The influence of selected parameters of spray cooling and thermal conductivity on heat transfer coefficient

The influence of water spray pressure, water flux and the nozzle-to-surface distance on the heat transfer coefficient during spray cooling of brass and inconel samples has been investigated. The inverse method has been employed for the heat transfer coefficient identification. The objective function...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of thermal sciences Ročník 110; s. 52 - 64
Hlavní autori: Cebo-Rudnicka, Agnieszka, Malinowski, Zbigniew, Buczek, Andrzej
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Masson SAS 01.12.2016
Predmet:
ISSN:1290-0729, 1778-4166
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The influence of water spray pressure, water flux and the nozzle-to-surface distance on the heat transfer coefficient during spray cooling of brass and inconel samples has been investigated. The inverse method has been employed for the heat transfer coefficient identification. The objective function defines dimensionless deference between measured and calculated temperatures. The inverse solution starts with an assumption of a general form of an approximating function of the heat transfer coefficient distribution at the cooled surface as function of sample radius and time. The unknown parameters which define the heat transfer coefficients are determined by minimizing the objective function. The variable matrix method which utilizes the Broyden-Fletcher-Goldfarb-Shanno updating technique has been employed to minimize the objective function. Uncertainty of the inverse solution has been tested based on the assumed heat transfer coefficient distribution simulating nearly real spray cooling conditions. The numerical tests have indicated significant changes in the identified heat transfer coefficients depending on the quality of the heat conduction model. The experiments of spray cooling were conducted and the temperature was measured at the selected points in the cylindrical sample. The measured temperatures have been used as an input data for the heat transfer coefficient identification. The finite element model selected based upon numerical tests has been employed in computing the sample temperature field necessary for identifying the heat transfer boundary conditions. The objective function minimizations have given the heat transfer coefficients at the cooled surface as functions of time and surface temperature for brass and inconel samples. The influence of spray cooling parameters on the heat transfer coefficient has been discussed. •Uncertainty tests concerning the influence of the heat conduction model on the heat transfer coefficient identification.•Significant influence of metal conductivity on the identified heat transfer coefficients during spray cooling.•The heat transfer coefficient dependence on water flux and pressure as functions of surface temperature for selected metals.•The maximum of the heat transfer coefficient dependence on cooling parameters.•The initial temperature of the cooled sample influence on the heat transfer coefficient.
AbstractList The influence of water spray pressure, water flux and the nozzle-to-surface distance on the heat transfer coefficient during spray cooling of brass and inconel samples has been investigated. The inverse method has been employed for the heat transfer coefficient identification. The objective function defines dimensionless deference between measured and calculated temperatures. The inverse solution starts with an assumption of a general form of an approximating function of the heat transfer coefficient distribution at the cooled surface as function of sample radius and time. The unknown parameters which define the heat transfer coefficients are determined by minimizing the objective function. The variable matrix method which utilizes the Broyden-Fletcher-Goldfarb-Shanno updating technique has been employed to minimize the objective function. Uncertainty of the inverse solution has been tested based on the assumed heat transfer coefficient distribution simulating nearly real spray cooling conditions. The numerical tests have indicated significant changes in the identified heat transfer coefficients depending on the quality of the heat conduction model. The experiments of spray cooling were conducted and the temperature was measured at the selected points in the cylindrical sample. The measured temperatures have been used as an input data for the heat transfer coefficient identification. The finite element model selected based upon numerical tests has been employed in computing the sample temperature field necessary for identifying the heat transfer boundary conditions. The objective function minimizations have given the heat transfer coefficients at the cooled surface as functions of time and surface temperature for brass and inconel samples. The influence of spray cooling parameters on the heat transfer coefficient has been discussed. •Uncertainty tests concerning the influence of the heat conduction model on the heat transfer coefficient identification.•Significant influence of metal conductivity on the identified heat transfer coefficients during spray cooling.•The heat transfer coefficient dependence on water flux and pressure as functions of surface temperature for selected metals.•The maximum of the heat transfer coefficient dependence on cooling parameters.•The initial temperature of the cooled sample influence on the heat transfer coefficient.
Author Buczek, Andrzej
Cebo-Rudnicka, Agnieszka
Malinowski, Zbigniew
Author_xml – sequence: 1
  givenname: Agnieszka
  orcidid: 0000-0003-3614-4287
  surname: Cebo-Rudnicka
  fullname: Cebo-Rudnicka, Agnieszka
  email: cebo@agh.edu.pl
– sequence: 2
  givenname: Zbigniew
  orcidid: 0000-0003-2862-7588
  surname: Malinowski
  fullname: Malinowski, Zbigniew
– sequence: 3
  givenname: Andrzej
  surname: Buczek
  fullname: Buczek, Andrzej
BookMark eNqNUMtqwzAQFCWFJmn_QfTuVLIty-6pJX1CoJf0LGR51ch1pCApgfx9lSaH0lNgYZdZZnZnJmhknQWEbimZUUKru35m-rgCv5ZDUGaWJ2xGUhX0Ao0p53VW0qoapTlvSEZ43lyhSQg9IYQ3pBmj7-UKsLF62IJVgJ3GAQZQETq8kV6uIYIPv_DGyz1Wzg3GfmFpO3y6mzDbbVU0OxP32Fm8Ahlx9NIGDT5tQWujDNh4jS51-hNuTn2KPl-el_O3bPHx-j5_XGSqyMuYtUzmFWUs10orCjyvcoC6KkopuSRAGGOK00ZBy4tSac5429aUtYrRWlICxRTdH3WVdyF40GLjzVr6vaBEHGITvfgbmzjEJkiqgibywz-yMlFG42yyZIbzJJ6OEpBM7gx4EQ7-FXTGp2hF58w5Mj_A7phQ
CitedBy_id crossref_primary_10_1007_s00231_017_2195_0
crossref_primary_10_1088_1742_6596_1677_1_012150
crossref_primary_10_1016_j_enganabound_2018_07_001
crossref_primary_10_1016_j_icheatmasstransfer_2024_107501
crossref_primary_10_3390_met12010108
crossref_primary_10_1088_1742_6596_1867_1_012036
crossref_primary_10_1051_matecconf_202541203003
crossref_primary_10_1080_08916152_2018_1431737
crossref_primary_10_1016_j_applthermaleng_2022_118990
crossref_primary_10_1016_j_ijthermalsci_2020_106816
crossref_primary_10_1088_1742_6596_2119_1_012129
crossref_primary_10_1016_j_expthermflusci_2025_111475
crossref_primary_10_1016_j_ces_2025_122409
crossref_primary_10_1016_j_ijthermalsci_2018_01_022
crossref_primary_10_1016_j_icheatmasstransfer_2024_108284
crossref_primary_10_1016_j_ijthermalsci_2018_10_026
crossref_primary_10_1016_j_ijthermalsci_2025_110259
crossref_primary_10_3390_en14217339
crossref_primary_10_1016_j_ijheatmasstransfer_2016_08_093
crossref_primary_10_1016_j_pecs_2021_100949
crossref_primary_10_3390_w16070928
crossref_primary_10_1080_01457632_2017_1341193
crossref_primary_10_1007_s00231_021_03172_0
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123888
crossref_primary_10_15446_ing_investig_v38n1_64225
crossref_primary_10_1007_s10973_025_14513_0
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124985
crossref_primary_10_1088_1742_6596_2057_1_012028
crossref_primary_10_1088_1742_6596_2119_1_012131
crossref_primary_10_3390_en18051302
crossref_primary_10_1016_j_energy_2020_117943
crossref_primary_10_3390_ma16113983
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_029
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124586
crossref_primary_10_1115_1_4069331
crossref_primary_10_1080_08916152_2023_2204314
crossref_primary_10_1016_j_elstat_2020_103517
crossref_primary_10_1016_j_tsep_2021_101171
crossref_primary_10_1016_j_ijheatfluidflow_2022_108971
crossref_primary_10_1017_jfm_2019_743
crossref_primary_10_1016_j_applthermaleng_2024_122445
crossref_primary_10_1051_e3sconf_202345908007
crossref_primary_10_3390_ma15072366
crossref_primary_10_3390_app142210428
crossref_primary_10_1016_j_ijthermalsci_2019_106038
crossref_primary_10_1007_s12289_025_01881_z
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_116
Cites_doi 10.1016/j.jmatprotec.2003.10.006
10.1016/j.ijheatmasstransfer.2004.07.023
10.1016/j.expthermflusci.2003.09.004
10.1090/S0025-5718-1970-0274029-X
10.1016/S1290-0729(00)01216-3
10.1016/j.expthermflusci.2012.11.023
10.1090/S0025-5718-1970-0258249-6
10.1016/j.ijheatmasstransfer.2014.03.078
10.1093/comjnl/13.3.317
10.1016/j.applthermaleng.2013.12.008
10.1016/j.ijheatmasstransfer.2004.07.022
10.1016/j.ijthermalsci.2013.06.008
10.1016/0017-9310(77)90126-0
10.1016/j.energy.2011.03.039
10.1016/j.expthermflusci.2013.05.007
10.1016/j.ijheatfluidflow.2006.09.003
10.1016/0017-9310(96)00119-6
10.1016/S0017-9310(02)00113-8
10.1007/s002310050280
10.1002/srin.198500628
10.1080/17415977.2014.923417
10.1016/j.ijthermalsci.2012.12.015
10.2355/isijinternational.37.492
10.1007/s11665-002-0012-4
10.1016/S0017-9310(98)00250-6
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
DOI 10.1016/j.ijthermalsci.2016.06.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1778-4166
EndPage 64
ExternalDocumentID 10_1016_j_ijthermalsci_2016_06_031
S1290072915300752
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c324t-b5a261552fcfc1e7262ee8634aa7a0e0555c719ceb734cf757bb815bc518a10e3
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382793600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1290-0729
IngestDate Tue Nov 18 22:19:50 EST 2025
Sat Nov 29 04:02:18 EST 2025
Fri Feb 23 02:28:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Boundary inverse problem
Water spray pressure
Metal conductivity
Heat transfer coefficient
Water flux
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-b5a261552fcfc1e7262ee8634aa7a0e0555c719ceb734cf757bb815bc518a10e3
ORCID 0000-0003-3614-4287
0000-0003-2862-7588
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_ijthermalsci_2016_06_031
crossref_citationtrail_10_1016_j_ijthermalsci_2016_06_031
elsevier_sciencedirect_doi_10_1016_j_ijthermalsci_2016_06_031
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationTitle International journal of thermal sciences
PublicationYear 2016
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Reiners, Jeschar, Scholz, Zebrowski, Reichelt (bib25) 1985; 56
Liu (bib32) 2014; 2014
De Oliveira, Ward, Garwood, Wllis (bib20) 2002; 11
Tartarini, Lorenzini, Randi (bib23) 1999; 34
Fujimoto, Hatta, Asakawa, Hashimoto (bib9) 1997; 37
Xie, Gan, Duan, Wang, Yu, Zhao (bib17) 2013; 68
Buczek (bib21) 2004
Cebo, Buczek (bib7) 2009; 9
Sabariman, Specht (bib8) 2014; 4
Ravikumar, Jha, Sarkar, Pal, Chakraborty (bib3) 2014; 64
Goldfarb (bib30) 1970; 24
Hou, Liu, Liu, Li, Pu (bib18) 2013; 46
Hodgson, Browne, Collinson, Pham, Gibbs (bib24) 1991
Çengel (bib39) 2007
Ciofalo, Di Piazza, Brucato (bib16) 1999; 42
Goldsmith, Waterman, Hirschhorn (bib36) 1962; 2
Chen, Chow, Navedo (bib15) 2002; 45
Fletcher (bib29) 1970; 13
Zienkiewicz, Taylor (bib34) 2000
Shanno (bib31) 1970; 24
Bernardini, Stebbins, Mudawar (bib5) 1997; 40
Hsieh, Fan, Tsai (bib11) 2004; 47
Somasundaram, Tay (bib19) 2013; 74
Fand, Morris, Lum (bib38) 1977; 20
Cheng, Han, Liu, Fan (bib13) 2011; 36
Ravikumar, Jha, Sarkar, Mohapatra, Pal, Chakraborty (bib4) 2013; 50
Broyden (bib28) 1970; 6
Bernardini, Mudawar (bib6) 2007; 129
Berkovsky, Polevikov (bib37) 1977
Rivallin, Vianay (bib10) 2001; 40
Puschmann, Specht (bib14) 2004; 28
Kim (bib1) 2007; 28
Somasundaram, Tay (bib2) 2013; 74
Eugene, Mizikar (bib22) 1970; 47
Hsieh, Fan, Tsai (bib12) 2004; 47
Malinowski, Cebo-Rudnicka, Telejko, Hadała, Szajding (bib33) 2015; 23
Malinowski, Telejko, Hadała, Cebo-Rudnicka, Szajding (bib26) 2014; 75
Kręglewski, Rogowski, Ruszczyński, Szymanowski (bib27) 1984
Telejko, Malinowski (bib35) 2004; 146
Rivallin (10.1016/j.ijthermalsci.2016.06.031_bib10) 2001; 40
Goldsmith (10.1016/j.ijthermalsci.2016.06.031_bib36) 1962; 2
Fujimoto (10.1016/j.ijthermalsci.2016.06.031_bib9) 1997; 37
Somasundaram (10.1016/j.ijthermalsci.2016.06.031_bib2) 2013; 74
Fletcher (10.1016/j.ijthermalsci.2016.06.031_bib29) 1970; 13
Sabariman (10.1016/j.ijthermalsci.2016.06.031_bib8) 2014; 4
Bernardini (10.1016/j.ijthermalsci.2016.06.031_bib5) 1997; 40
Berkovsky (10.1016/j.ijthermalsci.2016.06.031_bib37) 1977
Hsieh (10.1016/j.ijthermalsci.2016.06.031_bib12) 2004; 47
Kręglewski (10.1016/j.ijthermalsci.2016.06.031_bib27) 1984
Cebo (10.1016/j.ijthermalsci.2016.06.031_bib7) 2009; 9
Kim (10.1016/j.ijthermalsci.2016.06.031_bib1) 2007; 28
Shanno (10.1016/j.ijthermalsci.2016.06.031_bib31) 1970; 24
Broyden (10.1016/j.ijthermalsci.2016.06.031_bib28) 1970; 6
Malinowski (10.1016/j.ijthermalsci.2016.06.031_bib33) 2015; 23
Çengel (10.1016/j.ijthermalsci.2016.06.031_bib39) 2007
Liu (10.1016/j.ijthermalsci.2016.06.031_bib32) 2014; 2014
Ravikumar (10.1016/j.ijthermalsci.2016.06.031_bib3) 2014; 64
Xie (10.1016/j.ijthermalsci.2016.06.031_bib17) 2013; 68
Puschmann (10.1016/j.ijthermalsci.2016.06.031_bib14) 2004; 28
Malinowski (10.1016/j.ijthermalsci.2016.06.031_bib26) 2014; 75
Cheng (10.1016/j.ijthermalsci.2016.06.031_bib13) 2011; 36
Tartarini (10.1016/j.ijthermalsci.2016.06.031_bib23) 1999; 34
Chen (10.1016/j.ijthermalsci.2016.06.031_bib15) 2002; 45
Reiners (10.1016/j.ijthermalsci.2016.06.031_bib25) 1985; 56
Somasundaram (10.1016/j.ijthermalsci.2016.06.031_bib19) 2013; 74
Telejko (10.1016/j.ijthermalsci.2016.06.031_bib35) 2004; 146
Hsieh (10.1016/j.ijthermalsci.2016.06.031_bib11) 2004; 47
Zienkiewicz (10.1016/j.ijthermalsci.2016.06.031_bib34) 2000
De Oliveira (10.1016/j.ijthermalsci.2016.06.031_bib20) 2002; 11
Ravikumar (10.1016/j.ijthermalsci.2016.06.031_bib4) 2013; 50
Eugene (10.1016/j.ijthermalsci.2016.06.031_bib22) 1970; 47
Ciofalo (10.1016/j.ijthermalsci.2016.06.031_bib16) 1999; 42
Fand (10.1016/j.ijthermalsci.2016.06.031_bib38) 1977; 20
Hou (10.1016/j.ijthermalsci.2016.06.031_bib18) 2013; 46
Goldfarb (10.1016/j.ijthermalsci.2016.06.031_bib30) 1970; 24
Buczek (10.1016/j.ijthermalsci.2016.06.031_bib21) 2004
Bernardini (10.1016/j.ijthermalsci.2016.06.031_bib6) 2007; 129
Hodgson (10.1016/j.ijthermalsci.2016.06.031_bib24) 1991
References_xml – volume: 9
  start-page: 200
  year: 2009
  end-page: 206
  ident: bib7
  article-title: The influence of selected parameters of water spray cooling on the heat transfer coefficient
  publication-title: Comput Methods Mater Sci
– volume: 47
  start-page: 5703
  year: 2004
  end-page: 5712
  ident: bib12
  article-title: Spray cooling characteristics of water and R-134a. Part I: nucleate boiling
  publication-title: Int J Heat Mass Transf
– volume: 24
  start-page: 23
  year: 1970
  end-page: 26
  ident: bib30
  article-title: A family of variable-metric methods derived by variational means
  publication-title: Math Comput
– volume: 50
  start-page: 79
  year: 2013
  end-page: 89
  ident: bib4
  article-title: Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives
  publication-title: Exp Therm Fluid Sci
– volume: 75
  start-page: 347
  year: 2014
  end-page: 361
  ident: bib26
  article-title: Dedicated three dimensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water
  publication-title: Int J Heat Mass Transf
– volume: 11
  start-page: 80
  year: 2002
  end-page: 85
  ident: bib20
  article-title: Quenching of aerospace forgings from high temperatures using air-assisted, atomized water sprays
  publication-title: J Mater Eng Perform
– volume: 37
  start-page: 492
  year: 1997
  end-page: 497
  ident: bib9
  article-title: Predictable modeling of heat transfer coefficient between spraying water and a hot surface above the Leidenfrost temperature
  publication-title: ISIJ Int
– volume: 46
  start-page: 84
  year: 2013
  end-page: 88
  ident: bib18
  article-title: Experimental study on phase change spray cooling
  publication-title: Exp Therm Fluid Sci
– year: 2000
  ident: bib34
  article-title: The finite element method volume 1: the basis
– year: 1984
  ident: bib27
  article-title: Metody optymalizacji w języku FORTRAN
– volume: 42
  start-page: 1157
  year: 1999
  end-page: 1175
  ident: bib16
  article-title: Investigation of the cooling of hot walls by liquid water sprays
  publication-title: Int J Heat Mass Transf
– volume: 4
  start-page: 45
  year: 2014
  end-page: 51
  ident: bib8
  article-title: Heat transfer in spray quenching of hot metals
  publication-title: Heat Process
– volume: 40
  start-page: 263
  year: 2001
  end-page: 272
  ident: bib10
  article-title: General principles of controlled water cooling for metallurgical on-line hot rolling processes: forced flow and sprayed surfaces with film boiling regime and rewetting phenomena
  publication-title: Int J Therm Sci
– volume: 64
  start-page: 64
  year: 2014
  end-page: 75
  ident: bib3
  article-title: Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol
  publication-title: Appl Therm Eng
– volume: 36
  start-page: 3399
  year: 2011
  end-page: 3405
  ident: bib13
  article-title: Spray characteristics and spray cooling heat transfer in the non-boiling regime
  publication-title: Energy
– start-page: 139
  year: 1991
  end-page: 159
  ident: bib24
  article-title: A mathematical model to simulate the thermo-mechanical processing of steel
  publication-title: Proceedings of 3rd international seminar of the international federation for heat treatment and surface engineering, Melbourne
– volume: 47
  start-page: 5713
  year: 2004
  end-page: 5724
  ident: bib11
  article-title: Spray cooling characteristics of water and R-134a. Part II: transient cooling
  publication-title: Int J Heat Mass Transf
– volume: 45
  start-page: 4033
  year: 2002
  end-page: 4043
  ident: bib15
  article-title: Effects of spray characteristics on critical heat flux in subcooled water spray cooling
  publication-title: Int J Heat Mass Transf
– start-page: 443
  year: 1977
  end-page: 451
  ident: bib37
  article-title: Numerical study of problems on high-intensive free convection
  publication-title: Heat transfer and buoyant convection
– volume: 34
  start-page: 437
  year: 1999
  end-page: 447
  ident: bib23
  article-title: Experimental study on water droplet boiling on hot, on-porous surfaces
  publication-title: Heat Mass Transf
– volume: 40
  start-page: 247
  year: 1997
  end-page: 267
  ident: bib5
  article-title: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface
  publication-title: Int J Heat Mass Transf
– volume: 13
  start-page: 317
  year: 1970
  end-page: 322
  ident: bib29
  article-title: A new approach to variable metric algorithms
  publication-title: Comput J
– volume: 2
  year: 1962
  ident: bib36
  article-title: Handbook of thermophysical properties of solid materials
– volume: 74
  start-page: 174
  year: 2013
  end-page: 182
  ident: bib19
  article-title: Comparative study of intermittent spray cooling in single and two phase regimes
  publication-title: Int J Therm Sci
– volume: 28
  start-page: 753
  year: 2007
  end-page: 767
  ident: bib1
  article-title: Spray cooling heat transfer: the state of the art
  publication-title: Int J Heat Fluid Flow
– volume: 74
  start-page: 174
  year: 2013
  end-page: 182
  ident: bib2
  article-title: Comparative study of intermittent spray cooling in single and two phase regimes
  publication-title: Int J Therm Sci
– volume: 28
  start-page: 607
  year: 2004
  end-page: 615
  ident: bib14
  article-title: Transient measurement of heat transfer for metal quenching with atomized sprays
  publication-title: Exp Therm Fluid Sci
– volume: 24
  start-page: 647
  year: 1970
  end-page: 656
  ident: bib31
  article-title: Conditioning of quasi-Newton methods for function minimization
  publication-title: Math Comput
– volume: 146
  start-page: 145
  year: 2004
  end-page: 155
  ident: bib35
  article-title: Application of an inverse solution to the thermal conductivity identification using the finite element method
  publication-title: J Mater Process Technol
– volume: 20
  start-page: 1173
  year: 1977
  end-page: 1184
  ident: bib38
  article-title: Natural convection heat transfer from horizontal cylinders to air, water and silicone oils for Rayleigh numbers between 3 x 10
  publication-title: Int J Heat Mass Transf
– volume: 68
  start-page: 94
  year: 2013
  end-page: 102
  ident: bib17
  article-title: Characterization of spray atomization and heat transfer of pressure swirl nozzles
  publication-title: Int J Therm Sci
– volume: 23
  start-page: 518
  year: 2015
  end-page: 556
  ident: bib33
  article-title: Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray
  publication-title: Inverse Probl Sci Eng
– year: 2007
  ident: bib39
  article-title: Heat and Mass Transfer: A practical approach
– year: 2004
  ident: bib21
  article-title: The application of the boundary inverse problem for the determination of the heat transfer coefficient in a cooling processes
– volume: 47
  start-page: 53
  year: 1970
  end-page: 60
  ident: bib22
  article-title: Spray cooling investigation for continuous casting of billets and blooms
  publication-title: Iron Steel Eng
– volume: 129
  start-page: 1605
  year: 2007
  end-page: 1610
  ident: bib6
  article-title: Transition boiling heat transfer of droplet steams and sprays
  publication-title: J Heat Transf
– volume: 6
  start-page: 222
  year: 1970
  end-page: 231
  ident: bib28
  article-title: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm
  publication-title: J Inst Math Appl
– volume: 2014
  year: 2014
  ident: bib32
  article-title: Optimal algorithms and the BFGS updating techniques for solving unconstrained nonlinear minimization problems
  publication-title: J Appl Math
– volume: 56
  start-page: 239
  year: 1985
  end-page: 246
  ident: bib25
  article-title: A measuring method for quick determination of local heat transfer coefficient in spray water cooling within the range of stable film boiling
  publication-title: Steel Res
– year: 1984
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib27
– year: 2000
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib34
– volume: 146
  start-page: 145
  year: 2004
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib35
  article-title: Application of an inverse solution to the thermal conductivity identification using the finite element method
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2003.10.006
– volume: 47
  start-page: 5713
  year: 2004
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib11
  article-title: Spray cooling characteristics of water and R-134a. Part II: transient cooling
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2004.07.023
– year: 2004
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib21
– volume: 4
  start-page: 45
  year: 2014
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib8
  article-title: Heat transfer in spray quenching of hot metals
  publication-title: Heat Process
– volume: 28
  start-page: 607
  year: 2004
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib14
  article-title: Transient measurement of heat transfer for metal quenching with atomized sprays
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2003.09.004
– volume: 24
  start-page: 647
  year: 1970
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib31
  article-title: Conditioning of quasi-Newton methods for function minimization
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1970-0274029-X
– volume: 40
  start-page: 263
  year: 2001
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib10
  article-title: General principles of controlled water cooling for metallurgical on-line hot rolling processes: forced flow and sprayed surfaces with film boiling regime and rewetting phenomena
  publication-title: Int J Therm Sci
  doi: 10.1016/S1290-0729(00)01216-3
– volume: 46
  start-page: 84
  year: 2013
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib18
  article-title: Experimental study on phase change spray cooling
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2012.11.023
– volume: 24
  start-page: 23
  year: 1970
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib30
  article-title: A family of variable-metric methods derived by variational means
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1970-0258249-6
– volume: 75
  start-page: 347
  year: 2014
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib26
  article-title: Dedicated three dimensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.03.078
– volume: 13
  start-page: 317
  year: 1970
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib29
  article-title: A new approach to variable metric algorithms
  publication-title: Comput J
  doi: 10.1093/comjnl/13.3.317
– volume: 64
  start-page: 64
  year: 2014
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib3
  article-title: Enhancement of heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous solution of non-ionic surfactant and ethanol
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.12.008
– volume: 47
  start-page: 5703
  year: 2004
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib12
  article-title: Spray cooling characteristics of water and R-134a. Part I: nucleate boiling
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2004.07.022
– volume: 74
  start-page: 174
  year: 2013
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib19
  article-title: Comparative study of intermittent spray cooling in single and two phase regimes
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2013.06.008
– volume: 20
  start-page: 1173
  year: 1977
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib38
  article-title: Natural convection heat transfer from horizontal cylinders to air, water and silicone oils for Rayleigh numbers between 3 x 102 and 2 x 107
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(77)90126-0
– start-page: 443
  year: 1977
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib37
  article-title: Numerical study of problems on high-intensive free convection
– volume: 36
  start-page: 3399
  year: 2011
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib13
  article-title: Spray characteristics and spray cooling heat transfer in the non-boiling regime
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.039
– volume: 2014
  year: 2014
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib32
  article-title: Optimal algorithms and the BFGS updating techniques for solving unconstrained nonlinear minimization problems
  publication-title: J Appl Math
– volume: 50
  start-page: 79
  year: 2013
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib4
  article-title: Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2013.05.007
– volume: 9
  start-page: 200
  issue: 2
  year: 2009
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib7
  article-title: The influence of selected parameters of water spray cooling on the heat transfer coefficient
  publication-title: Comput Methods Mater Sci
– volume: 28
  start-page: 753
  year: 2007
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib1
  article-title: Spray cooling heat transfer: the state of the art
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2006.09.003
– start-page: 139
  year: 1991
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib24
  article-title: A mathematical model to simulate the thermo-mechanical processing of steel
– volume: 40
  start-page: 247
  issue: 2
  year: 1997
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib5
  article-title: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(96)00119-6
– volume: 6
  start-page: 222
  year: 1970
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib28
  article-title: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm
  publication-title: J Inst Math Appl
– volume: 45
  start-page: 4033
  year: 2002
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib15
  article-title: Effects of spray characteristics on critical heat flux in subcooled water spray cooling
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(02)00113-8
– volume: 74
  start-page: 174
  year: 2013
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib2
  article-title: Comparative study of intermittent spray cooling in single and two phase regimes
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2013.06.008
– volume: 47
  start-page: 53
  issue: 6
  year: 1970
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib22
  article-title: Spray cooling investigation for continuous casting of billets and blooms
  publication-title: Iron Steel Eng
– volume: 34
  start-page: 437
  year: 1999
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib23
  article-title: Experimental study on water droplet boiling on hot, on-porous surfaces
  publication-title: Heat Mass Transf
  doi: 10.1007/s002310050280
– volume: 56
  start-page: 239
  issue: 5
  year: 1985
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib25
  article-title: A measuring method for quick determination of local heat transfer coefficient in spray water cooling within the range of stable film boiling
  publication-title: Steel Res
  doi: 10.1002/srin.198500628
– volume: 23
  start-page: 518
  issue: 3
  year: 2015
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib33
  article-title: Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray
  publication-title: Inverse Probl Sci Eng
  doi: 10.1080/17415977.2014.923417
– volume: 68
  start-page: 94
  year: 2013
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib17
  article-title: Characterization of spray atomization and heat transfer of pressure swirl nozzles
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2012.12.015
– volume: 2
  year: 1962
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib36
– volume: 129
  start-page: 1605
  year: 2007
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib6
  article-title: Transition boiling heat transfer of droplet steams and sprays
  publication-title: J Heat Transf
– volume: 37
  start-page: 492
  issue: 5
  year: 1997
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib9
  article-title: Predictable modeling of heat transfer coefficient between spraying water and a hot surface above the Leidenfrost temperature
  publication-title: ISIJ Int
  doi: 10.2355/isijinternational.37.492
– volume: 11
  start-page: 80
  issue: 1
  year: 2002
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib20
  article-title: Quenching of aerospace forgings from high temperatures using air-assisted, atomized water sprays
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-002-0012-4
– volume: 42
  start-page: 1157
  year: 1999
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib16
  article-title: Investigation of the cooling of hot walls by liquid water sprays
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/S0017-9310(98)00250-6
– year: 2007
  ident: 10.1016/j.ijthermalsci.2016.06.031_bib39
SSID ssj0007909
Score 2.374635
Snippet The influence of water spray pressure, water flux and the nozzle-to-surface distance on the heat transfer coefficient during spray cooling of brass and inconel...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Boundary inverse problem
Heat transfer coefficient
Metal conductivity
Water flux
Water spray pressure
Title The influence of selected parameters of spray cooling and thermal conductivity on heat transfer coefficient
URI https://dx.doi.org/10.1016/j.ijthermalsci.2016.06.031
Volume 110
WOSCitedRecordID wos000382793600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1778-4166
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007909
  issn: 1290-0729
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQc4oPISLVD5wA0FbZ6ODxxKVVSQqBAq0opLlHhtlOzWWe2jlP1R_MbO-JFNeYgFiUu0stbeeOeLZzz5_A0hz6tMpVzGw4CPVRokcamCPFNxkIjI1EQRQthiE-zsLB-N-IfB4Ls_C3M5ZVrnV1d89l9NDW1gbDw6-xfm7gaFBvgMRocrmB2uWxu-9qVHMBZcmFI3EFiizPcF0l8MfWMxm5ffXoi2nfpzihgLXhi9EI0qsLasBKAD12usJQERrpyjmoiRnfCMmWbDhd-kFnuCFH5U52u7GP4YVrrg42qsazGxyd0vGrbt60nnKN7DHkG3X11l7c9VjV_ocu6vV2ItJ56UuZZNP4ERZj0yiF1zIz4MUMD8xqLsyK52WbUit85BW9Xzn5Z-m4VoXtaNmxdMC6l7mdFnda7mht72D36wYyd64ltT9McqcKwCWYB4bH83YikHR7B79PZk9K7z_YwbUlE3JS9zaxiFv7uzX4dEvTDnfI_cdfsTemRxdY8MpL5P7vRUKx-QCSCMdgijraIeYXSDMNOMCKMOYRQQRt2d0T7CaKspIox6hNEewh6ST29Ozo9PA1ezIxAQmi-DKi0jfNUdKaFEKFmURVLmWZyUJSuHEuXlBAu5kBWLE6FYyqoqD9NKpGFehkMZPyI7utXyMaEqhy0VyyXPKvA04bhMGCYsMs7zEoLUcJ9w_7cVwgnaY12VafFnA-6TuOs7s7IuW_V65a1TuIfGBp4FgHCL_gf_9KtPyO3NY_OU7CznK_mM3BKXy3oxP3QIvAZ_AMIZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+selected+parameters+of+spray+cooling+and+thermal+conductivity+on+heat+transfer+coefficient&rft.jtitle=International+journal+of+thermal+sciences&rft.au=Cebo-Rudnicka%2C+Agnieszka&rft.au=Malinowski%2C+Zbigniew&rft.au=Buczek%2C+Andrzej&rft.date=2016-12-01&rft.issn=1290-0729&rft.volume=110&rft.spage=52&rft.epage=64&rft_id=info:doi/10.1016%2Fj.ijthermalsci.2016.06.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijthermalsci_2016_06_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1290-0729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1290-0729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1290-0729&client=summon