Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems
Antenna arrays will be an important ingredient in millimeter-wave (mmWave) cellular systems. A natural application of antenna arrays is simultaneous transmission to multiple users. Unfortunately, the hardware constraints in mmWave systems make it difficult to apply conventional lower frequency multi...
Uložené v:
| Vydané v: | IEEE transactions on wireless communications Ročník 14; číslo 11; s. 6481 - 6494 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1536-1276, 1558-2248 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Antenna arrays will be an important ingredient in millimeter-wave (mmWave) cellular systems. A natural application of antenna arrays is simultaneous transmission to multiple users. Unfortunately, the hardware constraints in mmWave systems make it difficult to apply conventional lower frequency multiuser MIMO precoding techniques at mmWave. This paper develops low-complexity hybrid analog/digital precoding for downlink multiuser mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is inspired by the power consumption of complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. The performance of the proposed algorithm is analyzed in the large dimensional regime and in single-path channels. When the analog and digital precoding vectors are selected from quantized codebooks, the rate loss due to the joint quantization is characterized, and insights are given into the performance of hybrid precoding compared with analog-only beamforming solutions. Analytical and simulation results show that the proposed techniques offer higher sum rates compared with analog-only beamforming solutions, and approach the performance of the unconstrained digital beamforming with relatively small codebooks. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1536-1276 1558-2248 |
| DOI: | 10.1109/TWC.2015.2455980 |