Calculation of internal heat source and thermal gradient of cylindrical traction battery with measured surface temperature and heat flux
In the process of charging and discharging, the traction battery not only experiences electrochemical reactions, but also includes many side reactions, the typical phenomenon of which is the rise of battery temperature. In order to study the characteristics of the internal heat source and the distri...
Gespeichert in:
| Veröffentlicht in: | International journal of thermal sciences Jg. 187; S. 108192 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Masson SAS
01.05.2023
|
| Schlagworte: | |
| ISSN: | 1290-0729, 1778-4166 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the process of charging and discharging, the traction battery not only experiences electrochemical reactions, but also includes many side reactions, the typical phenomenon of which is the rise of battery temperature. In order to study the characteristics of the internal heat source and the distribution of the temperature field of a cylindrical battery, a one-dimensional (radius direction) heat transfer model is established in this work. Then, the temperature and heat flux measured on the external surface of the battery is used to calculate the internal heat source and temperature distribution, so as to quantify the thermal gradient in the diameter direction. In order to verify the feasibility of the model, a small incision is cut at the bottom of the battery, a thermocouple is built in to measure the temperature of the central position inside the battery, and the measured temperature is compared with the calculated temperature. The results show that the calculated results of the model have high reliability. In addition, the proposed model is also used to calculate the temperature of its internal central position at a higher ambient temperature (40 °C) and a lower ambient temperature (−10 °C). It is found that the calculated results are very close to the measured results at the ambient temperature of 40 °C, but the difference between the two was large at the ambient temperature of −10 °C.
•Heat transfer model of a cylindrical cell with internal heat source was established.•Calculating internal temperature with measured surface temperature and heat flux.•The accuracy of model is verified by the measured internal center temperature of cell.•The calculation method has a high accuracy in the ambient temperature of 20 °C–40 °C. |
|---|---|
| AbstractList | In the process of charging and discharging, the traction battery not only experiences electrochemical reactions, but also includes many side reactions, the typical phenomenon of which is the rise of battery temperature. In order to study the characteristics of the internal heat source and the distribution of the temperature field of a cylindrical battery, a one-dimensional (radius direction) heat transfer model is established in this work. Then, the temperature and heat flux measured on the external surface of the battery is used to calculate the internal heat source and temperature distribution, so as to quantify the thermal gradient in the diameter direction. In order to verify the feasibility of the model, a small incision is cut at the bottom of the battery, a thermocouple is built in to measure the temperature of the central position inside the battery, and the measured temperature is compared with the calculated temperature. The results show that the calculated results of the model have high reliability. In addition, the proposed model is also used to calculate the temperature of its internal central position at a higher ambient temperature (40 °C) and a lower ambient temperature (−10 °C). It is found that the calculated results are very close to the measured results at the ambient temperature of 40 °C, but the difference between the two was large at the ambient temperature of −10 °C.
•Heat transfer model of a cylindrical cell with internal heat source was established.•Calculating internal temperature with measured surface temperature and heat flux.•The accuracy of model is verified by the measured internal center temperature of cell.•The calculation method has a high accuracy in the ambient temperature of 20 °C–40 °C. |
| ArticleNumber | 108192 |
| Author | Lin, Hao Ji, Zhiyuan Hu, Feng Wang, Haimin Zhu, Zexu |
| Author_xml | – sequence: 1 givenname: Haimin orcidid: 0000-0001-6931-716X surname: Wang fullname: Wang, Haimin email: hmwang@usst.edu.cn organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 2 givenname: Zexu orcidid: 0000-0001-8905-2533 surname: Zhu fullname: Zhu, Zexu organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 3 givenname: Zhiyuan surname: Ji fullname: Ji, Zhiyuan organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 4 givenname: Feng surname: Hu fullname: Hu, Feng organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China – sequence: 5 givenname: Hao surname: Lin fullname: Lin, Hao organization: Dongfeng Commercial Vehicle Technical Center, Dongfeng Commercial Vehicle Co., Ltd., Wuhan, 430056, China |
| BookMark | eNqNkM9OAyEQh4mpiW31HYj3rcBud4snTf2bmHjRM5mFwdJs2Yalat_Ax5ZuezCeegEyzHyT3zciA996JOSSswlnvLxaTtwyLjCsoOm0mwgm8vQx41KckCGvqllW8LIcpLeQLGOVkGdk1HVLxlglmRySnzk0etNAdK2nraXORwweGrpAiLRrN0EjBW_oYQv9CGAc-rhr1tvGeROcTvUYQPeQGmJCbOmXiwu6Qug2AQ1Np4WEirhaY4CYij22X2Obzfc5ObUpBF4c7jF5f7h_mz9lL6-Pz_Pbl0znoohZXTJmtZlqXQCfmlKDnTJhC5AFNyDqXMuKl3JW2LyCGUpe1UJiaQB5JWtR5mNyvefq0HZdQKvWwa0gbBVnaudULdVfp2rnVO2dpuGbf8Paxd5diu-a4xB3ewSmkJ8Og0od6DUaF1BHZVp3DOYXiHijQw |
| CitedBy_id | crossref_primary_10_1016_j_est_2024_113919 |
| Cites_doi | 10.1016/S0378-7753(01)00478-5 10.1016/j.jpowsour.2013.09.016 10.1016/j.jpowsour.2018.10.014 10.1016/j.sna.2015.06.004 10.1016/j.jpowsour.2014.03.004 10.1016/j.apenergy.2017.05.136 10.4236/jmp.2013.47A2001 10.1016/j.applthermaleng.2019.114660 10.1016/j.applthermaleng.2021.117053 10.1016/j.jpowsour.2019.226715 10.1016/j.jpowsour.2012.04.015 10.1016/j.applthermaleng.2018.04.014 10.1016/j.jpowsour.2012.08.012 10.1016/j.jpowsour.2009.10.105 10.1002/anie.201409262 10.1016/j.jpowsour.2020.228070 10.1016/j.energy.2021.120072 10.1016/j.jpowsour.2013.06.084 10.1016/j.applthermaleng.2018.07.105 10.1109/TCST.2012.2217143 10.1016/j.jpowsour.2013.09.005 10.1016/j.ensm.2020.11.029 10.1007/s11630-022-1586-9 10.1016/j.applthermaleng.2020.116215 10.1109/TVT.2019.2943052 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Masson SAS |
| Copyright_xml | – notice: 2023 Elsevier Masson SAS |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijthermalsci.2023.108192 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1778-4166 |
| ExternalDocumentID | 10_1016_j_ijthermalsci_2023_108192 S1290072923000534 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c324t-b600fcd5cc4a15d6caf502f4a941da2b3c9716984f37a8e917b29e6dae179b263 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927309000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1290-0729 |
| IngestDate | Sat Nov 29 07:04:33 EST 2025 Tue Nov 18 22:19:50 EST 2025 Fri Feb 23 02:38:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Traction battery Temperature inversion algorithm Heat flux Thermal gradient |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c324t-b600fcd5cc4a15d6caf502f4a941da2b3c9716984f37a8e917b29e6dae179b263 |
| ORCID | 0000-0001-8905-2533 0000-0001-6931-716X |
| ParticipantIDs | crossref_primary_10_1016_j_ijthermalsci_2023_108192 crossref_citationtrail_10_1016_j_ijthermalsci_2023_108192 elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2023_108192 |
| PublicationCentury | 2000 |
| PublicationDate | May 2023 2023-05-00 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of thermal sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Pan, Hua, Zhou, He, Zhang, Yang, Liu, Lian, Yan, Wu (bib14) 2020; 459 Wang, Shi, Hu, Wang, Hu, Li (bib3) 2021; 224 Forgez, Do, Friedrich, Morcrette, Delacourt (bib8) 2010; 195 Chacko, Chung (bib4) 2012; 213 Clerici, Mocera, Somà (bib24) 2022 Zhang, Wei (bib25) 2020; 166 Zhang, Li, Huang, Zhang (bib27) 2022 An, Jia, Wei, Dang, Peng (bib15) 2018; 137 Lin, Wen, Liu, Liu, Ma, Fan, Wang (bib29) 2021; 184 Mc Carthy, Gullapalli, Kennedy (bib16) 2022 Morganti, Longo, Tirovic, Blaise, Forostovsky (bib26) 2019; 68 Guo, White (bib17) 2013; 221 Cavalheiro, Iriyama, Nelson, Huang, Zhang (bib7) 2020 Rad, Danilov, Baghalha, Kazemeini, Notten (bib20) 2013 Yoo, Kim (bib22) 2019; 433 Troxler, Wu, Marinescu, Yufit, Patel, Marquis, Brandon, Offer (bib6) 2014; 247 Liu, Oh, Liu, Lee, Cho, Chae, Kim, Cho (bib2) 2015; 54 Raijmakers, Danilov, van Lammeren, Lammers, Notten (bib12) 2014; 247 Sato (bib1) 2001; 99 Xiong, Yu, Wang, Lin (bib28) 2017; 207 Allafi, Zhang, Uddin, Worwood, Dinh, Ormeno, Li, Marco (bib18) 2018; 143 Lee, Chuang, Lee, Hung, Hsieh, Chang, Huang (bib10) 2015; 232 Ren, Jia, Dang, Yang, Jia, Liu (bib23) 2022; 31 Wang, Wang, Hu, Shi, Hu, Li, Chen, Lin, Jiang (bib21) 2021; 194 Li, Zhang, Wu, Huang, Nie, Sun, An, Wu (bib11) 2014; 247 Fear, Parmananda, Kabra, Carter, Love, Mukherjee (bib5) 2021; 35 Srinivasan, Demirev, Carkhuff (bib13) 2018; 405 Lin, Perez, Siegel, Stefanopoulou, Li, Anderson, Ding, Castanier (bib19) 2013; 21 Mutyala, Zhao, Li, Pan, Yuan, Li (bib9) 2014; 260 Zhang (10.1016/j.ijthermalsci.2023.108192_bib25) 2020; 166 Li (10.1016/j.ijthermalsci.2023.108192_bib11) 2014; 247 Troxler (10.1016/j.ijthermalsci.2023.108192_bib6) 2014; 247 Wang (10.1016/j.ijthermalsci.2023.108192_bib21) 2021; 194 Sato (10.1016/j.ijthermalsci.2023.108192_bib1) 2001; 99 Srinivasan (10.1016/j.ijthermalsci.2023.108192_bib13) 2018; 405 Morganti (10.1016/j.ijthermalsci.2023.108192_bib26) 2019; 68 Fear (10.1016/j.ijthermalsci.2023.108192_bib5) 2021; 35 Raijmakers (10.1016/j.ijthermalsci.2023.108192_bib12) 2014; 247 Allafi (10.1016/j.ijthermalsci.2023.108192_bib18) 2018; 143 Yoo (10.1016/j.ijthermalsci.2023.108192_bib22) 2019; 433 Forgez (10.1016/j.ijthermalsci.2023.108192_bib8) 2010; 195 Lin (10.1016/j.ijthermalsci.2023.108192_bib29) 2021; 184 Chacko (10.1016/j.ijthermalsci.2023.108192_bib4) 2012; 213 Lee (10.1016/j.ijthermalsci.2023.108192_bib10) 2015; 232 Mutyala (10.1016/j.ijthermalsci.2023.108192_bib9) 2014; 260 Lin (10.1016/j.ijthermalsci.2023.108192_bib19) 2013; 21 An (10.1016/j.ijthermalsci.2023.108192_bib15) 2018; 137 Xiong (10.1016/j.ijthermalsci.2023.108192_bib28) 2017; 207 Guo (10.1016/j.ijthermalsci.2023.108192_bib17) 2013; 221 Wang (10.1016/j.ijthermalsci.2023.108192_bib3) 2021; 224 Clerici (10.1016/j.ijthermalsci.2023.108192_bib24) 2022 Mc Carthy (10.1016/j.ijthermalsci.2023.108192_bib16) 2022 Liu (10.1016/j.ijthermalsci.2023.108192_bib2) 2015; 54 Zhang (10.1016/j.ijthermalsci.2023.108192_bib27) 2022 Ren (10.1016/j.ijthermalsci.2023.108192_bib23) 2022; 31 Pan (10.1016/j.ijthermalsci.2023.108192_bib14) 2020; 459 Cavalheiro (10.1016/j.ijthermalsci.2023.108192_bib7) 2020 Rad (10.1016/j.ijthermalsci.2023.108192_bib20) 2013 |
| References_xml | – volume: 405 start-page: 30 year: 2018 end-page: 36 ident: bib13 article-title: Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention publication-title: J. Power Sources – volume: 459 start-page: 10 year: 2020 ident: bib14 article-title: A computational multi-node electro-thermal model for large prismatic lithium-ion batteries publication-title: J. Power Sources – start-page: 1 year: 2013 end-page: 7 ident: bib20 article-title: Thermal modeling of cylindrical LiFePO publication-title: J. Mod. Phys. – volume: 224 start-page: 9 year: 2021 ident: bib3 article-title: Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode publication-title: Energy – volume: 260 start-page: 43 year: 2014 end-page: 49 ident: bib9 article-title: In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples publication-title: J. Power Sources – volume: 247 start-page: 539 year: 2014 end-page: 544 ident: bib12 article-title: Sensorless battery temperature measurements based on electrochemical impedance spectroscopy publication-title: J. Power Sources – volume: 137 start-page: 792 year: 2018 end-page: 807 ident: bib15 article-title: Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model publication-title: Appl. Therm. Eng. – volume: 213 start-page: 296 year: 2012 end-page: 303 ident: bib4 article-title: Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles publication-title: J. Power Sources – volume: 207 start-page: 346 year: 2017 end-page: 353 ident: bib28 article-title: A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter publication-title: Appl. Energy – volume: 232 start-page: 214 year: 2015 end-page: 222 ident: bib10 article-title: Flexible micro sensor for in-situ monitoring temperature and voltage of coin cells publication-title: Sens. Actuator A-Phys. – volume: 31 start-page: 816 year: 2022 end-page: 829 ident: bib23 article-title: Experimental investigation on pouch lithium-ion battery thermal management with mini-channels cooling plate based on heat generation characteristic publication-title: J. Therm. Sci. – volume: 99 start-page: 70 year: 2001 end-page: 77 ident: bib1 article-title: Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles publication-title: J. Power Sources – volume: 433 start-page: 10 year: 2019 ident: bib22 article-title: Thermal behavior of full-scale battery pack based on comprehensive heat-generation model publication-title: J. Power Sources – start-page: 542 year: 2022 ident: bib24 article-title: Electrochemical–mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries publication-title: J. Power Sources – start-page: 17 year: 2020 ident: bib7 article-title: Effects of nonuniform temperature distribution on degradation of lithium-ion batteries publication-title: J. Electrochem Energy Convers. Storage – volume: 195 start-page: 2961 year: 2010 end-page: 2968 ident: bib8 article-title: Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery publication-title: J. Power Sources – start-page: 199 year: 2022 ident: bib27 article-title: Numerical investigation on the thermal behavior of cylindrical lithium-ion batteries based on the electrochemical-thermal coupling model publication-title: Int. J. Heat Mass Tran. – volume: 184 start-page: 7 year: 2021 ident: bib29 article-title: Heat generation quantification of high-specific-energy 21700 battery cell using average and variable specific heat capacities publication-title: Appl. Therm. Eng. – start-page: 519 year: 2022 ident: bib16 article-title: Real-time internal temperature estimation of commercial Li-ion batteries using online impedance measurements publication-title: J. Power Sources – volume: 247 year: 2014 ident: bib11 article-title: Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples (vol 241, pg 536, 2013) publication-title: J. Power Sources – volume: 21 start-page: 1745 year: 2013 end-page: 1755 ident: bib19 article-title: Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring publication-title: IEEE Trans. Control Syst. Technol. – volume: 54 start-page: 4440 year: 2015 end-page: 4457 ident: bib2 article-title: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries publication-title: Angew. Chem.-Int. Edit. – volume: 68 start-page: 10594 year: 2019 end-page: 10606 ident: bib26 article-title: Multi-Scale, electro-thermal model of NMC battery cell publication-title: IEEE Trans. Veh. Technol. – volume: 194 start-page: 13 year: 2021 ident: bib21 article-title: Heat generation measurement and thermal management with phase change material based on heat flux for high specific energy power battery publication-title: Appl. Therm. Eng. – volume: 143 start-page: 472 year: 2018 end-page: 481 ident: bib18 article-title: A lumped thermal model of lithium-ion battery cells considering radiative heat transfer publication-title: Appl. Therm. Eng. – volume: 35 start-page: 500 year: 2021 end-page: 511 ident: bib5 article-title: Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating publication-title: Energy Storage Mater. – volume: 247 start-page: 1018 year: 2014 end-page: 1025 ident: bib6 article-title: The effect of thermal gradients on the performance of lithium-ion batteries publication-title: J. Power Sources – volume: 166 start-page: 10 year: 2020 ident: bib25 article-title: Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries publication-title: Appl. Therm. Eng. – volume: 221 start-page: 334 year: 2013 end-page: 344 ident: bib17 article-title: A distributed thermal model for a Li-ion electrode plate pair publication-title: J. Power Sources – volume: 99 start-page: 70 year: 2001 ident: 10.1016/j.ijthermalsci.2023.108192_bib1 article-title: Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00478-5 – start-page: 17 year: 2020 ident: 10.1016/j.ijthermalsci.2023.108192_bib7 article-title: Effects of nonuniform temperature distribution on degradation of lithium-ion batteries publication-title: J. Electrochem Energy Convers. Storage – volume: 247 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108192_bib11 article-title: Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples (vol 241, pg 536, 2013) publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.016 – volume: 405 start-page: 30 year: 2018 ident: 10.1016/j.ijthermalsci.2023.108192_bib13 article-title: Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.014 – volume: 232 start-page: 214 year: 2015 ident: 10.1016/j.ijthermalsci.2023.108192_bib10 article-title: Flexible micro sensor for in-situ monitoring temperature and voltage of coin cells publication-title: Sens. Actuator A-Phys. doi: 10.1016/j.sna.2015.06.004 – volume: 260 start-page: 43 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108192_bib9 article-title: In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.004 – volume: 207 start-page: 346 year: 2017 ident: 10.1016/j.ijthermalsci.2023.108192_bib28 article-title: A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.136 – start-page: 1 year: 2013 ident: 10.1016/j.ijthermalsci.2023.108192_bib20 article-title: Thermal modeling of cylindrical LiFePO4 batteries publication-title: J. Mod. Phys. doi: 10.4236/jmp.2013.47A2001 – volume: 166 start-page: 10 year: 2020 ident: 10.1016/j.ijthermalsci.2023.108192_bib25 article-title: Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114660 – volume: 194 start-page: 13 year: 2021 ident: 10.1016/j.ijthermalsci.2023.108192_bib21 article-title: Heat generation measurement and thermal management with phase change material based on heat flux for high specific energy power battery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117053 – volume: 433 start-page: 10 year: 2019 ident: 10.1016/j.ijthermalsci.2023.108192_bib22 article-title: Thermal behavior of full-scale battery pack based on comprehensive heat-generation model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226715 – volume: 213 start-page: 296 year: 2012 ident: 10.1016/j.ijthermalsci.2023.108192_bib4 article-title: Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.015 – volume: 137 start-page: 792 year: 2018 ident: 10.1016/j.ijthermalsci.2023.108192_bib15 article-title: Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.014 – volume: 221 start-page: 334 year: 2013 ident: 10.1016/j.ijthermalsci.2023.108192_bib17 article-title: A distributed thermal model for a Li-ion electrode plate pair publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.08.012 – volume: 195 start-page: 2961 year: 2010 ident: 10.1016/j.ijthermalsci.2023.108192_bib8 article-title: Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.10.105 – volume: 54 start-page: 4440 year: 2015 ident: 10.1016/j.ijthermalsci.2023.108192_bib2 article-title: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.201409262 – volume: 459 start-page: 10 year: 2020 ident: 10.1016/j.ijthermalsci.2023.108192_bib14 article-title: A computational multi-node electro-thermal model for large prismatic lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228070 – volume: 224 start-page: 9 year: 2021 ident: 10.1016/j.ijthermalsci.2023.108192_bib3 article-title: Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode publication-title: Energy doi: 10.1016/j.energy.2021.120072 – volume: 247 start-page: 1018 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108192_bib6 article-title: The effect of thermal gradients on the performance of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.084 – start-page: 542 year: 2022 ident: 10.1016/j.ijthermalsci.2023.108192_bib24 article-title: Electrochemical–mechanical multi-scale model and validation with thickness change measurements in prismatic lithium-ion batteries publication-title: J. Power Sources – start-page: 519 year: 2022 ident: 10.1016/j.ijthermalsci.2023.108192_bib16 article-title: Real-time internal temperature estimation of commercial Li-ion batteries using online impedance measurements publication-title: J. Power Sources – start-page: 199 year: 2022 ident: 10.1016/j.ijthermalsci.2023.108192_bib27 article-title: Numerical investigation on the thermal behavior of cylindrical lithium-ion batteries based on the electrochemical-thermal coupling model publication-title: Int. J. Heat Mass Tran. – volume: 143 start-page: 472 year: 2018 ident: 10.1016/j.ijthermalsci.2023.108192_bib18 article-title: A lumped thermal model of lithium-ion battery cells considering radiative heat transfer publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.07.105 – volume: 21 start-page: 1745 year: 2013 ident: 10.1016/j.ijthermalsci.2023.108192_bib19 article-title: Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2217143 – volume: 247 start-page: 539 year: 2014 ident: 10.1016/j.ijthermalsci.2023.108192_bib12 article-title: Sensorless battery temperature measurements based on electrochemical impedance spectroscopy publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.09.005 – volume: 35 start-page: 500 year: 2021 ident: 10.1016/j.ijthermalsci.2023.108192_bib5 article-title: Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.11.029 – volume: 31 start-page: 816 year: 2022 ident: 10.1016/j.ijthermalsci.2023.108192_bib23 article-title: Experimental investigation on pouch lithium-ion battery thermal management with mini-channels cooling plate based on heat generation characteristic publication-title: J. Therm. Sci. doi: 10.1007/s11630-022-1586-9 – volume: 184 start-page: 7 year: 2021 ident: 10.1016/j.ijthermalsci.2023.108192_bib29 article-title: Heat generation quantification of high-specific-energy 21700 battery cell using average and variable specific heat capacities publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116215 – volume: 68 start-page: 10594 year: 2019 ident: 10.1016/j.ijthermalsci.2023.108192_bib26 article-title: Multi-Scale, electro-thermal model of NMC battery cell publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2943052 |
| SSID | ssj0007909 |
| Score | 2.3776612 |
| Snippet | In the process of charging and discharging, the traction battery not only experiences electrochemical reactions, but also includes many side reactions, the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108192 |
| SubjectTerms | Heat flux Temperature inversion algorithm Thermal gradient Traction battery |
| Title | Calculation of internal heat source and thermal gradient of cylindrical traction battery with measured surface temperature and heat flux |
| URI | https://dx.doi.org/10.1016/j.ijthermalsci.2023.108192 |
| Volume | 187 |
| WOSCitedRecordID | wos000927309000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1778-4166 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007909 issn: 1290-0729 databaseCode: AIEXJ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEMzFOkLTV_g0M2QYVOSKQ4dgiCF0yHokKJGF4HiI7WhKoFjBfY_6F_qv-vxJdNFiroFuhCGIB5J36fj8XT6DqG3AkAAGxGcVDVLE8Odk_B0qBOlYK8QDA4EqbDFJuj5eTGdso-93o_wLcxtTZumWK3Y9X9VNVwDZZtPZ_9C3Z1QuAC_QenQgtqh3UnxJ7wWviZX4IOwLqexun0Xqw9pk2CU6_7lwmZ92YwAsQavUzrWkOXClxGvLAXn2oVsv7mYouxDqzmIMtxWnpjZirXD6LpdxW7vdtwxYqsIk_Abcefgf_Zh7Ak3Vcc20e3WvkxRq7bL_LHZCF--ztbtBucTexto5TIOapAohdDbYcKGiSE13zbUNDK1I-PMkDt3AReQmA9mc78KWMTADDPYdNqm3v5lS-wSFUMO3LyMZZVGVulk3UP7hOYMDOr-8dnp9EPnBlBm84u6lQTGW5tc-LuZ3e0dRR7PxSF66I8q-NhB7BHqqeYxOogILJ-g7xHY8JXGAWzYoAA7sGFABfbzwAFs5uYIbDiADXuwYQM2HMCGPdhwBDYr1g5jwPYUfXp_enEySXxtj0SAC79MKnC0tZC5EBkf5XIsuM6HRGecZSPJSZUKw23GikynlBeKjWhFmBpLrmAHqcg4fYb2mqtGPUdYSVlxMmSVSlnGiWAKvGRRaEFlTmiRHyEW_tNSeOJ7U3-lLv-s3SOUdn2vHf3LTr3eBdWV_vlxDmoJCN2h_4t_GvUlerB5lF6hveWiVa_RfXG7nN0s3nh4_gT9xNBF |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculation+of+internal+heat+source+and+thermal+gradient+of+cylindrical+traction+battery+with+measured+surface+temperature+and+heat+flux&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Wang%2C+Haimin&rft.au=Zhu%2C+Zexu&rft.au=Ji%2C+Zhiyuan&rft.au=Hu%2C+Feng&rft.date=2023-05-01&rft.issn=1290-0729&rft.volume=187&rft.spage=108192&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2023.108192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijthermalsci_2023_108192 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon |