The influence of selected parameters of spray cooling and thermal conductivity on heat transfer coefficient
The influence of water spray pressure, water flux and the nozzle-to-surface distance on the heat transfer coefficient during spray cooling of brass and inconel samples has been investigated. The inverse method has been employed for the heat transfer coefficient identification. The objective function...
Uložené v:
| Vydané v: | International journal of thermal sciences Ročník 110; s. 52 - 64 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Masson SAS
01.12.2016
|
| Predmet: | |
| ISSN: | 1290-0729, 1778-4166 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The influence of water spray pressure, water flux and the nozzle-to-surface distance on the heat transfer coefficient during spray cooling of brass and inconel samples has been investigated. The inverse method has been employed for the heat transfer coefficient identification. The objective function defines dimensionless deference between measured and calculated temperatures. The inverse solution starts with an assumption of a general form of an approximating function of the heat transfer coefficient distribution at the cooled surface as function of sample radius and time. The unknown parameters which define the heat transfer coefficients are determined by minimizing the objective function. The variable matrix method which utilizes the Broyden-Fletcher-Goldfarb-Shanno updating technique has been employed to minimize the objective function. Uncertainty of the inverse solution has been tested based on the assumed heat transfer coefficient distribution simulating nearly real spray cooling conditions. The numerical tests have indicated significant changes in the identified heat transfer coefficients depending on the quality of the heat conduction model. The experiments of spray cooling were conducted and the temperature was measured at the selected points in the cylindrical sample. The measured temperatures have been used as an input data for the heat transfer coefficient identification. The finite element model selected based upon numerical tests has been employed in computing the sample temperature field necessary for identifying the heat transfer boundary conditions. The objective function minimizations have given the heat transfer coefficients at the cooled surface as functions of time and surface temperature for brass and inconel samples. The influence of spray cooling parameters on the heat transfer coefficient has been discussed.
•Uncertainty tests concerning the influence of the heat conduction model on the heat transfer coefficient identification.•Significant influence of metal conductivity on the identified heat transfer coefficients during spray cooling.•The heat transfer coefficient dependence on water flux and pressure as functions of surface temperature for selected metals.•The maximum of the heat transfer coefficient dependence on cooling parameters.•The initial temperature of the cooled sample influence on the heat transfer coefficient. |
|---|---|
| AbstractList | The influence of water spray pressure, water flux and the nozzle-to-surface distance on the heat transfer coefficient during spray cooling of brass and inconel samples has been investigated. The inverse method has been employed for the heat transfer coefficient identification. The objective function defines dimensionless deference between measured and calculated temperatures. The inverse solution starts with an assumption of a general form of an approximating function of the heat transfer coefficient distribution at the cooled surface as function of sample radius and time. The unknown parameters which define the heat transfer coefficients are determined by minimizing the objective function. The variable matrix method which utilizes the Broyden-Fletcher-Goldfarb-Shanno updating technique has been employed to minimize the objective function. Uncertainty of the inverse solution has been tested based on the assumed heat transfer coefficient distribution simulating nearly real spray cooling conditions. The numerical tests have indicated significant changes in the identified heat transfer coefficients depending on the quality of the heat conduction model. The experiments of spray cooling were conducted and the temperature was measured at the selected points in the cylindrical sample. The measured temperatures have been used as an input data for the heat transfer coefficient identification. The finite element model selected based upon numerical tests has been employed in computing the sample temperature field necessary for identifying the heat transfer boundary conditions. The objective function minimizations have given the heat transfer coefficients at the cooled surface as functions of time and surface temperature for brass and inconel samples. The influence of spray cooling parameters on the heat transfer coefficient has been discussed.
•Uncertainty tests concerning the influence of the heat conduction model on the heat transfer coefficient identification.•Significant influence of metal conductivity on the identified heat transfer coefficients during spray cooling.•The heat transfer coefficient dependence on water flux and pressure as functions of surface temperature for selected metals.•The maximum of the heat transfer coefficient dependence on cooling parameters.•The initial temperature of the cooled sample influence on the heat transfer coefficient. |
| Author | Buczek, Andrzej Cebo-Rudnicka, Agnieszka Malinowski, Zbigniew |
| Author_xml | – sequence: 1 givenname: Agnieszka orcidid: 0000-0003-3614-4287 surname: Cebo-Rudnicka fullname: Cebo-Rudnicka, Agnieszka email: cebo@agh.edu.pl – sequence: 2 givenname: Zbigniew orcidid: 0000-0003-2862-7588 surname: Malinowski fullname: Malinowski, Zbigniew – sequence: 3 givenname: Andrzej surname: Buczek fullname: Buczek, Andrzej |
| BookMark | eNqNUMtqwzAQFCWFJmn_QfTuVLIty-6pJX1CoJf0LGR51ch1pCApgfx9lSaH0lNgYZdZZnZnJmhknQWEbimZUUKru35m-rgCv5ZDUGaWJ2xGUhX0Ao0p53VW0qoapTlvSEZ43lyhSQg9IYQ3pBmj7-UKsLF62IJVgJ3GAQZQETq8kV6uIYIPv_DGyz1Wzg3GfmFpO3y6mzDbbVU0OxP32Fm8Ahlx9NIGDT5tQWujDNh4jS51-hNuTn2KPl-el_O3bPHx-j5_XGSqyMuYtUzmFWUs10orCjyvcoC6KkopuSRAGGOK00ZBy4tSac5429aUtYrRWlICxRTdH3WVdyF40GLjzVr6vaBEHGITvfgbmzjEJkiqgibywz-yMlFG42yyZIbzJJ6OEpBM7gx4EQ7-FXTGp2hF58w5Mj_A7phQ |
| CitedBy_id | crossref_primary_10_1007_s00231_017_2195_0 crossref_primary_10_1088_1742_6596_1677_1_012150 crossref_primary_10_1016_j_enganabound_2018_07_001 crossref_primary_10_1016_j_icheatmasstransfer_2024_107501 crossref_primary_10_3390_met12010108 crossref_primary_10_1088_1742_6596_1867_1_012036 crossref_primary_10_1051_matecconf_202541203003 crossref_primary_10_1080_08916152_2018_1431737 crossref_primary_10_1016_j_applthermaleng_2022_118990 crossref_primary_10_1016_j_ijthermalsci_2020_106816 crossref_primary_10_1088_1742_6596_2119_1_012129 crossref_primary_10_1016_j_expthermflusci_2025_111475 crossref_primary_10_1016_j_ces_2025_122409 crossref_primary_10_1016_j_ijthermalsci_2018_01_022 crossref_primary_10_1016_j_icheatmasstransfer_2024_108284 crossref_primary_10_1016_j_ijthermalsci_2018_10_026 crossref_primary_10_1016_j_ijthermalsci_2025_110259 crossref_primary_10_3390_en14217339 crossref_primary_10_1016_j_ijheatmasstransfer_2016_08_093 crossref_primary_10_1016_j_pecs_2021_100949 crossref_primary_10_3390_w16070928 crossref_primary_10_1080_01457632_2017_1341193 crossref_primary_10_1007_s00231_021_03172_0 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123888 crossref_primary_10_15446_ing_investig_v38n1_64225 crossref_primary_10_1007_s10973_025_14513_0 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124985 crossref_primary_10_1088_1742_6596_2057_1_012028 crossref_primary_10_1088_1742_6596_2119_1_012131 crossref_primary_10_3390_en18051302 crossref_primary_10_1016_j_energy_2020_117943 crossref_primary_10_3390_ma16113983 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_029 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124586 crossref_primary_10_1115_1_4069331 crossref_primary_10_1080_08916152_2023_2204314 crossref_primary_10_1016_j_elstat_2020_103517 crossref_primary_10_1016_j_tsep_2021_101171 crossref_primary_10_1016_j_ijheatfluidflow_2022_108971 crossref_primary_10_1017_jfm_2019_743 crossref_primary_10_1016_j_applthermaleng_2024_122445 crossref_primary_10_1051_e3sconf_202345908007 crossref_primary_10_3390_ma15072366 crossref_primary_10_3390_app142210428 crossref_primary_10_1016_j_ijthermalsci_2019_106038 crossref_primary_10_1007_s12289_025_01881_z crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_116 |
| Cites_doi | 10.1016/j.jmatprotec.2003.10.006 10.1016/j.ijheatmasstransfer.2004.07.023 10.1016/j.expthermflusci.2003.09.004 10.1090/S0025-5718-1970-0274029-X 10.1016/S1290-0729(00)01216-3 10.1016/j.expthermflusci.2012.11.023 10.1090/S0025-5718-1970-0258249-6 10.1016/j.ijheatmasstransfer.2014.03.078 10.1093/comjnl/13.3.317 10.1016/j.applthermaleng.2013.12.008 10.1016/j.ijheatmasstransfer.2004.07.022 10.1016/j.ijthermalsci.2013.06.008 10.1016/0017-9310(77)90126-0 10.1016/j.energy.2011.03.039 10.1016/j.expthermflusci.2013.05.007 10.1016/j.ijheatfluidflow.2006.09.003 10.1016/0017-9310(96)00119-6 10.1016/S0017-9310(02)00113-8 10.1007/s002310050280 10.1002/srin.198500628 10.1080/17415977.2014.923417 10.1016/j.ijthermalsci.2012.12.015 10.2355/isijinternational.37.492 10.1007/s11665-002-0012-4 10.1016/S0017-9310(98)00250-6 |
| ContentType | Journal Article |
| Copyright | 2016 |
| Copyright_xml | – notice: 2016 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijthermalsci.2016.06.031 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1778-4166 |
| EndPage | 64 |
| ExternalDocumentID | 10_1016_j_ijthermalsci_2016_06_031 S1290072915300752 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c324t-b5a261552fcfc1e7262ee8634aa7a0e0555c719ceb734cf757bb815bc518a10e3 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382793600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1290-0729 |
| IngestDate | Tue Nov 18 22:19:50 EST 2025 Sat Nov 29 04:02:18 EST 2025 Fri Feb 23 02:28:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Boundary inverse problem Water spray pressure Metal conductivity Heat transfer coefficient Water flux |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c324t-b5a261552fcfc1e7262ee8634aa7a0e0555c719ceb734cf757bb815bc518a10e3 |
| ORCID | 0000-0003-3614-4287 0000-0003-2862-7588 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_ijthermalsci_2016_06_031 crossref_citationtrail_10_1016_j_ijthermalsci_2016_06_031 elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2016_06_031 |
| PublicationCentury | 2000 |
| PublicationDate | December 2016 2016-12-00 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of thermal sciences |
| PublicationYear | 2016 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Reiners, Jeschar, Scholz, Zebrowski, Reichelt (bib25) 1985; 56 Liu (bib32) 2014; 2014 De Oliveira, Ward, Garwood, Wllis (bib20) 2002; 11 Tartarini, Lorenzini, Randi (bib23) 1999; 34 Fujimoto, Hatta, Asakawa, Hashimoto (bib9) 1997; 37 Xie, Gan, Duan, Wang, Yu, Zhao (bib17) 2013; 68 Buczek (bib21) 2004 Cebo, Buczek (bib7) 2009; 9 Sabariman, Specht (bib8) 2014; 4 Ravikumar, Jha, Sarkar, Pal, Chakraborty (bib3) 2014; 64 Goldfarb (bib30) 1970; 24 Hou, Liu, Liu, Li, Pu (bib18) 2013; 46 Hodgson, Browne, Collinson, Pham, Gibbs (bib24) 1991 Çengel (bib39) 2007 Ciofalo, Di Piazza, Brucato (bib16) 1999; 42 Goldsmith, Waterman, Hirschhorn (bib36) 1962; 2 Chen, Chow, Navedo (bib15) 2002; 45 Fletcher (bib29) 1970; 13 Zienkiewicz, Taylor (bib34) 2000 Shanno (bib31) 1970; 24 Bernardini, Stebbins, Mudawar (bib5) 1997; 40 Hsieh, Fan, Tsai (bib11) 2004; 47 Somasundaram, Tay (bib19) 2013; 74 Fand, Morris, Lum (bib38) 1977; 20 Cheng, Han, Liu, Fan (bib13) 2011; 36 Ravikumar, Jha, Sarkar, Mohapatra, Pal, Chakraborty (bib4) 2013; 50 Broyden (bib28) 1970; 6 Bernardini, Mudawar (bib6) 2007; 129 Berkovsky, Polevikov (bib37) 1977 Rivallin, Vianay (bib10) 2001; 40 Puschmann, Specht (bib14) 2004; 28 Kim (bib1) 2007; 28 Somasundaram, Tay (bib2) 2013; 74 Eugene, Mizikar (bib22) 1970; 47 Hsieh, Fan, Tsai (bib12) 2004; 47 Malinowski, Cebo-Rudnicka, Telejko, Hadała, Szajding (bib33) 2015; 23 Malinowski, Telejko, Hadała, Cebo-Rudnicka, Szajding (bib26) 2014; 75 Kręglewski, Rogowski, Ruszczyński, Szymanowski (bib27) 1984 Telejko, Malinowski (bib35) 2004; 146 Rivallin (10.1016/j.ijthermalsci.2016.06.031_bib10) 2001; 40 Goldsmith (10.1016/j.ijthermalsci.2016.06.031_bib36) 1962; 2 Fujimoto (10.1016/j.ijthermalsci.2016.06.031_bib9) 1997; 37 Somasundaram (10.1016/j.ijthermalsci.2016.06.031_bib2) 2013; 74 Fletcher (10.1016/j.ijthermalsci.2016.06.031_bib29) 1970; 13 Sabariman (10.1016/j.ijthermalsci.2016.06.031_bib8) 2014; 4 Bernardini (10.1016/j.ijthermalsci.2016.06.031_bib5) 1997; 40 Berkovsky (10.1016/j.ijthermalsci.2016.06.031_bib37) 1977 Hsieh (10.1016/j.ijthermalsci.2016.06.031_bib12) 2004; 47 Kręglewski (10.1016/j.ijthermalsci.2016.06.031_bib27) 1984 Cebo (10.1016/j.ijthermalsci.2016.06.031_bib7) 2009; 9 Kim (10.1016/j.ijthermalsci.2016.06.031_bib1) 2007; 28 Shanno (10.1016/j.ijthermalsci.2016.06.031_bib31) 1970; 24 Broyden (10.1016/j.ijthermalsci.2016.06.031_bib28) 1970; 6 Malinowski (10.1016/j.ijthermalsci.2016.06.031_bib33) 2015; 23 Çengel (10.1016/j.ijthermalsci.2016.06.031_bib39) 2007 Liu (10.1016/j.ijthermalsci.2016.06.031_bib32) 2014; 2014 Ravikumar (10.1016/j.ijthermalsci.2016.06.031_bib3) 2014; 64 Xie (10.1016/j.ijthermalsci.2016.06.031_bib17) 2013; 68 Puschmann (10.1016/j.ijthermalsci.2016.06.031_bib14) 2004; 28 Malinowski (10.1016/j.ijthermalsci.2016.06.031_bib26) 2014; 75 Cheng (10.1016/j.ijthermalsci.2016.06.031_bib13) 2011; 36 Tartarini (10.1016/j.ijthermalsci.2016.06.031_bib23) 1999; 34 Chen (10.1016/j.ijthermalsci.2016.06.031_bib15) 2002; 45 Reiners (10.1016/j.ijthermalsci.2016.06.031_bib25) 1985; 56 Somasundaram (10.1016/j.ijthermalsci.2016.06.031_bib19) 2013; 74 Telejko (10.1016/j.ijthermalsci.2016.06.031_bib35) 2004; 146 Hsieh (10.1016/j.ijthermalsci.2016.06.031_bib11) 2004; 47 Zienkiewicz (10.1016/j.ijthermalsci.2016.06.031_bib34) 2000 De Oliveira (10.1016/j.ijthermalsci.2016.06.031_bib20) 2002; 11 Ravikumar (10.1016/j.ijthermalsci.2016.06.031_bib4) 2013; 50 Eugene (10.1016/j.ijthermalsci.2016.06.031_bib22) 1970; 47 Ciofalo (10.1016/j.ijthermalsci.2016.06.031_bib16) 1999; 42 Fand (10.1016/j.ijthermalsci.2016.06.031_bib38) 1977; 20 Hou (10.1016/j.ijthermalsci.2016.06.031_bib18) 2013; 46 Goldfarb (10.1016/j.ijthermalsci.2016.06.031_bib30) 1970; 24 Buczek (10.1016/j.ijthermalsci.2016.06.031_bib21) 2004 Bernardini (10.1016/j.ijthermalsci.2016.06.031_bib6) 2007; 129 Hodgson (10.1016/j.ijthermalsci.2016.06.031_bib24) 1991 |
| References_xml | – volume: 9 start-page: 200 year: 2009 end-page: 206 ident: bib7 article-title: The influence of selected parameters of water spray cooling on the heat transfer coefficient publication-title: Comput Methods Mater Sci – volume: 47 start-page: 5703 year: 2004 end-page: 5712 ident: bib12 article-title: Spray cooling characteristics of water and R-134a. Part I: nucleate boiling publication-title: Int J Heat Mass Transf – volume: 24 start-page: 23 year: 1970 end-page: 26 ident: bib30 article-title: A family of variable-metric methods derived by variational means publication-title: Math Comput – volume: 50 start-page: 79 year: 2013 end-page: 89 ident: bib4 article-title: Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives publication-title: Exp Therm Fluid Sci – volume: 75 start-page: 347 year: 2014 end-page: 361 ident: bib26 article-title: Dedicated three dimensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water publication-title: Int J Heat Mass Transf – volume: 11 start-page: 80 year: 2002 end-page: 85 ident: bib20 article-title: Quenching of aerospace forgings from high temperatures using air-assisted, atomized water sprays publication-title: J Mater Eng Perform – volume: 37 start-page: 492 year: 1997 end-page: 497 ident: bib9 article-title: Predictable modeling of heat transfer coefficient between spraying water and a hot surface above the Leidenfrost temperature publication-title: ISIJ Int – volume: 46 start-page: 84 year: 2013 end-page: 88 ident: bib18 article-title: Experimental study on phase change spray cooling publication-title: Exp Therm Fluid Sci – year: 2000 ident: bib34 article-title: The finite element method volume 1: the basis – year: 1984 ident: bib27 article-title: Metody optymalizacji w języku FORTRAN – volume: 42 start-page: 1157 year: 1999 end-page: 1175 ident: bib16 article-title: Investigation of the cooling of hot walls by liquid water sprays publication-title: Int J Heat Mass Transf – volume: 4 start-page: 45 year: 2014 end-page: 51 ident: bib8 article-title: Heat transfer in spray quenching of hot metals publication-title: Heat Process – volume: 40 start-page: 263 year: 2001 end-page: 272 ident: bib10 article-title: General principles of controlled water cooling for metallurgical on-line hot rolling processes: forced flow and sprayed surfaces with film boiling regime and rewetting phenomena publication-title: Int J Therm Sci – volume: 64 start-page: 64 year: 2014 end-page: 75 ident: bib3 article-title: Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol publication-title: Appl Therm Eng – volume: 36 start-page: 3399 year: 2011 end-page: 3405 ident: bib13 article-title: Spray characteristics and spray cooling heat transfer in the non-boiling regime publication-title: Energy – start-page: 139 year: 1991 end-page: 159 ident: bib24 article-title: A mathematical model to simulate the thermo-mechanical processing of steel publication-title: Proceedings of 3rd international seminar of the international federation for heat treatment and surface engineering, Melbourne – volume: 47 start-page: 5713 year: 2004 end-page: 5724 ident: bib11 article-title: Spray cooling characteristics of water and R-134a. Part II: transient cooling publication-title: Int J Heat Mass Transf – volume: 45 start-page: 4033 year: 2002 end-page: 4043 ident: bib15 article-title: Effects of spray characteristics on critical heat flux in subcooled water spray cooling publication-title: Int J Heat Mass Transf – start-page: 443 year: 1977 end-page: 451 ident: bib37 article-title: Numerical study of problems on high-intensive free convection publication-title: Heat transfer and buoyant convection – volume: 34 start-page: 437 year: 1999 end-page: 447 ident: bib23 article-title: Experimental study on water droplet boiling on hot, on-porous surfaces publication-title: Heat Mass Transf – volume: 40 start-page: 247 year: 1997 end-page: 267 ident: bib5 article-title: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface publication-title: Int J Heat Mass Transf – volume: 13 start-page: 317 year: 1970 end-page: 322 ident: bib29 article-title: A new approach to variable metric algorithms publication-title: Comput J – volume: 2 year: 1962 ident: bib36 article-title: Handbook of thermophysical properties of solid materials – volume: 74 start-page: 174 year: 2013 end-page: 182 ident: bib19 article-title: Comparative study of intermittent spray cooling in single and two phase regimes publication-title: Int J Therm Sci – volume: 28 start-page: 753 year: 2007 end-page: 767 ident: bib1 article-title: Spray cooling heat transfer: the state of the art publication-title: Int J Heat Fluid Flow – volume: 74 start-page: 174 year: 2013 end-page: 182 ident: bib2 article-title: Comparative study of intermittent spray cooling in single and two phase regimes publication-title: Int J Therm Sci – volume: 28 start-page: 607 year: 2004 end-page: 615 ident: bib14 article-title: Transient measurement of heat transfer for metal quenching with atomized sprays publication-title: Exp Therm Fluid Sci – volume: 24 start-page: 647 year: 1970 end-page: 656 ident: bib31 article-title: Conditioning of quasi-Newton methods for function minimization publication-title: Math Comput – volume: 146 start-page: 145 year: 2004 end-page: 155 ident: bib35 article-title: Application of an inverse solution to the thermal conductivity identification using the finite element method publication-title: J Mater Process Technol – volume: 20 start-page: 1173 year: 1977 end-page: 1184 ident: bib38 article-title: Natural convection heat transfer from horizontal cylinders to air, water and silicone oils for Rayleigh numbers between 3 x 10 publication-title: Int J Heat Mass Transf – volume: 68 start-page: 94 year: 2013 end-page: 102 ident: bib17 article-title: Characterization of spray atomization and heat transfer of pressure swirl nozzles publication-title: Int J Therm Sci – volume: 23 start-page: 518 year: 2015 end-page: 556 ident: bib33 article-title: Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray publication-title: Inverse Probl Sci Eng – year: 2007 ident: bib39 article-title: Heat and Mass Transfer: A practical approach – year: 2004 ident: bib21 article-title: The application of the boundary inverse problem for the determination of the heat transfer coefficient in a cooling processes – volume: 47 start-page: 53 year: 1970 end-page: 60 ident: bib22 article-title: Spray cooling investigation for continuous casting of billets and blooms publication-title: Iron Steel Eng – volume: 129 start-page: 1605 year: 2007 end-page: 1610 ident: bib6 article-title: Transition boiling heat transfer of droplet steams and sprays publication-title: J Heat Transf – volume: 6 start-page: 222 year: 1970 end-page: 231 ident: bib28 article-title: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm publication-title: J Inst Math Appl – volume: 2014 year: 2014 ident: bib32 article-title: Optimal algorithms and the BFGS updating techniques for solving unconstrained nonlinear minimization problems publication-title: J Appl Math – volume: 56 start-page: 239 year: 1985 end-page: 246 ident: bib25 article-title: A measuring method for quick determination of local heat transfer coefficient in spray water cooling within the range of stable film boiling publication-title: Steel Res – year: 1984 ident: 10.1016/j.ijthermalsci.2016.06.031_bib27 – year: 2000 ident: 10.1016/j.ijthermalsci.2016.06.031_bib34 – volume: 146 start-page: 145 year: 2004 ident: 10.1016/j.ijthermalsci.2016.06.031_bib35 article-title: Application of an inverse solution to the thermal conductivity identification using the finite element method publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2003.10.006 – volume: 47 start-page: 5713 year: 2004 ident: 10.1016/j.ijthermalsci.2016.06.031_bib11 article-title: Spray cooling characteristics of water and R-134a. Part II: transient cooling publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2004.07.023 – year: 2004 ident: 10.1016/j.ijthermalsci.2016.06.031_bib21 – volume: 4 start-page: 45 year: 2014 ident: 10.1016/j.ijthermalsci.2016.06.031_bib8 article-title: Heat transfer in spray quenching of hot metals publication-title: Heat Process – volume: 28 start-page: 607 year: 2004 ident: 10.1016/j.ijthermalsci.2016.06.031_bib14 article-title: Transient measurement of heat transfer for metal quenching with atomized sprays publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2003.09.004 – volume: 24 start-page: 647 year: 1970 ident: 10.1016/j.ijthermalsci.2016.06.031_bib31 article-title: Conditioning of quasi-Newton methods for function minimization publication-title: Math Comput doi: 10.1090/S0025-5718-1970-0274029-X – volume: 40 start-page: 263 year: 2001 ident: 10.1016/j.ijthermalsci.2016.06.031_bib10 article-title: General principles of controlled water cooling for metallurgical on-line hot rolling processes: forced flow and sprayed surfaces with film boiling regime and rewetting phenomena publication-title: Int J Therm Sci doi: 10.1016/S1290-0729(00)01216-3 – volume: 46 start-page: 84 year: 2013 ident: 10.1016/j.ijthermalsci.2016.06.031_bib18 article-title: Experimental study on phase change spray cooling publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2012.11.023 – volume: 24 start-page: 23 year: 1970 ident: 10.1016/j.ijthermalsci.2016.06.031_bib30 article-title: A family of variable-metric methods derived by variational means publication-title: Math Comput doi: 10.1090/S0025-5718-1970-0258249-6 – volume: 75 start-page: 347 year: 2014 ident: 10.1016/j.ijthermalsci.2016.06.031_bib26 article-title: Dedicated three dimensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.03.078 – volume: 13 start-page: 317 year: 1970 ident: 10.1016/j.ijthermalsci.2016.06.031_bib29 article-title: A new approach to variable metric algorithms publication-title: Comput J doi: 10.1093/comjnl/13.3.317 – volume: 64 start-page: 64 year: 2014 ident: 10.1016/j.ijthermalsci.2016.06.031_bib3 article-title: Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.12.008 – volume: 47 start-page: 5703 year: 2004 ident: 10.1016/j.ijthermalsci.2016.06.031_bib12 article-title: Spray cooling characteristics of water and R-134a. Part I: nucleate boiling publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2004.07.022 – volume: 74 start-page: 174 year: 2013 ident: 10.1016/j.ijthermalsci.2016.06.031_bib19 article-title: Comparative study of intermittent spray cooling in single and two phase regimes publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2013.06.008 – volume: 20 start-page: 1173 year: 1977 ident: 10.1016/j.ijthermalsci.2016.06.031_bib38 article-title: Natural convection heat transfer from horizontal cylinders to air, water and silicone oils for Rayleigh numbers between 3 x 102 and 2 x 107 publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(77)90126-0 – start-page: 443 year: 1977 ident: 10.1016/j.ijthermalsci.2016.06.031_bib37 article-title: Numerical study of problems on high-intensive free convection – volume: 36 start-page: 3399 year: 2011 ident: 10.1016/j.ijthermalsci.2016.06.031_bib13 article-title: Spray characteristics and spray cooling heat transfer in the non-boiling regime publication-title: Energy doi: 10.1016/j.energy.2011.03.039 – volume: 2014 year: 2014 ident: 10.1016/j.ijthermalsci.2016.06.031_bib32 article-title: Optimal algorithms and the BFGS updating techniques for solving unconstrained nonlinear minimization problems publication-title: J Appl Math – volume: 50 start-page: 79 year: 2013 ident: 10.1016/j.ijthermalsci.2016.06.031_bib4 article-title: Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2013.05.007 – volume: 9 start-page: 200 issue: 2 year: 2009 ident: 10.1016/j.ijthermalsci.2016.06.031_bib7 article-title: The influence of selected parameters of water spray cooling on the heat transfer coefficient publication-title: Comput Methods Mater Sci – volume: 28 start-page: 753 year: 2007 ident: 10.1016/j.ijthermalsci.2016.06.031_bib1 article-title: Spray cooling heat transfer: the state of the art publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2006.09.003 – start-page: 139 year: 1991 ident: 10.1016/j.ijthermalsci.2016.06.031_bib24 article-title: A mathematical model to simulate the thermo-mechanical processing of steel – volume: 40 start-page: 247 issue: 2 year: 1997 ident: 10.1016/j.ijthermalsci.2016.06.031_bib5 article-title: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(96)00119-6 – volume: 6 start-page: 222 year: 1970 ident: 10.1016/j.ijthermalsci.2016.06.031_bib28 article-title: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm publication-title: J Inst Math Appl – volume: 45 start-page: 4033 year: 2002 ident: 10.1016/j.ijthermalsci.2016.06.031_bib15 article-title: Effects of spray characteristics on critical heat flux in subcooled water spray cooling publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(02)00113-8 – volume: 74 start-page: 174 year: 2013 ident: 10.1016/j.ijthermalsci.2016.06.031_bib2 article-title: Comparative study of intermittent spray cooling in single and two phase regimes publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2013.06.008 – volume: 47 start-page: 53 issue: 6 year: 1970 ident: 10.1016/j.ijthermalsci.2016.06.031_bib22 article-title: Spray cooling investigation for continuous casting of billets and blooms publication-title: Iron Steel Eng – volume: 34 start-page: 437 year: 1999 ident: 10.1016/j.ijthermalsci.2016.06.031_bib23 article-title: Experimental study on water droplet boiling on hot, on-porous surfaces publication-title: Heat Mass Transf doi: 10.1007/s002310050280 – volume: 56 start-page: 239 issue: 5 year: 1985 ident: 10.1016/j.ijthermalsci.2016.06.031_bib25 article-title: A measuring method for quick determination of local heat transfer coefficient in spray water cooling within the range of stable film boiling publication-title: Steel Res doi: 10.1002/srin.198500628 – volume: 23 start-page: 518 issue: 3 year: 2015 ident: 10.1016/j.ijthermalsci.2016.06.031_bib33 article-title: Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray publication-title: Inverse Probl Sci Eng doi: 10.1080/17415977.2014.923417 – volume: 68 start-page: 94 year: 2013 ident: 10.1016/j.ijthermalsci.2016.06.031_bib17 article-title: Characterization of spray atomization and heat transfer of pressure swirl nozzles publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2012.12.015 – volume: 2 year: 1962 ident: 10.1016/j.ijthermalsci.2016.06.031_bib36 – volume: 129 start-page: 1605 year: 2007 ident: 10.1016/j.ijthermalsci.2016.06.031_bib6 article-title: Transition boiling heat transfer of droplet steams and sprays publication-title: J Heat Transf – volume: 37 start-page: 492 issue: 5 year: 1997 ident: 10.1016/j.ijthermalsci.2016.06.031_bib9 article-title: Predictable modeling of heat transfer coefficient between spraying water and a hot surface above the Leidenfrost temperature publication-title: ISIJ Int doi: 10.2355/isijinternational.37.492 – volume: 11 start-page: 80 issue: 1 year: 2002 ident: 10.1016/j.ijthermalsci.2016.06.031_bib20 article-title: Quenching of aerospace forgings from high temperatures using air-assisted, atomized water sprays publication-title: J Mater Eng Perform doi: 10.1007/s11665-002-0012-4 – volume: 42 start-page: 1157 year: 1999 ident: 10.1016/j.ijthermalsci.2016.06.031_bib16 article-title: Investigation of the cooling of hot walls by liquid water sprays publication-title: Int J Heat Mass Transf doi: 10.1016/S0017-9310(98)00250-6 – year: 2007 ident: 10.1016/j.ijthermalsci.2016.06.031_bib39 |
| SSID | ssj0007909 |
| Score | 2.374635 |
| Snippet | The influence of water spray pressure, water flux and the nozzle-to-surface distance on the heat transfer coefficient during spray cooling of brass and inconel... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 52 |
| SubjectTerms | Boundary inverse problem Heat transfer coefficient Metal conductivity Water flux Water spray pressure |
| Title | The influence of selected parameters of spray cooling and thermal conductivity on heat transfer coefficient |
| URI | https://dx.doi.org/10.1016/j.ijthermalsci.2016.06.031 |
| Volume | 110 |
| WOSCitedRecordID | wos000382793600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1778-4166 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007909 issn: 1290-0729 databaseCode: AIEXJ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4oPISLVD5wA0FbZ6ODxxKVVSQqBAq0opLlHhtlOzWWe2jlP1R_MbO-JFNeYgFiUu0stbeeOeLZzz5_A0hz6tMpVzGw4CPVRokcamCPFNxkIjI1EQRQthiE-zsLB-N-IfB4Ls_C3M5ZVrnV1d89l9NDW1gbDw6-xfm7gaFBvgMRocrmB2uWxu-9qVHMBZcmFI3EFiizPcF0l8MfWMxm5ffXoi2nfpzihgLXhi9EI0qsLasBKAD12usJQERrpyjmoiRnfCMmWbDhd-kFnuCFH5U52u7GP4YVrrg42qsazGxyd0vGrbt60nnKN7DHkG3X11l7c9VjV_ocu6vV2ItJ56UuZZNP4ERZj0yiF1zIz4MUMD8xqLsyK52WbUit85BW9Xzn5Z-m4VoXtaNmxdMC6l7mdFnda7mht72D36wYyd64ltT9McqcKwCWYB4bH83YikHR7B79PZk9K7z_YwbUlE3JS9zaxiFv7uzX4dEvTDnfI_cdfsTemRxdY8MpL5P7vRUKx-QCSCMdgijraIeYXSDMNOMCKMOYRQQRt2d0T7CaKspIox6hNEewh6ST29Ozo9PA1ezIxAQmi-DKi0jfNUdKaFEKFmURVLmWZyUJSuHEuXlBAu5kBWLE6FYyqoqD9NKpGFehkMZPyI7utXyMaEqhy0VyyXPKvA04bhMGCYsMs7zEoLUcJ9w_7cVwgnaY12VafFnA-6TuOs7s7IuW_V65a1TuIfGBp4FgHCL_gf_9KtPyO3NY_OU7CznK_mM3BKXy3oxP3QIvAZ_AMIZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+selected+parameters+of+spray+cooling+and+thermal+conductivity+on+heat+transfer+coefficient&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Cebo-Rudnicka%2C+Agnieszka&rft.au=Malinowski%2C+Zbigniew&rft.au=Buczek%2C+Andrzej&rft.date=2016-12-01&rft.issn=1290-0729&rft.volume=110&rft.spage=52&rft.epage=64&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2016.06.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijthermalsci_2016_06_031 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon |