy_id | crossref_primary_10_3390_app142310877 crossref_primary_10_1016_j_jeurceramsoc_2025_117405 crossref_primary_10_1111_ijac_15011 |
| Cites_doi | 10.1016/j.tsf.2004.05.073 10.1016/j.matlet.2018.06.066 10.1016/j.actamat.2006.06.026 10.1016/j.corsci.2023.111529 10.1016/j.actamat.2010.09.013 10.1016/j.ceramint.2021.03.288 10.1016/j.jnoncrysol.2022.121508 10.1016/j.surfcoat.2021.128007 10.1016/j.corsci.2022.110322 10.1016/j.surfcoat.2012.07.074 10.1016/j.surfcoat.2021.128006 10.1016/j.surfcoat.2009.09.055 10.1016/j.actamat.2004.11.028 10.1016/j.jeurceramsoc.2020.03.016 10.1016/j.jeurceramsoc.2023.03.004 10.1016/j.surfcoat.2022.128799 10.1007/s11666-022-01330-2 10.1007/s40145-020-0449-7 10.1016/j.corsci.2024.112048 10.1016/j.jeurceramsoc.2021.09.008 10.1016/j.jeurceramsoc.2021.10.022 10.1016/j.corsci.2023.111369 10.1016/j.surfcoat.2021.127071 10.1016/j.jeurceramsoc.2019.12.046 10.1016/j.actamat.2015.12.044 10.1016/j.apsusc.2018.11.087 10.1016/j.jeurceramsoc.2011.04.006 10.1016/j.corsci.2019.04.014 10.1016/j.ceramint.2021.07.117 10.1016/j.ceramint.2016.05.203 10.1016/j.surfcoat.2014.08.079 10.1016/j.jeurceramsoc.2018.06.039 10.1111/jace.16498 10.1016/j.rinp.2021.104365 10.1016/j.corsci.2023.111689 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jeurceramsoc.2024.116789 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_jeurceramsoc_2024_116789 S0955221924006629 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c324t-bf071f9aec12d85b35ceece5ee54ee627268d8e715b13b98dca53a3f56357f8f3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284320500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0955-2219 |
| IngestDate | Sat Nov 29 03:42:04 EST 2025 Tue Nov 18 22:32:02 EST 2025 Sat Aug 24 15:41:54 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | CMAS corrosion Al2O3-7YSZ composite coating Thermal barrier coating Interfacial reactions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c324t-bf071f9aec12d85b35ceece5ee54ee627268d8e715b13b98dca53a3f56357f8f3 |
| ParticipantIDs | crossref_primary_10_1016_j_jeurceramsoc_2024_116789 crossref_citationtrail_10_1016_j_jeurceramsoc_2024_116789 elsevier_sciencedirect_doi_10_1016_j_jeurceramsoc_2024_116789 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of the European Ceramic Society |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Roncallo, Barbareschi, Cacciamani, Vacchieri (bib10) 2021; 412 Drexler, Shinoda, Ortiz, Li, Vasiliev, Gledhill, Sampath, Padture (bib13) 2010; 58 Naraparaju, Schulz, Mechnich, Döbber, Seidel (bib15) 2014; 260 Mohan, Yao, Patterson, Sohn (bib29) 2009; 204 Vaßen, Bakan, Mack, Guillon (bib2) 2022; 31 Zhou, Chen, Yuan, Deng, Zhang, Jiang, Cao (bib20) 2019; 102 Yu, Poerschke (bib3) 2022; 431 Li, Wang, Wei, Vaidya, Zhang, Sampath (bib32) 2004; 468 Zhang, Han, Wu, Zou (bib27) 2023; 221 Krause, Garces, Padture (bib5) 2021; 47 Vidal-Setif, Chellah, Rio, Sanchez, Lavigne (bib19) 2012; 208 Li, Xie, Yang, Zhou, Zhu (bib4) 2021; 47 Mercer, Faulhaber, Evans, Darolia (bib18) 2005; 53 Steinberg, Naraparaju, Heckert, Mikulla, Schulz, Leyens (bib11) 2018; 38 Webster, Opila (bib35) 2022; 584 Kang, Bai, Du, Yu, Bao, Wang, Ding (bib8) 2018; 229 Lin, Wang, Yang, Sun, Wu, Zhang, Liu, Zeng (bib24) 2023; 224 Zhang, Matthews, Hyland (bib33) 2019; 469 Han, Zou, Wu, Zhang (bib30) 2023; 43 Vasiliev, Padture (bib16) 2006; 54 Tu, Liu, Zhou, Liang, Zhang (bib22) 2022; 42 Zhang, Matthews, Wu, Zou (bib31) 2022; 431 Zhang, Dou, Gao, Han, Wu, Zou (bib28) 2024; 232 Guo, Yan, Yu, Yang, Li (bib23) 2019; 154 Yin, Sun, Zhu, Yang, Zhou (bib12) 2021; 26 Guo, Zhang, Gao, Yan (bib21) 2024; 226 Loghman-Estarki, Shoja Razavi, Jamali (bib9) 2016; 42 Cong, Li, Guo, Wang, Song, Gu, Zhang (bib25) 2022; 203 Xiao, Huang, Robertson, Tang, Kearsey (bib7) 2020; 40 Guo, Li, Gan (bib14) 2021; 10 Wu, Guo, Gao, Gong (bib17) 2011; 31 Krause, Garces, Dwivedi, Ortiz, Sampath, Padture (bib34) 2016; 105 Lashmi, Ananthapadmanabhan, Unnikrishnan, Aruna (bib1) 2020; 40 