Joint State and Unknown Input Estimation for a Class of Artificial Neural Networks With Sensor Resolution: An Encoding-Decoding Mechanism

This article is concerned with the joint state and unknown input (SUI) estimation for a class of artificial neural networks (ANNs) with sensor resolution (SR) under the encoding-decoding mechanisms. The consideration of SR, which is an important specification of sensors in the real world, caters to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 36; číslo 2; s. 3671 - 3681
Hlavní autori: Shen, Yuxuan, Wang, Zidong, Dong, Hongli, Liu, Hongjian, Liu, Xiaohui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.02.2025
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article is concerned with the joint state and unknown input (SUI) estimation for a class of artificial neural networks (ANNs) with sensor resolution (SR) under the encoding-decoding mechanisms. The consideration of SR, which is an important specification of sensors in the real world, caters to engineering practice. Furthermore, the implementation of the encoding-decoding mechanism in the communication network aims to accommodate the limited bandwidth. The objective of this study is to propose a set-membership estimation algorithm that accurately estimates the state of the ANN without being influenced by the unknown input while accounting for the SR and the encoding-decoding mechanism. First, a sufficient condition is derived to ensure an ellipsoidal constraint on the estimation error. Then, by addressing an optimization problem, the design of the estimator gains is accomplished, and the minimal ellipsoidal constraint on the state estimation error is obtained. Finally, an example is provided to confirm the validity of the proposed joint SUI estimation scheme.
AbstractList This article is concerned with the joint state and unknown input (SUI) estimation for a class of artificial neural networks (ANNs) with sensor resolution (SR) under the encoding-decoding mechanisms. The consideration of SR, which is an important specification of sensors in the real world, caters to engineering practice. Furthermore, the implementation of the encoding-decoding mechanism in the communication network aims to accommodate the limited bandwidth. The objective of this study is to propose a set-membership estimation algorithm that accurately estimates the state of the ANN without being influenced by the unknown input while accounting for the SR and the encoding-decoding mechanism. First, a sufficient condition is derived to ensure an ellipsoidal constraint on the estimation error. Then, by addressing an optimization problem, the design of the estimator gains is accomplished, and the minimal ellipsoidal constraint on the state estimation error is obtained. Finally, an example is provided to confirm the validity of the proposed joint SUI estimation scheme.This article is concerned with the joint state and unknown input (SUI) estimation for a class of artificial neural networks (ANNs) with sensor resolution (SR) under the encoding-decoding mechanisms. The consideration of SR, which is an important specification of sensors in the real world, caters to engineering practice. Furthermore, the implementation of the encoding-decoding mechanism in the communication network aims to accommodate the limited bandwidth. The objective of this study is to propose a set-membership estimation algorithm that accurately estimates the state of the ANN without being influenced by the unknown input while accounting for the SR and the encoding-decoding mechanism. First, a sufficient condition is derived to ensure an ellipsoidal constraint on the estimation error. Then, by addressing an optimization problem, the design of the estimator gains is accomplished, and the minimal ellipsoidal constraint on the state estimation error is obtained. Finally, an example is provided to confirm the validity of the proposed joint SUI estimation scheme.
This article is concerned with the joint state and unknown input (SUI) estimation for a class of artificial neural networks (ANNs) with sensor resolution (SR) under the encoding-decoding mechanisms. The consideration of SR, which is an important specification of sensors in the real world, caters to engineering practice. Furthermore, the implementation of the encoding-decoding mechanism in the communication network aims to accommodate the limited bandwidth. The objective of this study is to propose a set-membership estimation algorithm that accurately estimates the state of the ANN without being influenced by the unknown input while accounting for the SR and the encoding-decoding mechanism. First, a sufficient condition is derived to ensure an ellipsoidal constraint on the estimation error. Then, by addressing an optimization problem, the design of the estimator gains is accomplished, and the minimal ellipsoidal constraint on the state estimation error is obtained. Finally, an example is provided to confirm the validity of the proposed joint SUI estimation scheme.
Author Liu, Hongjian
Dong, Hongli
Shen, Yuxuan
Wang, Zidong
Liu, Xiaohui
Author_xml – sequence: 1
  givenname: Yuxuan
  orcidid: 0000-0003-4870-9038
  surname: Shen
  fullname: Shen, Yuxuan
  email: shenyuxuan5973@163.com
  organization: Artificial Intelligence Energy Research Institute, Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, National Key Laboratory of Continental Shale Oil of China, Northeast Petroleum University, Daqing, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: Zidong.Wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, U.K
– sequence: 3
  givenname: Hongli
  orcidid: 0000-0001-8531-6757
  surname: Dong
  fullname: Dong, Hongli
  email: shiningdhl@vip.126.com
  organization: Artificial Intelligence Energy Research Institute, Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, National Key Laboratory of Continental Shale Oil of China, Northeast Petroleum University, Daqing, China
– sequence: 4
  givenname: Hongjian
  orcidid: 0000-0001-6471-5089
  surname: Liu
  fullname: Liu, Hongjian
  email: hjliu1980@gmail.com
  organization: Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, and the School of Mathematics and Physics, Anhui Polytechnic University, Wuhu, China
– sequence: 5
  givenname: Xiaohui
  orcidid: 0000-0003-1589-1267
  surname: Liu
  fullname: Liu, Xiaohui
  organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38198262$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1UREvpCyCEvGSTwblOHIfdaBho0XSQmEGwsxznhppm7MF2VPEIvHUzP0WIRe_m3MX5zuKc5-TEeYeEvMzZJM9Z_Xa9XC5WE2DAJ5wXsirhCTmDXEAGXMqTv3_1_ZRcxPiTjSdYKYr6GTnlMq8lCDgjfz556xJdJZ2QatfSr-7W-TtHr9x2SHQek93oZL2jnQ9U01mvY6S-o9OQbGeN1T1d4hD2ku58uI30m003dIUujsQXjL4fdgHv6NTRuTO-te5H9h4PD71Gc6OdjZsX5Gmn-4gXRz0n6w_z9ewyW3z-eDWbLjLDoUiZriHXVSOFqbEpOSuNbMYWSsk6IRqoRNUWXTvWAk0NbQNaNJyXWErBkVc1PydvDrHb4H8NGJPa2Giw77VDP0QFdc6LQhRsZ319tA7NBlu1DWMX4bd6aG80yIPBBB9jwE4Zm_ZtpaBtr3Kmdlup_VZqt5U6bjWi8B_6kP4o9OoAWUT8B-CyKqDk9z_Jn-k
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_jfranklin_2025_108020
crossref_primary_10_1109_LSP_2024_3460475
crossref_primary_10_1109_TASE_2025_3577992
crossref_primary_10_1109_LCSYS_2025_3578918
crossref_primary_10_1109_TASE_2025_3577977
crossref_primary_10_1109_JIOT_2025_3557916
Cites_doi 10.53941/ijndi0201001
10.1080/00207721.2022.2049918
10.1109/TNSE.2022.3206720
10.1109/TAC.2021.3115473
10.1109/TCSII.2022.3182123
10.1080/21642583.2022.2087786
10.1109/TNSE.2022.3196306
10.1049/iet-cta.2020.0219
10.53941/ijndi0201007
10.1109/TPWRS.2019.2909160
10.1080/00207721.2022.2097332
10.1109/TSMC.2023.3234461
10.1002/rnc.6163
10.53941/ijndi0101008
10.1016/j.inffus.2019.07.008
10.1016/j.isatra.2022.03.029
10.1109/TNSE.2022.3195283
10.1080/00207721.2022.2146990
10.1080/00207721.2021.1872118
10.1109/TCYB.2019.2941870
10.1016/j.isatra.2020.12.044
10.1016/j.neucom.2010.03.021
10.1016/j.neucom.2022.03.001
10.1016/j.amc.2022.127056
10.1109/TSMC.2021.3049306
10.1109/TCYB.2022.3227021
10.1080/00207721.2023.2173541
10.1080/00207721.2022.2083256
10.1080/00207721.2022.2055192
10.1080/21642583.2023.2173682
10.1016/S0262-8856(02)00152-X
10.1016/j.asoc.2021.108212
10.1109/TCYB.2019.2917179
10.1109/TSP.2017.2686375
10.1080/21642583.2022.2048322
10.1109/TFUZZ.2021.3069329
10.1109/JAS.2022.105416
10.1016/j.neucom.2022.05.063
10.1109/TSMC.2015.2476491
10.1080/21642583.2023.2177771
10.1007/s12555-019-0422-9
10.1080/00207721.2023.2208130
10.1016/j.automatica.2017.12.005
10.1109/TFUZZ.2022.3145808
10.1080/00207721.2023.2241957
10.53941/ijndi0201003
10.1002/rnc.6027
10.1016/j.conengprac.2019.02.003
10.1080/21642583.2023.2207587
10.1109/TSP.2018.2833811
10.1109/JAS.2022.105644
10.1016/j.neucom.2022.08.041
10.1016/j.isatra.2022.04.048
10.1080/00207721.2020.1862354
10.1016/j.neucom.2020.04.105
10.1109/TAC.2017.2649878
10.1109/TAC.2020.2968975
10.1080/21642583.2022.2158959
10.1080/21642583.2022.2063203
10.1080/00207721.2022.2049919
10.1016/j.automatica.2005.08.008
10.1109/TIE.2021.3137619
10.1016/j.automatica.2019.108588
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3348752
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3681
ExternalDocumentID 38198262
10_1109_TNNLS_2023_3348752
10387425
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Anhui Polytechnic University (AHPU) High-End Equipment Intelligent Control Innovation Team of China
  grantid: 2021CXTD005
– fundername: Alexander von Humboldt Foundation of Germany
  funderid: 10.13039/100005156
– fundername: Hainan Province Science and Technology Special Fund of China
  grantid: ZDYF2022SHFZ105
– fundername: National Natural Science Foundation of China
  grantid: 61933007; U21A2019; 62273005; 62103095
  funderid: 10.13039/501100001809
– fundername: Royal Society of the U.K.
  funderid: 10.13039/501100000288
– fundername: Natural Science Foundation of Heilongjiang Province of China
  grantid: LH2021F005
  funderid: 10.13039/501100005046
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c324t-a921a7b86c9eb5305c8b202580f66b2767d4fd0232b92db2a6b335e5863e3793
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173996100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 11:10:00 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Tue Nov 18 22:42:18 EST 2025
Sat Nov 29 01:40:29 EST 2025
Wed Aug 27 01:52:59 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-a921a7b86c9eb5305c8b202580f66b2767d4fd0232b92db2a6b335e5863e3793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1589-1267
0000-0002-9576-7401
0000-0001-6471-5089
0000-0001-8531-6757
0000-0003-4870-9038
PMID 38198262
PQID 2913446409
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_38198262
crossref_citationtrail_10_1109_TNNLS_2023_3348752
crossref_primary_10_1109_TNNLS_2023_3348752
proquest_miscellaneous_2913446409
ieee_primary_10387425
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref14
  doi: 10.53941/ijndi0201001
– ident: ref26
  doi: 10.1080/00207721.2022.2049918
– ident: ref38
  doi: 10.1109/TNSE.2022.3206720
– ident: ref4
  doi: 10.1109/TAC.2021.3115473
– ident: ref25
  doi: 10.1109/TCSII.2022.3182123
– ident: ref29
  doi: 10.1080/21642583.2022.2087786
– ident: ref13
  doi: 10.1109/TNSE.2022.3196306
– ident: ref18
  doi: 10.1049/iet-cta.2020.0219
– ident: ref49
  doi: 10.53941/ijndi0201007
– ident: ref1
  doi: 10.1109/TPWRS.2019.2909160
– ident: ref33
  doi: 10.1080/00207721.2022.2097332
– ident: ref12
  doi: 10.1109/TSMC.2023.3234461
– ident: ref23
  doi: 10.1002/rnc.6163
– ident: ref47
  doi: 10.53941/ijndi0101008
– ident: ref3
  doi: 10.1016/j.inffus.2019.07.008
– ident: ref59
  doi: 10.1016/j.isatra.2022.03.029
– ident: ref10
  doi: 10.1109/TNSE.2022.3195283
– ident: ref61
  doi: 10.1080/00207721.2022.2146990
– ident: ref31
  doi: 10.1080/00207721.2021.1872118
– ident: ref60
  doi: 10.1109/TCYB.2019.2941870
– ident: ref19
  doi: 10.1016/j.isatra.2020.12.044
– ident: ref37
  doi: 10.1016/j.neucom.2010.03.021
– ident: ref46
  doi: 10.1016/j.neucom.2022.03.001
– ident: ref62
  doi: 10.1016/j.amc.2022.127056
– ident: ref30
  doi: 10.1109/TSMC.2021.3049306
– ident: ref43
  doi: 10.1109/TCYB.2022.3227021
– ident: ref6
  doi: 10.1080/00207721.2023.2173541
– ident: ref40
  doi: 10.1080/00207721.2022.2083256
– ident: ref52
  doi: 10.1080/00207721.2022.2055192
– ident: ref9
  doi: 10.1080/21642583.2023.2173682
– ident: ref34
  doi: 10.1016/S0262-8856(02)00152-X
– ident: ref51
  doi: 10.1016/j.asoc.2021.108212
– ident: ref11
  doi: 10.1109/TCYB.2019.2917179
– ident: ref5
  doi: 10.1109/TSP.2017.2686375
– ident: ref41
  doi: 10.1080/21642583.2022.2048322
– ident: ref48
  doi: 10.1109/TFUZZ.2021.3069329
– ident: ref35
  doi: 10.1109/JAS.2022.105416
– ident: ref36
  doi: 10.1016/j.neucom.2022.05.063
– ident: ref44
  doi: 10.1109/TSMC.2015.2476491
– ident: ref17
  doi: 10.1080/21642583.2023.2177771
– ident: ref54
  doi: 10.1007/s12555-019-0422-9
– ident: ref21
  doi: 10.1080/00207721.2023.2208130
– ident: ref57
  doi: 10.1016/j.automatica.2017.12.005
– ident: ref53
  doi: 10.1109/TFUZZ.2022.3145808
– ident: ref8
  doi: 10.1080/00207721.2023.2241957
– ident: ref28
  doi: 10.53941/ijndi0201003
– ident: ref56
  doi: 10.1002/rnc.6027
– ident: ref7
  doi: 10.1016/j.conengprac.2019.02.003
– ident: ref16
  doi: 10.1080/21642583.2023.2207587
– ident: ref39
  doi: 10.1109/TSP.2018.2833811
– ident: ref20
  doi: 10.1109/JAS.2022.105644
– ident: ref55
  doi: 10.1016/j.neucom.2022.08.041
– ident: ref24
  doi: 10.1016/j.isatra.2022.04.048
– ident: ref58
  doi: 10.1080/00207721.2020.1862354
– ident: ref42
  doi: 10.1016/j.neucom.2020.04.105
– ident: ref27
  doi: 10.1109/TAC.2017.2649878
– ident: ref63
  doi: 10.1109/TAC.2020.2968975
– ident: ref15
  doi: 10.1080/21642583.2022.2158959
– ident: ref50
  doi: 10.1080/21642583.2022.2063203
– ident: ref45
  doi: 10.1080/00207721.2022.2049919
– ident: ref2
  doi: 10.1016/j.automatica.2005.08.008
– ident: ref32
  doi: 10.1109/TIE.2021.3137619
– ident: ref22
  doi: 10.1016/j.automatica.2019.108588
SSID ssj0000605649
Score 2.5132465
Snippet This article is concerned with the joint state and unknown input (SUI) estimation for a class of artificial neural networks (ANNs) with sensor resolution (SR)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3671
SubjectTerms Artificial neural networks
Artificial neural networks (ANNs)
encoding–decoding mechanism
Estimation
Filtering
Neurons
Robustness
sensor resolution (SR)
setmembership estimation
State estimation
Uncertainty
unknown input
Title Joint State and Unknown Input Estimation for a Class of Artificial Neural Networks With Sensor Resolution: An Encoding-Decoding Mechanism
URI https://ieeexplore.ieee.org/document/10387425
https://www.ncbi.nlm.nih.gov/pubmed/38198262
https://www.proquest.com/docview/2913446409
Volume 36
WOSCitedRecordID wos001173996100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxYEL5VFgeVSDxA1lmziOH9wq2AoQrJC6iL1FfkWsBA7qZvsf-q_x2MkKDkXiFB9sK_KM7W88j4-QV8zXylhdFk7VrGBG6kJ3WhRal07oyjGnM9mEWC7leq2-jMnqKRfGe5-Cz_wcm8mX73q7w6eyUyzmHU255oAcCMFzstb-QaWMwJwnuEsrTgtai_WUJFOq09Vy-elijlzhc8w9FQ3S2KC1EuE1_etOSiQrN-PNdO-cH_3nH98jd0eACWdZI-6TWz48IEcTeQOMe_khuf7Yb8IACWyCDg6-BnxfC_AhxJ6wiFs_ZzVChLWgIbFnQt-lmXPZCcDKHumTQsm38G0zfIeLaBjHEegXyFr9Bs4CLILt8Zos3vncgM8ek44325_HZHW-WL19X4y8DIWN8GsotKKVFkZyq7xp4oFhpYkr28iy49xQwYVjnYtLTY2izlDNTV03vpG89nU8Dx6Rw9AH_4SAapirmDGCyo556hWXypaSeUkti2b7jFSTYFo71ixH6owfbbJdStUmubYo13aU64y83o_5lSt2_LP3MUrtj55ZYDPyclKANm449KLo4PvdtqUYq8B4tItn5HHWjP3oSaGe3jDrM3IHFypHfT8nh8Plzr8gt-3VsNlenkStXsuTpNW_Afyq8SI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagINFLy1LKsBqJG8o0cRwv3CqYqoVphNRBzC3yFjFS66BOpv-Bf42fnYzgUCRO8cG2Ir9n-3t-y4fQO-pKqY3KMytLmlEtVKZaxTOlcstVYalViWyC17VYLuXXIVk95sI452LwmZtCM_rybWc28FR2BMW8gylX3UX3gDprSNfaPqnkAZqzCHhJwUhGSr4c02RyebSo6_nFFNjCp5B9yisgsgF7JQBs8tetFGlWbkec8eY52f_Pf36I9gaIiY-TTjxCd5x_jPZH-gY87OYn6NfnbuV7HOEmVt7ibx5e2Dw-86EnnoXNn_IacQC2WOHIn4m7Ns6cCk9gqO0RPzGYfI2_r_of-CKYxmEEeAaSXn_Axx7PvOngosw-udTA5w7SjlfrqwO0OJktPp5mAzNDZgIA6zMlSaG4FsxIp6twZBihw8pWIm8Z04Qzbmlrw1ITLYnVRDFdlpWrBCtdGU6Ep2jHd949Q1hW1BZUa05ESx1xkglpckGdIIYGw32CilEwjRmqlgN5xmUTrZdcNlGuDci1GeQ6Qe-3Y36mmh3_7H0AUvujZxLYBL0dFaAJWw78KMq7brNuCEQrUBYs4wk6TJqxHT0q1PNbZn2DHpwuzufN_Kz-8gLtwqKlGPCXaKe_3rhX6L656Vfr69dRt38DBHjzgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+State+and+Unknown+Input+Estimation+for+a+Class+of+Artificial+Neural+Networks+With+Sensor+Resolution%3A+An+Encoding-Decoding+Mechanism&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Shen%2C+Yuxuan&rft.au=Wang%2C+Zidong&rft.au=Dong%2C+Hongli&rft.au=Liu%2C+Hongjian&rft.date=2025-02-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=36&rft.issue=2&rft.spage=3671&rft_id=info:doi/10.1109%2FTNNLS.2023.3348752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon