Calculation of internal heat source and thermal gradient of cylindrical traction battery with measured surface temperature and heat flux

In the process of charging and discharging, the traction battery not only experiences electrochemical reactions, but also includes many side reactions, the typical phenomenon of which is the rise of battery temperature. In order to study the characteristics of the internal heat source and the distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermal sciences Jg. 187; S. 108192
Hauptverfasser: Wang, Haimin, Zhu, Zexu, Ji, Zhiyuan, Hu, Feng, Lin, Hao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Masson SAS 01.05.2023
Schlagworte:
ISSN:1290-0729, 1778-4166
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the process of charging and discharging, the traction battery not only experiences electrochemical reactions, but also includes many side reactions, the typical phenomenon of which is the rise of battery temperature. In order to study the characteristics of the internal heat source and the distribution of the temperature field of a cylindrical battery, a one-dimensional (radius direction) heat transfer model is established in this work. Then, the temperature and heat flux measured on the external surface of the battery is used to calculate the internal heat source and temperature distribution, so as to quantify the thermal gradient in the diameter direction. In order to verify the feasibility of the model, a small incision is cut at the bottom of the battery, a thermocouple is built in to measure the temperature of the central position inside the battery, and the measured temperature is compared with the calculated temperature. The results show that the calculated results of the model have high reliability. In addition, the proposed model is also used to calculate the temperature of its internal central position at a higher ambient temperature (40 °C) and a lower ambient temperature (−10 °C). It is found that the calculated results are very close to the measured results at the ambient temperature of 40 °C, but the difference between the two was large at the ambient temperature of −10 °C. •Heat transfer model of a cylindrical cell with internal heat source was established.•Calculating internal temperature with measured surface temperature and heat flux.•The accuracy of model is verified by the measured internal center temperature of cell.•The calculation method has a high accuracy in the ambient temperature of 20 °C–40 °C.
AbstractList In the process of charging and discharging, the traction battery not only experiences electrochemical reactions, but also includes many side reactions, the typical phenomenon of which is the rise of battery temperature. In order to study the characteristics of the internal heat source and the distribution of the temperature field of a cylindrical battery, a one-dimensional (radius direction) heat transfer model is established in this work. Then, the temperature and heat flux measured on the external surface of the battery is used to calculate the internal heat source and temperature distribution, so as to quantify the thermal gradient in the diameter direction. In order to verify the feasibility of the model, a small incision is cut at the bottom of the battery, a thermocouple is built in to measure the temperature of the central position inside the battery, and the measured temperature is compared with the calculated temperature. The results show that the calculated results of the model have high reliability. In addition, the proposed model is also used to calculate the temperature of its internal central position at a higher ambient temperature (40 °C) and a lower ambient temperature (−10 °C). It is found that the calculated results are very close to the measured results at the ambient temperature of 40 °C, but the difference between the two was large at the ambient temperature of −10 °C. •Heat transfer model of a cylindrical cell with internal heat source was established.•Calculating internal temperature with measured surface temperature and heat flux.•The accuracy of model is verified by the measured internal center temperature of cell.•The calculation method has a high accuracy in the ambient temperature of 20 °C–40 °C.