Yin, Lai, Zhang, Zhang, Wang, Wang, Deng, Zhuo, He, Deng (bib6) 2021; 41 Han, Zou, Wu, Chen, Zhang (bib26) 2022; 446 Tu (10.1016/j.jeurceramsoc.2024.116789_bib22) 2022; 42 Cong (10.1016/j.jeurceramsoc.2024.116789_bib25) 2022; 203 Guo (10.1016/j.jeurceramsoc.2024.116789_bib23) 2019; 154 Yin (10.1016/j.jeurceramsoc.2024.116789_bib6) 2021; 41 Drexler (10.1016/j.jeurceramsoc.2024.116789_bib13) 2010; 58 Yu (10.1016/j.jeurceramsoc.2024.116789_bib3) 2022; 431 Lashmi (10.1016/j.jeurceramsoc.2024.116789_bib1) 2020; 40 Han (10.1016/j.jeurceramsoc.2024.116789_bib30) 2023; 43 Zhang (10.1016/j.jeurceramsoc.2024.116789_bib31) 2022; 431 Krause (10.1016/j.jeurceramsoc.2024.116789_bib34) 2016; 105 Vaßen (10.1016/j.jeurceramsoc.2024.116789_bib2) 2022; 31 Li (10.1016/j.jeurceramsoc.2024.116789_bib4) 2021; 47 Krause (10.1016/j.jeurceramsoc.2024.116789_bib5) 2021; 47 Naraparaju (10.1016/j.jeurceramsoc.2024.116789_bib15) 2014; 260 Mercer (10.1016/j.jeurceramsoc.2024.116789_bib18) 2005; 53 Zhang (10.1016/j.jeurceramsoc.2024.116789_bib28) 2024; 232 Han (10.1016/j.jeurceramsoc.2024.116789_bib26) 2022; 446 Li (10.1016/j.jeurceramsoc.2024.116789_bib32) 2004; 468 Guo (10.1016/j.jeurceramsoc.2024.116789_bib14) 2021; 10 Vasiliev (10.1016/j.jeurceramsoc.2024.116789_bib16) 2006; 54 Zhang (10.1016/j.jeurceramsoc.2024.116789_bib27) 2023; 221 Wu (10.1016/j.jeurceramsoc.2024.116789_bib17) 2011; 31 Steinberg (10.1016/j.jeurceramsoc.2024.116789_bib11) 2018; 38 Mohan (10.1016/j.jeurceramsoc.2024.116789_bib29) 2009; 204 Lin (10.1016/j.jeurceramsoc.2024.116789_bib24) 2023; 224 Guo (10.1016/j.jeurceramsoc.2024.116789_bib21) 2024; 226 Xiao (10.1016/j.jeurceramsoc.2024.116789_bib7) 2020; 40 Webster (10.1016/j.jeurceramsoc.2024.116789_bib35) 2022; 584 Zhou (10.1016/j.jeurceramsoc.2024.116789_bib20) 2019; 102 Vidal-Setif (10.1016/j.jeurceramsoc.2024.116789_bib19) 2012; 208 Roncallo (10.1016/j.jeurceramsoc.2024.116789_bib10) 2021; 412 Loghman-Estarki (10.1016/j.jeurceramsoc.2024.116789_bib9) 2016; 42 Yin (10.1016/j.jeurceramsoc.2024.116789_bib12) 2021; 26 Zhang (10.1016/j.jeurceramsoc.2024.116789_bib33) 2019; 469 Kang (10.1016/j.jeurceramsoc.2024.116789_bib8) 2018; 229 |
| References_xml | – volume: 224 year: 2023 ident: bib24 article-title: CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials publication-title: Corros. Sci. – volume: 43 start-page: 4124 year: 2023 end-page: 4135 ident: bib30 article-title: Investigating the thermal, mechanical and thermal cyclic properties of plasma-sprayed Al2O3-7YSZ/7YSZ double ceramic layer TBCs publication-title: J. Eur. Ceram. Soc. – volume: 40 start-page: 2731 year: 2020 end-page: 2745 ident: bib1 article-title: Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems publication-title: J. Eur. Ceram. Soc. – volume: 54 start-page: 4921 year: 2006 end-page: 4928 ident: bib16 article-title: Coatings of metastable ceramics deposited by solution-precursor plasma spray: II. Ternary ZrO2–Y2O3–Al2O3 system publication-title: Acta Mater. – volume: 208 start-page: 39 year: 2012 end-page: 45 ident: bib19 article-title: Calcium–magnesium–alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs publication-title: Surf. Coat. Technol. – volume: 47 start-page: 29490 year: 2021 end-page: 29498 ident: bib4 article-title: Study on cyclic thermal corrosion behavior of APS-7YSZ thermal barrier coating at room- and high temperature publication-title: Ceram. Int. – volume: 105 start-page: 355 year: 2016 end-page: 366 ident: bib34 article-title: Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings publication-title: Acta Mater. – volume: 10 start-page: 472 year: 2021 end-page: 481 ident: bib14 article-title: Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications publication-title: J. Adv. Ceram. – volume: 260 start-page: 73 year: 2014 end-page: 81 ident: bib15 article-title: Degradation study of 7 wt% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO–MgO–Al 2 O 3 –SiO 2 variants publication-title: Surf. Coat. Technol. – volume: 102 start-page: 6357 year: 2019 end-page: 6371 ident: bib20 article-title: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits publication-title: J. Am. Ceram. Soc. – volume: 58 start-page: 6835 year: 2010 end-page: 6844 ident: bib13 article-title: Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits publication-title: Acta Mater. – volume: 203 year: 2022 ident: bib25 article-title: Calcium magnesium aluminosilicate (CMAS) corrosion behaviors of apatite Ca2La8(SiO4)6O2 thermal barrier coating material publication-title: Corros. Sci. – volume: 204 start-page: 797 year: 2009 end-page: 801 ident: bib29 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf. Coat. Technol. – volume: 154 start-page: 111 year: 2019 end-page: 122 ident: bib23 article-title: CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 degrees C-1350 degrees C publication-title: Corros. Sci. – volume: 232 year: 2024 ident: bib28 article-title: Wetting kinetics and corrosion of CMAS and CMAS-NaCl to plasma-sprayed YSZ and Al2O3-YSZ thermal barrier coatings publication-title: Corros. Sci. – volume: 31 start-page: 1881 year: 2011 end-page: 1888 ident: bib17 article-title: Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits publication-title: J. Eur. Ceram. Soc. – volume: 40 start-page: 2030 year: 2020 end-page: 2041 ident: bib7 article-title: Sintering resistance of suspension plasma sprayed 7YSZ TBC under isothermal and cyclic oxidation publication-title: J. Eur. Ceram. Soc. – volume: 221 year: 2023 ident: bib27 article-title: Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings publication-title: Corros. Sci. – volume: 468 start-page: 113 year: 2004 end-page: 119 ident: bib32 article-title: Substrate melting during thermal spray splat quenching publication-title: Thin Solid Films – volume: 42 start-page: 649 year: 2022 end-page: 657 ident: bib22 article-title: Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material publication-title: J. Eur. Ceram. Soc. – volume: 47 start-page: 19505 year: 2021 end-page: 19514 ident: bib5 article-title: High-temperature interactions between Yttria-stabilized zirconia thermal barrier coatings and Na-Rich calcia-magnesia-aluminosilicate deposits publication-title: Ceram. Int. – volume: 584 year: 2022 ident: bib35 article-title: Viscosity of CaO-MgO-Al2O3-SiO2 (CMAS) melts: Experimental measurements and comparison to model calculations publication-title: J. Non-Cryst. Solids – volume: 229 start-page: 40 year: 2018 end-page: 43 ident: bib8 article-title: High temperature wettability between CMAS and YSZ coating with tailored surface microstructures publication-title: Mater. Lett. – volume: 412 year: 2021 ident: bib10 article-title: Effect of cooling rate on phase transformation in 6–8 wt% YSZ APS TBCs publication-title: Surf. Coat. Technol. – volume: 446 year: 2022 ident: bib26 article-title: Improving CMAS-corrosion resistance of YSZ-based thermal barrier coatings with Al2O3 addition publication-title: Surf. Coat. Technol. – volume: 26 year: 2021 ident: bib12 article-title: Wetting and spreading behaviour of molten CMAS towards thermal barrier coatings and its influencing factors publication-title: Results Phys. – volume: 469 start-page: 691 year: 2019 end-page: 702 ident: bib33 article-title: Understanding the formation of plasma-sprayed Ni20Cr splats through interface observation publication-title: Appl. Surf. Sci. – volume: 31 start-page: 685 year: 2022 end-page: 698 ident: bib2 article-title: A perspective on thermally sprayed thermal barrier coatings: current status and trends publication-title: J. Therm. Spray. Technol. – volume: 42 start-page: 14374 year: 2016 end-page: 14383 ident: bib9 article-title: Thermal stability and sintering behavior of plasma sprayed nanostructured 7YSZ, 15YSZ and 5.5SYSZ coatings at elevated temperatures publication-title: Ceram. Int. – volume: 431 year: 2022 ident: bib31 article-title: Interactions between successive high-velocity impact droplets during plasma spraying publication-title: Surf. Coat. Technol. – volume: 41 start-page: 315 year: 2021 end-page: 323 ident: bib6 article-title: Microstructural and columnar growth characteristics of 7YSZ thermal barrier coatings fabricated by plasma spray physical vapor deposition publication-title: J. Eur. Ceram. Soc. – volume: 38 start-page: 5101 year: 2018 end-page: 5112 ident: bib11 article-title: Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry publication-title: J. Eur. Ceram. Soc. – volume: 53 start-page: 1029 year: 2005 end-page: 1039 ident: bib18 article-title: A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration publication-title: Acta Mater. – volume: 431 year: 2022 ident: bib3 article-title: Design of thermal and environmental barrier coatings for Nb-based alloys for high-temperature operation publication-title: Surf. Coat. Technol. – volume: 226 year: 2024 ident: bib21 article-title: Interaction laws of RE2O3 and CMAS and rare earth selection criterions for RE-containing thermal barrier coatings against CMAS attack publication-title: Corros. Sci. – volume: 468 start-page: 113 year: 2004 ident: 10.1016/j.jeurceramsoc.2024.116789_bib32 article-title: Substrate melting during thermal spray splat quenching publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.05.073 – volume: 229 start-page: 40 year: 2018 ident: 10.1016/j.jeurceramsoc.2024.116789_bib8 article-title: High temperature wettability between CMAS and YSZ coating with tailored surface microstructures publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.06.066 – volume: 54 start-page: 4921 year: 2006 ident: 10.1016/j.jeurceramsoc.2024.116789_bib16 article-title: Coatings of metastable ceramics deposited by solution-precursor plasma spray: II. Ternary ZrO2–Y2O3–Al2O3 system publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.06.026 – volume: 224 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.116789_bib24 article-title: CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials publication-title: Corros. Sci. doi: 10.1016/j.corsci.2023.111529 – volume: 58 start-page: 6835 year: 2010 ident: 10.1016/j.jeurceramsoc.2024.116789_bib13 article-title: Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.09.013 – volume: 47 start-page: 19505 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.116789_bib5 article-title: High-temperature interactions between Yttria-stabilized zirconia thermal barrier coatings and Na-Rich calcia-magnesia-aluminosilicate deposits publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.03.288 – volume: 584 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.116789_bib35 article-title: Viscosity of CaO-MgO-Al2O3-SiO2 (CMAS) melts: Experimental measurements and comparison to model calculations publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2022.121508 – volume: 431 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.116789_bib3 article-title: Design of thermal and environmental barrier coatings for Nb-based alloys for high-temperature operation publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.128007 – volume: 203 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.116789_bib25 article-title: Calcium magnesium aluminosilicate (CMAS) corrosion behaviors of apatite Ca2La8(SiO4)6O2 thermal barrier coating material publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110322 – volume: 208 start-page: 39 year: 2012 ident: 10.1016/j.jeurceramsoc.2024.116789_bib19 article-title: Calcium–magnesium–alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.07.074 – volume: 431 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.116789_bib31 article-title: Interactions between successive high-velocity impact droplets during plasma spraying publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.128006 – volume: 204 start-page: 797 year: 2009 ident: 10.1016/j.jeurceramsoc.2024.116789_bib29 article-title: Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.09.055 – volume: 53 start-page: 1029 year: 2005 ident: 10.1016/j.jeurceramsoc.2024.116789_bib18 article-title: A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.11.028 – volume: 40 start-page: 2731 year: 2020 ident: 10.1016/j.jeurceramsoc.2024.116789_bib1 article-title: Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.03.016 – volume: 43 start-page: 4124 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.116789_bib30 article-title: Investigating the thermal, mechanical and thermal cyclic properties of plasma-sprayed Al2O3-7YSZ/7YSZ double ceramic layer TBCs publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2023.03.004 – volume: 446 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.116789_bib26 article-title: Improving CMAS-corrosion resistance of YSZ-based thermal barrier coatings with Al2O3 addition publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.128799 – volume: 31 start-page: 685 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.116789_bib2 article-title: A perspective on thermally sprayed thermal barrier coatings: current status and trends publication-title: J. Therm. Spray. Technol. doi: 10.1007/s11666-022-01330-2 – volume: 10 start-page: 472 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.116789_bib14 article-title: Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications publication-title: J. Adv. Ceram. doi: 10.1007/s40145-020-0449-7 – volume: 232 year: 2024 ident: 10.1016/j.jeurceramsoc.2024.116789_bib28 article-title: Wetting kinetics and corrosion of CMAS and CMAS-NaCl to plasma-sprayed YSZ and Al2O3-YSZ thermal barrier coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2024.112048 – volume: 41 start-page: 315 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.116789_bib6 article-title: Microstructural and columnar growth characteristics of 7YSZ thermal barrier coatings fabricated by plasma spray physical vapor deposition publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2021.09.008 – volume: 42 start-page: 649 year: 2022 ident: 10.1016/j.jeurceramsoc.2024.116789_bib22 article-title: Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2021.10.022 – volume: 221 year: 2023 ident: 10.1016/j.jeurceramsoc.2024.116789_bib27 article-title: Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings publication-title: Corros. Sci. doi: 10.1016/j.corsci.2023.111369 – volume: 412 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.116789_bib10 article-title: Effect of cooling rate on phase transformation in 6–8 wt% YSZ APS TBCs publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127071 – volume: 40 start-page: 2030 year: 2020 ident: 10.1016/j.jeurceramsoc.2024.116789_bib7 article-title: Sintering resistance of suspension plasma sprayed 7YSZ TBC under isothermal and cyclic oxidation publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.12.046 – volume: 105 start-page: 355 year: 2016 ident: 10.1016/j.jeurceramsoc.2024.116789_bib34 article-title: Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.12.044 – volume: 469 start-page: 691 year: 2019 ident: 10.1016/j.jeurceramsoc.2024.116789_bib33 article-title: Understanding the formation of plasma-sprayed Ni20Cr splats through interface observation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.11.087 – volume: 31 start-page: 1881 year: 2011 ident: 10.1016/j.jeurceramsoc.2024.116789_bib17 article-title: Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.04.006 – volume: 154 start-page: 111 year: 2019 ident: 10.1016/j.jeurceramsoc.2024.116789_bib23 article-title: CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250 degrees C-1350 degrees C publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.04.014 – volume: 47 start-page: 29490 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.116789_bib4 article-title: Study on cyclic thermal corrosion behavior of APS-7YSZ thermal barrier coating at room- and high temperature publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.07.117 – volume: 42 start-page: 14374 year: 2016 ident: 10.1016/j.jeurceramsoc.2024.116789_bib9 article-title: Thermal stability and sintering behavior of plasma sprayed nanostructured 7YSZ, 15YSZ and 5.5SYSZ coatings at elevated temperatures publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.05.203 – volume: 260 start-page: 73 year: 2014 ident: 10.1016/j.jeurceramsoc.2024.116789_bib15 article-title: Degradation study of 7 wt% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO–MgO–Al 2 O 3 –SiO 2 variants publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.08.079 – volume: 38 start-page: 5101 year: 2018 ident: 10.1016/j.jeurceramsoc.2024.116789_bib11 article-title: Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: effect of TBC microstructure and the CMAS chemistry publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.06.039 – volume: 102 start-page: 6357 year: 2019 ident: 10.1016/j.jeurceramsoc.2024.116789_bib20 article-title: Failure of plasma sprayed nano-zirconia-based thermal barrier coatings exposed to molten CaO–MgO–Al2O3–SiO2 deposits publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16498 – volume: 26 year: 2021 ident: 10.1016/j.jeurceramsoc.2024.116789_bib12 article-title: Wetting and spreading behaviour of molten CMAS towards thermal barrier coatings and its influencing factors publication-title: Results Phys. doi: 10.1016/j.rinp.2021.104365 – volume: 226 year: 2024 ident: 10.1016/j.jeurceramsoc.2024.116789_bib21 article-title: Interaction laws of RE2O3 and CMAS and rare earth selection criterions for RE-containing thermal barrier coatings against CMAS attack publication-title: Corros. Sci. doi: 10.1016/j.corsci.2023.111689 |
| SSID | ssj0017099 |
| Score | 2.4805293 |
| Snippet | The calcium-magnesium-aluminum-silicate (CMAS) corrosion is now a great threat to thermal barrier coatings (TBCs), inducing coating spallation readily. The... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 116789 |
| SubjectTerms | Al2O3-7YSZ composite coating CMAS corrosion Interfacial reactions Thermal barrier coating |
| Title | CMAS corrosion characteristics of YSZ and Al2O3-YSZ thermal barrier coatings at 1250 °C–1350 °C |
| URI | https://dx.doi.org/10.1016/j.jeurceramsoc.2024.116789 |
| Volume | 44 |
| WOSCitedRecordID | wos001284320500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0955-2219 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017099 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZKxwVcIH618SdfsKspVWs7iX3BRYg2fiQGUoco3ER24kytSjqVdNrl3oEb3gKegUfZk3Ac22lVNqkIcRM1jlwnPl_sL8fH30HoGRdMibKggeZ9HTAlI3ileBRQpnIgwNpI3jTJJuLDQz4aifedzne_F-Z0GlcVPzsTJ__V1FAGxjZbZ__C3O2fQgH8BqPDEcwOx40Mn75NhnvwTQnTnzFtvqbIDOTw0_Bzs2aQTMk7GpgzwwK_gLGUnDcZ7PKZrJt8nrLeA27SdyERycFuSnZf9FMfIkEH9M-LV_Bdw3Bb33-q59JE5bug0ZZOzxaNh1ZXx-USti9l48_9qMe-ZLSwYsF-3m2GULvLZAzTcrXqyyBsLS6k3WSzjGiynsowIH5kdYO2FY304AwvnQysX2LSm2izDAKPBXjvmWZ7ZvHJZi5aE9semsZMWya0NoqIuIa2SBwK3kVbyev90Zt2hSruC6fjaG_OC9o2sYNXtXg5-VkhNEe30S1nGZxYBN1BHV3dRTdX9CnvoWODJdxiCa9hCc9KDOjBgCXcYgk7LGGHJeyxhGWNDZYuzn_8-plenH8z2LEn99GHg_2j9FXgMnMEORDwOlAlMNNSSJ0PSMFDRUPgWrkOtQ6Z1hGJScQLruNBqAZUCV7kMqSSlqFRPyx5SR-gbjWr9DbCRChVDHIg-ooyqYlkLI4irkREGHxbsB0kfJdluZOtN9lTppmPT5xkq92dme7ObHfvINrWPbHiLRvVeu4tkzkaaullBsDaoP7Df6z_CN1YvhuPUbeeL_QTdD0_rcdf508dDn8DVn2wxw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CMAS+corrosion+characteristics+of+YSZ+and+Al2O3-YSZ+thermal+barrier+coatings+at+1250%E2%80%AF%C2%B0C%E2%80%931350%E2%80%AF%C2%B0C&rft.jtitle=Journal+of+the+European+Ceramic+Society&rft.au=Dou%2C+Mengfan&rft.au=Gao%2C+Wei&rft.au=Xue%2C+Ting&rft.au=Han%2C+Jiasen&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=0955-2219&rft.volume=44&rft.issue=15&rft_id=info:doi/10.1016%2Fj.jeurceramsoc.2024.116789&rft.externalDocID=S0955221924006629 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-2219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-2219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-2219&client=summon |