ArticleNumber 108192
Author Lin, Hao
Ji, Zhiyuan
Hu, Feng
Wang, Haimin
Zhu, Zexu
Author_xml – sequence: 1
  givenname: Haimin
  orcidid: 0000-0001-6931-716X
  surname: Wang
  fullname: Wang, Haimin
  email: hmwang@usst.edu.cn
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 2
  givenname: Zexu
  orcidid: 0000-0001-8905-2533
  surname: Zhu
  fullname: Zhu, Zexu
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 3
  givenname: Zhiyuan
  surname: Ji
  fullname: Ji, Zhiyuan
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 4
  givenname: Feng
  surname: Hu
  fullname: Hu, Feng
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
– sequence: 5
  givenname: Hao
  surname: Lin
  fullname: Lin, Hao
  organization: Dongfeng Commercial Vehicle Technical Center, Dongfeng Commercial Vehicle Co., Ltd., Wuhan, 430056, China
BookMark eNqNkM9OAyEQh4mpiW31HYj3rcBud4snTf2bmHjRM5mFwdJs2Yalat_Ax5ZuezCeegEyzHyT3zciA996JOSSswlnvLxaTtwyLjCsoOm0mwgm8vQx41KckCGvqllW8LIcpLeQLGOVkGdk1HVLxlglmRySnzk0etNAdK2nraXORwweGrpAiLRrN0EjBW_oYQv9CGAc-rhr1tvGeROcTvUYQPeQGmJCbOmXiwu6Qug2AQ1Np4WEirhaY4CYij22X2Obzfc5ObUpBF4c7jF5f7h_mz9lL6-Pz_Pbl0znoohZXTJmtZlqXQCfmlKDnTJhC5AFNyDqXMuKl3JW2LyCGUpe1UJiaQB5JWtR5mNyvefq0HZdQKvWwa0gbBVnaudULdVfp2rnVO2dpuGbf8Paxd5diu-a4xB3ewSmkJ8Og0od6DUaF1BHZVp3DOYXiHijQw
CitedBy_id crossref_primary_10_1016_j_est_2024_113919
Cites_doi 10.1016/S0378-7753(01)00478-5
10.1016/j.jpowsour.2013.09.016
10.1016/j.jpowsour.2018.10.014
10.1016/j.sna.2015.06.004
10.1016/j.jpowsour.2014.03.004
10.1016/j.apenergy.2017.05.136
10.4236/jmp.2013.47A2001
10.1016/j.applthermaleng.2019.114660
10.1016/j.applthermaleng.2021.117053
10.1016/j.jpowsour.2019.226715
10.1016/j.jpowsour.2012.04.015
10.1016/j.applthermaleng.2018.04.014
10.1016/j.jpowsour.2012.08.012
10.1016/j.jpowsour.2009.10.105
10.1002/anie.201409262
10.1016/j.jpowsour.2020.228070
10.1016/j.energy.2021.120072
10.1016/j.jpowsour.2013.06.084
10.1016/j.applthermaleng.2018.07.105
10.1109/TCST.2012.2217143
10.1016/j.jpowsour.2013.09.005
10.1016/j.ensm.2020.11.029
10.1007/s11630-022-1586-9
10.1016/j.applthermaleng.2020.116215
10.1109/TVT.2019.2943052
ContentType Journal Article
Copyright 2023 Elsevier Masson SAS
Copyright_xml – notice: 2023 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ijthermalsci.2023.108192
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1778-4166
ExternalDocumentID 10_1016_j_ijthermalsci_2023_108192
S1290072923000534
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c324t-b600fcd5cc4a15d6caf502f4a941da2b3c9716984f37a8e917b29e6dae179b263
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927309000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1290-0729
IngestDate Sat Nov 29 07:04:33 EST 2025
Tue Nov 18 22:19:50 EST 2025
Fri Feb 23 02:38:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Traction battery
Temperature inversion algorithm
Heat flux
Thermal gradient
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-b600fcd5cc4a15d6caf502f4a941da2b3c9716984f37a8e917b29e6dae179b263
ORCID 0000-0001-8905-2533
0000-0001-6931-716X
ParticipantIDs crossref_primary_10_1016_j_ijthermalsci_2023_108192
crossref_citationtrail_10_1016_j_ijthermalsci_2023_108192
elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2023_108192
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle International journal of thermal sciences
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Pan, Hua, Zhou, He, Zhang, Yang, Liu, Lian, Yan, Wu (bib14) 2020; 459
Wang, Shi, Hu, Wang, Hu, Li (bib3) 2021; 224
Forgez, Do, Friedrich, Morcrette, Delacourt (bib8) 2010; 195
Chacko, Chung (bib4) 2012; 213
Clerici, Mocera, Somà (bib24) 2022
Zhang, Wei (bib25) 2020; 166
Zhang, Li, Huang, Zhang (bib27) 2022
An, Jia, Wei, Dang, Peng (bib15) 2018; 137
Lin, Wen, Liu, Liu, Ma, Fan, Wang (bib29) 2021; 184
Mc Carthy, Gullapalli, Kennedy (bib16) 2022
Morganti, Longo, Tirovic, Blaise, Forostovsky (bib26) 2019; 68
Guo, White (bib17) 2013; 221
Cavalheiro, Iriyama, Nelson, Huang, Zhang (bib7) 2020
Rad, Danilov, Baghalha, Kazemeini, Notten (bib20) 2013
Yoo, Kim (bib22) 2019; 433
Troxler, Wu, Marinescu, Yufit, Patel, Marquis, Brandon, Offer (bib6) 2014; 247
Liu, Oh, Liu, Lee, Cho, Chae, Kim, Cho (bib2) 2015; 54
Raijmakers, Danilov, van Lammeren, Lammers, Notten (bib12) 2014; 247
Sato (bib1) 2001; 99
Xiong, Yu, Wang, Lin (bib28) 2017; 207
Allafi, Zhang, Uddin, Worwood, Dinh, Ormeno, Li, Marco (bib18) 2018; 143
Lee, Chuang, Lee, Hung, Hsieh, Chang, Huang (bib10) 2015; 232
Ren, Jia, Dang, Yang, Jia, Liu (bib23) 2022; 31
Wang, Wang, Hu, Shi, Hu, Li, Chen, Lin, Jiang (bib21) 2021; 194
Li, Zhang, Wu, Huang, Nie, Sun, An, Wu (bib11) 2014; 247
Fear, Parmananda, Kabra, Carter, Love, Mukherjee (bib5) 2021; 35
Srinivasan, Demirev, Carkhuff (bib13) 2018; 405
Lin, Perez, Siegel, Stefanopoulou, Li, Anderson, Ding, Castanier (bib19) 2013; 21
Mutyala, Zhao, Li, Pan, Yuan, Li (bib9) 2014; 260
Zhang (10.1016/j.ijthermalsci.2023.108192_bib25) 2020; 166
Li (10.1016/j.ijthermalsci.2023.108192_bib11) 2014; 247
Troxler (10.1016/j.ijthermalsci.2023.108192_bib6) 2014; 247
Wang (10.1016/j.ijthermalsci.2023.108192_bib21) 2021; 194
Sato (10.1016/j.ijthermalsci.2023.108192_bib1) 2001; 99
Srinivasan (10.1016/j.ijthermalsci.2023.108192_bib13) 2018; 405
Morganti (10.1016/j.ijthermalsci.2023.108192_bib26) 2019; 68
Fear (10.1016/j.ijthermalsci.2023.108192_bib5) 2021; 35
Raijmakers (10.1016/j.ijthermalsci.2023.108192_bib12) 2014; 247
Allafi (10.1016/j.ijthermalsci.2023.108192_bib18) 2018; 143
Yoo (10.1016/j.ijthermalsci.2023.108192_bib22) 2019; 433
Forgez (10.1016/j.ijthermalsci.2023.108192_bib8) 2010; 195
Lin (10.1016/j.ijthermalsci.2023.108192_bib29) 2021; 184
Chacko (10.1016/j.ijthermalsci.2023.108192_bib4) 2012; 213
Lee (10.1016/j.ijthermalsci.2023.108192_bib10) 2015; 232
Mutyala (10.1016/j.ijthermalsci.2023.108192_bib9) 2014; 260
Lin (10.1016/j.ijthermalsci.2023.108192_bib19) 2013; 21
An (10.1016/j.ijthermalsci.2023.108192_bib15) 2018; 137
Xiong (10.1016/j.ijthermalsci.2023.108192_bib28) 2017; 207
Guo (10.1016/j.ijthermalsci.2023.108192_bib17) 2013; 221
Wang (10.1016/j.ijthermalsci.2023.108192_bib3) 2021; 224
Clerici (10.1016/j.ijthermalsci.2023.108192_bib24) 2022
Mc Carthy (10.1016/j.ijthermalsci.2023.108192_bib16) 2022
Liu (10.1016/j.ijthermalsci.2023.108192_bib2) 2015; 54
Zhang (10.1016/j.ijthermalsci.2023.108192_bib27) 2022
Ren (10.1016/j.ijthermalsci.2023.108192_bib23) 2022; 31
Pan (10.1016/j.ijthermalsci.2023.108192_bib14) 2020; 459
Cavalheiro (10.1016/j.ijthermalsci.2023.108192_bib7) 2020
Rad (10.1016/j.ijthermalsci.2023.108192_bib20) 2013
References_xml – volume: 405
  start-page: 30
  year: 2018
  end-page: 36
  ident: bib13
  article-title: Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention
  publication-title: J. Power Sources
– volume: 459
  start-page: 10
  year: 2020
  ident: bib14
  article-title: A computational multi-node electro-thermal model for large prismatic lithium-ion batteries
  publication-title: J. Power Sources
– start-page: 1
  year: 2013
  end-page: 7
  ident: bib20
  article-title: Thermal modeling of cylindrical LiFePO
  publication-title: J. Mod. Phys.
– volume: 224
  start-page: 9
  year: 2021
  ident: bib3
  article-title: Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode
  publication-title: Energy
– volume: 260
  start-page: 43
  year: 2014
  end-page: 49
  ident: bib9
  article-title: In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples
  publication-title: J. Power Sources
– volume: 247
  start-page: 539
  year: 2014
  end-page: 544
  ident: bib12
  article-title: Sensorless battery temperature measurements based on electrochemical impedance spectroscopy
  publication-title: J. Power Sources
– volume: 137
  start-page: 792
  year: 2018
  end-page: 807
  ident: bib15
  article-title: Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model
  publication-title: Appl. Therm. Eng.
– volume: 213
  start-page: 296
  year: 2012
  end-page: 303
  ident: bib4
  article-title: Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles
  publication-title: J. Power Sources
– volume: 207
  start-page: 346
  year: 2017
  end-page: 353
  ident: bib28
  article-title: A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter
  publication-title: Appl. Energy
– volume: 232
  start-page: 214
  year: 2015
  end-page: 222
  ident: bib10
  article-title: Flexible micro sensor for in-situ monitoring temperature and voltage of coin cells
  publication-title: Sens. Actuator A-Phys.
– volume: 31
  start-page: 816
  year: 2022
  end-page: 829
  ident: bib23
  article-title: Experimental investigation on pouch lithium-ion battery thermal management with mini-channels cooling plate based on heat generation characteristic
  publication-title: J. Therm. Sci.
– volume: 99
  start-page: 70
  year: 2001
  end-page: 77
  ident: bib1
  article-title: Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles
  publication-title: J. Power Sources
– volume: 433
  start-page: 10
  year: 2019
  ident: bib22
  article-title: Thermal behavior of full-scale battery pack based on comprehensive heat-generation model
  publication-title: J. Power Sources
– start-page: 542
  year: 2022
  ident: bib24
  article-title: Electrochemical–mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries
  publication-title: J. Power Sources
– start-page: 17
  year: 2020
  ident: bib7
  article-title: Effects of nonuniform temperature distribution on degradation of lithium-ion batteries
  publication-title: J. Electrochem Energy Convers. Storage
– volume: 195
  start-page: 2961
  year: 2010
  end-page: 2968
  ident: bib8
  article-title: Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery
  publication-title: J. Power Sources
– start-page: 199
  year: 2022
  ident: bib27
  article-title: Numerical investigation on the thermal behavior of cylindrical lithium-ion batteries based on the electrochemical-thermal coupling model
  publication-title: Int. J. Heat Mass Tran.
– volume: 184
  start-page: 7
  year: 2021
  ident: bib29
  article-title: Heat generation quantification of high-specific-energy 21700 battery cell using average and variable specific heat capacities
  publication-title: Appl. Therm. Eng.
– start-page: 519
  year: 2022
  ident: bib16
  article-title: Real-time internal temperature estimation of commercial Li-ion batteries using online impedance measurements
  publication-title: J. Power Sources
– volume: 247
  year: 2014
  ident: bib11
  article-title: Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples (vol 241, pg 536, 2013)
  publication-title: J. Power Sources
– volume: 21
  start-page: 1745
  year: 2013
  end-page: 1755
  ident: bib19
  article-title: Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 54
  start-page: 4440
  year: 2015
  end-page: 4457
  ident: bib2
  article-title: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries
  publication-title: Angew. Chem.-Int. Edit.
– volume: 68
  start-page: 10594
  year: 2019
  end-page: 10606
  ident: bib26
  article-title: Multi-Scale, electro-thermal model of NMC battery cell
  publication-title: IEEE Trans. Veh. Technol.
– volume: 194
  start-page: 13
  year: 2021
  ident: bib21
  article-title: Heat generation measurement and thermal management with phase change material based on heat flux for high specific energy power battery
  publication-title: Appl. Therm. Eng.
– volume: 143
  start-page: 472
  year: 2018
  end-page: 481
  ident: bib18
  article-title: A lumped thermal model of lithium-ion battery cells considering radiative heat transfer
  publication-title: Appl. Therm. Eng.
– volume: 35
  start-page: 500
  year: 2021
  end-page: 511
  ident: bib5
  article-title: Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating
  publication-title: Energy Storage Mater.
– volume: 247
  start-page: 1018
  year: 2014
  end-page: 1025
  ident: bib6
  article-title: The effect of thermal gradients on the performance of lithium-ion batteries
  publication-title: J. Power Sources
– volume: 166
  start-page: 10
  year: 2020
  ident: bib25
  article-title: Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries
  publication-title: Appl. Therm. Eng.
– volume: 221
  start-page: 334
  year: 2013
  end-page: 344
  ident: bib17
  article-title: A distributed thermal model for a Li-ion electrode plate pair
  publication-title: J. Power Sources
– volume: 99
  start-page: 70
  year: 2001
  ident: 10.1016/j.ijthermalsci.2023.108192_bib1
  article-title: Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00478-5
– start-page: 17
  year: 2020
  ident: 10.1016/j.ijthermalsci.2023.108192_bib7
  article-title: Effects of nonuniform temperature distribution on degradation of lithium-ion batteries
  publication-title: J. Electrochem Energy Convers. Storage
– volume: 247
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108192_bib11
  article-title: Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples (vol 241, pg 536, 2013)
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.016
– volume: 405
  start-page: 30
  year: 2018
  ident: 10.1016/j.ijthermalsci.2023.108192_bib13
  article-title: Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.014
– volume: 232
  start-page: 214
  year: 2015
  ident: 10.1016/j.ijthermalsci.2023.108192_bib10
  article-title: Flexible micro sensor for in-situ monitoring temperature and voltage of coin cells
  publication-title: Sens. Actuator A-Phys.
  doi: 10.1016/j.sna.2015.06.004
– volume: 260
  start-page: 43
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108192_bib9
  article-title: In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.004
– volume: 207
  start-page: 346
  year: 2017
  ident: 10.1016/j.ijthermalsci.2023.108192_bib28
  article-title: A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.136
– start-page: 1
  year: 2013
  ident: 10.1016/j.ijthermalsci.2023.108192_bib20
  article-title: Thermal modeling of cylindrical LiFePO4 batteries
  publication-title: J. Mod. Phys.
  doi: 10.4236/jmp.2013.47A2001
– volume: 166
  start-page: 10
  year: 2020
  ident: 10.1016/j.ijthermalsci.2023.108192_bib25
  article-title: Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114660
– volume: 194
  start-page: 13
  year: 2021
  ident: 10.1016/j.ijthermalsci.2023.108192_bib21
  article-title: Heat generation measurement and thermal management with phase change material based on heat flux for high specific energy power battery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117053
– volume: 433
  start-page: 10
  year: 2019
  ident: 10.1016/j.ijthermalsci.2023.108192_bib22
  article-title: Thermal behavior of full-scale battery pack based on comprehensive heat-generation model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226715
– volume: 213
  start-page: 296
  year: 2012
  ident: 10.1016/j.ijthermalsci.2023.108192_bib4
  article-title: Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.015
– volume: 137
  start-page: 792
  year: 2018
  ident: 10.1016/j.ijthermalsci.2023.108192_bib15
  article-title: Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.014
– volume: 221
  start-page: 334
  year: 2013
  ident: 10.1016/j.ijthermalsci.2023.108192_bib17
  article-title: A distributed thermal model for a Li-ion electrode plate pair
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.08.012
– volume: 195
  start-page: 2961
  year: 2010
  ident: 10.1016/j.ijthermalsci.2023.108192_bib8
  article-title: Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.10.105
– volume: 54
  start-page: 4440
  year: 2015
  ident: 10.1016/j.ijthermalsci.2023.108192_bib2
  article-title: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.201409262
– volume: 459
  start-page: 10
  year: 2020
  ident: 10.1016/j.ijthermalsci.2023.108192_bib14
  article-title: A computational multi-node electro-thermal model for large prismatic lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228070
– volume: 224
  start-page: 9
  year: 2021
  ident: 10.1016/j.ijthermalsci.2023.108192_bib3
  article-title: Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120072
– volume: 247
  start-page: 1018
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108192_bib6
  article-title: The effect of thermal gradients on the performance of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.084
– start-page: 542
  year: 2022
  ident: 10.1016/j.ijthermalsci.2023.108192_bib24
  article-title: Electrochemical–mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries
  publication-title: J. Power Sources
– start-page: 519
  year: 2022
  ident: 10.1016/j.ijthermalsci.2023.108192_bib16
  article-title: Real-time internal temperature estimation of commercial Li-ion batteries using online impedance measurements
  publication-title: J. Power Sources
– start-page: 199
  year: 2022
  ident: 10.1016/j.ijthermalsci.2023.108192_bib27
  article-title: Numerical investigation on the thermal behavior of cylindrical lithium-ion batteries based on the electrochemical-thermal coupling model
  publication-title: Int. J. Heat Mass Tran.
– volume: 143
  start-page: 472
  year: 2018
  ident: 10.1016/j.ijthermalsci.2023.108192_bib18
  article-title: A lumped thermal model of lithium-ion battery cells considering radiative heat transfer
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.105
– volume: 21
  start-page: 1745
  year: 2013
  ident: 10.1016/j.ijthermalsci.2023.108192_bib19
  article-title: Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2217143
– volume: 247
  start-page: 539
  year: 2014
  ident: 10.1016/j.ijthermalsci.2023.108192_bib12
  article-title: Sensorless battery temperature measurements based on electrochemical impedance spectroscopy
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.09.005
– volume: 35
  start-page: 500
  year: 2021
  ident: 10.1016/j.ijthermalsci.2023.108192_bib5
  article-title: Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.11.029
– volume: 31
  start-page: 816
  year: 2022
  ident: 10.1016/j.ijthermalsci.2023.108192_bib23
  article-title: Experimental investigation on pouch lithium-ion battery thermal management with mini-channels cooling plate based on heat generation characteristic
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-022-1586-9
– volume: 184
  start-page: 7
  year: 2021
  ident: 10.1016/j.ijthermalsci.2023.108192_bib29
  article-title: Heat generation quantification of high-specific-energy 21700 battery cell using average and variable specific heat capacities
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116215
– volume: 68
  start-page: 10594
  year: 2019
  ident: 10.1016/j.ijthermalsci.2023.108192_bib26
  article-title: Multi-Scale, electro-thermal model of NMC battery cell
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2943052
SSID ssj0007909
Score 2.3776612
Snippet In the process of charging and discharging, the traction battery not only experiences electrochemical reactions, but also includes many side reactions, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108192
SubjectTerms Heat flux
Temperature inversion algorithm
Thermal gradient
Traction battery
Title Calculation of internal heat source and thermal gradient of cylindrical traction battery with measured surface temperature and heat flux
URI https://dx.doi.org/10.1016/j.ijthermalsci.2023.108192
Volume 187
WOSCitedRecordID wos000927309000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1778-4166
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007909
  issn: 1290-0729
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEMzFOkLTV_g0M2QYVOSKQ4dgiCF0yHokKJGF4HiI7WhKoFjBfY_6F_qv-vxJdNFiroFuhCGIB5J36fj8XT6DqG3AkAAGxGcVDVLE8Odk_B0qBOlYK8QDA4EqbDFJuj5eTGdso-93o_wLcxtTZumWK3Y9X9VNVwDZZtPZ_9C3Z1QuAC_QenQgtqh3UnxJ7wWviZX4IOwLqexun0Xqw9pk2CU6_7lwmZ92YwAsQavUzrWkOXClxGvLAXn2oVsv7mYouxDqzmIMtxWnpjZirXD6LpdxW7vdtwxYqsIk_Abcefgf_Zh7Ak3Vcc20e3WvkxRq7bL_LHZCF--ztbtBucTexto5TIOapAohdDbYcKGiSE13zbUNDK1I-PMkDt3AReQmA9mc78KWMTADDPYdNqm3v5lS-wSFUMO3LyMZZVGVulk3UP7hOYMDOr-8dnp9EPnBlBm84u6lQTGW5tc-LuZ3e0dRR7PxSF66I8q-NhB7BHqqeYxOogILJ-g7xHY8JXGAWzYoAA7sGFABfbzwAFs5uYIbDiADXuwYQM2HMCGPdhwBDYr1g5jwPYUfXp_enEySXxtj0SAC79MKnC0tZC5EBkf5XIsuM6HRGecZSPJSZUKw23GikynlBeKjWhFmBpLrmAHqcg4fYb2mqtGPUdYSVlxMmSVSlnGiWAKvGRRaEFlTmiRHyEW_tNSeOJ7U3-lLv-s3SOUdn2vHf3LTr3eBdWV_vlxDmoJCN2h_4t_GvUlerB5lF6hveWiVa_RfXG7nN0s3nh4_gT9xNBF
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculation+of+internal+heat+source+and+thermal+gradient+of+cylindrical+traction+battery+with+measured+surface+temperature+and+heat+flux&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Wang%2C+Haimin&rft.au=Zhu%2C+Zexu&rft.au=Ji%2C+Zhiyuan&rft.au=Hu%2C+Feng&rft.date=2023-05-01&rft.issn=1290-0729&rft.volume=187&rft.spage=108192&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2023.108192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijthermalsci_2023_108192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon