View-Wise Versus Cluster-Wise Weight: Which Is Better for Multi-View Clustering?

Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 31; S. 58 - 71
Hauptverfasser: Hu, Shizhe, Lou, Zhengzheng, Ye, Yangdong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods.
AbstractList Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods.
Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods.Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods.
Author Lou, Zhengzheng
Ye, Yangdong
Hu, Shizhe
Author_xml – sequence: 1
  givenname: Shizhe
  orcidid: 0000-0003-1301-2396
  surname: Hu
  fullname: Hu, Shizhe
  email: ieshizhehu@gmail.com
  organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Zhengzheng
  orcidid: 0000-0002-6902-5260
  surname: Lou
  fullname: Lou, Zhengzheng
  email: zzlou@zzu.edu.cn
  organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 3
  givenname: Yangdong
  orcidid: 0000-0001-7027-8313
  surname: Ye
  fullname: Ye, Yangdong
  email: ieydye@zzu.edu.cn
  organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China
BookMark eNp9kD1PwzAQhi0EAgrsSCyRWFhSzh-xYxYEFR-ViugAdIxc90KNQgK2I8S_x1WBgYHJlu95fHfvgGy2XYuEHFIYUgr69GE8HTJgdMgpKznjG2SXakFzAME20x0KlSsq9A4ZhPACQEVB5TbZ4aIEVTK5S6ZPDj_ymQuYPaEPfchGTR8i-vXbDN3zMp5ls6Wzy2wcskuMqZjVnc_u-ia6fOX_OK59Pt8nW7VpAh58n3vk8frqYXSbT-5vxqOLSW45EzE3ApSSXKDhoNDI2sznfKEBNBcLUwuxsCCQ16UWTFFjUYCk1khrC5jzAvkeOVn_--a79x5DrF5dsNg0psWuDxWTaduS6oIm9PgP-tL1vk3TrSihqdIKEgVryvouBI919ebdq_GfFYVqlXaV0q5WaVffaSdF_lGsiya6ro3euOY_8WgtOkT87aNlKknJvwBbkIqc
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TIP_2023_3297410
crossref_primary_10_1109_TNNLS_2023_3238041
crossref_primary_10_1016_j_ipm_2023_103511
crossref_primary_10_1016_j_patcog_2025_111844
crossref_primary_10_1016_j_inffus_2022_10_020
crossref_primary_10_1007_s44443_025_00130_2
crossref_primary_10_1109_TNNLS_2022_3224058
crossref_primary_10_1016_j_eswa_2023_122918
crossref_primary_10_1109_TIP_2023_3246802
crossref_primary_10_1109_TIP_2024_3451931
crossref_primary_10_1016_j_knosys_2024_112106
crossref_primary_10_1016_j_ipm_2022_102967
crossref_primary_10_1016_j_ipm_2024_103735
crossref_primary_10_1016_j_knosys_2024_112562
crossref_primary_10_1109_TIP_2024_3388974
crossref_primary_10_1109_TCSVT_2023_3302326
crossref_primary_10_1109_TIP_2025_3587586
crossref_primary_10_1109_TNNLS_2022_3224748
crossref_primary_10_1016_j_ipm_2023_103284
crossref_primary_10_1016_j_eswa_2022_118374
crossref_primary_10_1007_s11704_024_40004_w
crossref_primary_10_1109_TIP_2023_3261746
crossref_primary_10_1109_TMM_2024_3521747
crossref_primary_10_1016_j_neunet_2024_106503
crossref_primary_10_1016_j_engappai_2023_107092
crossref_primary_10_1016_j_neucom_2024_128037
crossref_primary_10_1109_TPAMI_2024_3366349
Cites_doi 10.1023/b:visi.0000029664.99615.94
10.1109/CVPR.2008.4587756
10.1109/18.61115
10.1016/j.knosys.2019.105459
10.1609/aaai.v29i1.9598
10.1145/1646396.1646452
10.1609/aaai.v28i1.8950
10.1109/TIP.2021.3083072
10.24963/ijcai.2017/357
10.1109/TKDE.2019.2903810
10.1109/TKDE.2020.2986201
10.1109/ICME.2015.7177432
10.1007/11744023_32
10.1109/ICCV.2011.6126543
10.1002/0471200611
10.1609/aaai.v34i04.5922
10.1109/ICDM.2004.10095
10.1109/TIP.2016.2627806
10.24963/ijcai.2018/367
10.26599/BDMA.2018.9020003
10.1016/j.ins.2017.11.038
10.1609/aaai.v34i04.6180
10.1109/CVPR.2011.5995740
10.1109/TIP.2015.2479917
10.1137/1.9781611975673.5
10.1109/TIP.2015.2490539
10.1109/TNNLS.2021.3056420
10.1109/TNNLS.2019.2944851
10.1109/TIP.2005.860593
10.1109/TIP.2019.2913081
10.1109/TIP.2017.2665976
10.1016/j.cviu.2016.03.013
10.1109/TIP.2015.2463223
10.1109/CVPR.2017.431
10.1109/34.868688
10.1007/978-3-540-71703-4_78
10.1109/TIP.2017.2754939
10.1109/TNNLS.2021.3069424
10.1109/TPAMI.2013.2296528
10.1109/TIP.2009.2017823
10.1016/j.patcog.2019.107101
10.1016/j.cviu.2005.09.012
10.1016/j.neunet.2020.05.021
10.1007/s10479-011-0841-3
10.1109/TIP.2018.2877335
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3128323
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 71
ExternalDocumentID 10_1109_TIP_2021_3128323
9623366
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772475
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Plan “Advanced Rail Transit”
  grantid: 2018YFB1201403
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c324t-a4077634ea307ea6fabb3d900934daf44dc04e3f894271ace4061ca6cc50b35e3
IEDL.DBID RIE
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724479800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 07:37:40 EDT 2025
Mon Jun 30 10:09:13 EDT 2025
Sat Nov 29 03:21:15 EST 2025
Tue Nov 18 21:43:02 EST 2025
Wed Aug 27 05:01:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-a4077634ea307ea6fabb3d900934daf44dc04e3f894271ace4061ca6cc50b35e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7027-8313
0000-0002-6902-5260
0000-0003-1301-2396
PMID 34807826
PQID 2604917970
PQPubID 85429
PageCount 14
ParticipantIDs ieee_primary_9623366
proquest_miscellaneous_2601481951
crossref_primary_10_1109_TIP_2021_3128323
crossref_citationtrail_10_1109_TIP_2021_3128323
proquest_journals_2604917970
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
Lou (ref28)
ref11
ref10
Tishby (ref23)
ref17
ref16
ref19
ref18
ref50
ref46
ref45
Cai (ref13)
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
Wolf (ref38)
ref33
ref32
ref2
ref1
ref39
ref24
ref26
ref25
ref20
ref22
Wang (ref40)
ref21
ref27
ref29
References_xml – start-page: 1290
  volume-title: Proc. CVPR
  ident: ref40
  article-title: Mining actionlet ensemble for action recognition with depth cameras
– ident: ref37
  doi: 10.1023/b:visi.0000029664.99615.94
– ident: ref42
  doi: 10.1109/CVPR.2008.4587756
– ident: ref32
  doi: 10.1109/18.61115
– start-page: 1
  volume-title: Proc. Eur. Conf. Comput. Vis.
  ident: ref38
  article-title: Descriptor based methods in the wild
– ident: ref22
  doi: 10.1016/j.knosys.2019.105459
– ident: ref14
  doi: 10.1609/aaai.v29i1.9598
– ident: ref39
  doi: 10.1145/1646396.1646452
– ident: ref45
  doi: 10.1609/aaai.v28i1.8950
– ident: ref8
  doi: 10.1109/TIP.2021.3083072
– ident: ref16
  doi: 10.24963/ijcai.2017/357
– ident: ref19
  doi: 10.1109/TKDE.2019.2903810
– ident: ref46
  doi: 10.1109/TKDE.2020.2986201
– ident: ref2
  doi: 10.1109/ICME.2015.7177432
– ident: ref31
  doi: 10.1007/11744023_32
– ident: ref41
  doi: 10.1109/ICCV.2011.6126543
– ident: ref29
  doi: 10.1002/0471200611
– ident: ref21
  doi: 10.1609/aaai.v34i04.5922
– ident: ref1
  doi: 10.1109/ICDM.2004.10095
– start-page: 2598
  volume-title: Proc. IJCAI
  ident: ref13
  article-title: Multi-view K-means clustering on big data
– ident: ref4
  doi: 10.1109/TIP.2016.2627806
– ident: ref17
  doi: 10.24963/ijcai.2018/367
– ident: ref35
  doi: 10.26599/BDMA.2018.9020003
– ident: ref11
  doi: 10.1016/j.ins.2017.11.038
– ident: ref47
  doi: 10.1609/aaai.v34i04.6180
– ident: ref9
  doi: 10.1109/CVPR.2011.5995740
– start-page: 1508
  volume-title: Proc. IJCAI
  ident: ref28
  article-title: The multi-feature information bottleneck with application to unsupervised image categorization
– start-page: 368
  volume-title: Proc. Annu. Allerton Conf. Commun., Control Comput.
  ident: ref23
  article-title: The information bottleneck method
– ident: ref3
  doi: 10.1109/TIP.2015.2479917
– ident: ref33
  doi: 10.1137/1.9781611975673.5
– ident: ref49
  doi: 10.1109/TIP.2015.2490539
– ident: ref43
  doi: 10.1109/TNNLS.2021.3056420
– ident: ref6
  doi: 10.1109/TNNLS.2019.2944851
– ident: ref25
  doi: 10.1109/TIP.2005.860593
– ident: ref18
  doi: 10.1109/TIP.2019.2913081
– ident: ref15
  doi: 10.1109/TIP.2017.2665976
– ident: ref30
  doi: 10.1016/j.cviu.2016.03.013
– ident: ref12
  doi: 10.1109/TIP.2015.2463223
– ident: ref34
  doi: 10.1109/CVPR.2017.431
– ident: ref44
  doi: 10.1109/34.868688
– ident: ref26
  doi: 10.1007/978-3-540-71703-4_78
– ident: ref10
  doi: 10.1109/TIP.2017.2754939
– ident: ref7
  doi: 10.1109/TNNLS.2021.3069424
– ident: ref24
  doi: 10.1109/TPAMI.2013.2296528
– ident: ref27
  doi: 10.1109/TIP.2009.2017823
– ident: ref20
  doi: 10.1016/j.patcog.2019.107101
– ident: ref36
  doi: 10.1016/j.cviu.2005.09.012
– ident: ref50
  doi: 10.1016/j.neunet.2020.05.021
– ident: ref48
  doi: 10.1007/s10479-011-0841-3
– ident: ref5
  doi: 10.1109/TIP.2018.2877335
SSID ssj0014516
Score 2.5320652
Snippet Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Algorithms
Clustering
Clustering algorithms
Image color analysis
information bottleneck
Learning
Linear programming
Multi-view clustering
Mutual information
Optimization
Random variables
Shape
Smoothness
weight learning
Title View-Wise Versus Cluster-Wise Weight: Which Is Better for Multi-View Clustering?
URI https://ieeexplore.ieee.org/document/9623366
https://www.proquest.com/docview/2604917970
https://www.proquest.com/docview/2601481951
Volume 31
WOSCitedRecordID wos000724479800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7a0If1YVmblmVriwp9KUyNHSuytZfRlZUWSshDuuTNyPKZBkIy4nj793enOCawUtibsSVh9Ol8v_zdAVxlmCUBJoFENehL1hiS9DxKXSBH3OKsCD1R-CkeDpPp1Iz24EvDhUFE__MZ3vClz-XnS1dxqKxnSFdHWu_DfhzrDVeryRhww1mf2RzEMiazf5uSDExv_DgiR7Afkn_KjXm4dU7ETOqEKyrsaCPfXuWfb7JXNPft_3vFD_C-NijF7eYEHMEeLo6hXRuXohbd8hgOdyoPdmD0c4Z_5GRWouCIWVWKu3nFNRM29yY-YPpVTF5m7kU8luK7Z_0IsnCFp-xKnr-dQyt-O4Hn-x_juwdZN1eQjmyotbSKC_lECi1JOVpd2CyLcsMRDpXbQqncBQqjIjGqH4fWIePorHZuEGSEZnQKrcVygR9BaO1o26PC8M-dIa0QapubTIW5wtAWWRd6201OXV15nBtgzFPvgQQmJYRSRiitEerCdTPj16bqxhtjOwxDM65GoAtnWxzTWizLlJw3Rf6piYMuXDaPSaA4S2IXuKz8GHIRQ7I8P72-8md412cOhI_DnEFrvarwHA7c7_WsXF3Q2ZwmF_5s_gXSR9xm
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xqAQcCuUhQnlspV6QWOLHxvb2UhUEIiJEOYSGm7Vej0UklCAct3-fmY1jIbVC4mbZuytrP4_ntd8MwPcMs8TDxJOoOoFkjSFJz6OMCuSIW5wVviMK9-J-P3l40IMlOGu4MIjoDp_hOV-6XH4-tRWHytqadHUYRcuw2lEq8OZsrSZnwC1nXW6zE8uYDP9FUtLT7WF3QK5g4JOHyq15uHlOyFzqhGsqvNFHrsHKP39lp2quNz_2klvwuTYpxa_5N_AFlnCyDZu1eSlq4S23YeNN7cEdGPwe4185GpcoOGZWleLyqeKqCfN7Ixcy_SFGj2P7KLqluHC8H0E2rnCkXcnzF3NoxZ-7cH99Nby8kXV7BWnJippJo7iUT6jQkJyjiQqTZWGuOcahclMolVtPYVgkWgWxbywyktZE1na8jPAM92BlMp3gPogosrTtYaH5eKdPK_iRyXWm_Fyhb4qsBe3FJqe2rj3OLTCeUueDeDolhFJGKK0RasFpM-N5XnfjnbE7DEMzrkagBYcLHNNaMMuU3DdFHqqOvRZ8ax6TSHGexExwWrkx5CT6ZHse_H_lE1i7Gd710l63f_sV1gNmRLiozCGszF4qPIJP9s9sXL4cuy_0FUD13sU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=View-Wise+Versus+Cluster-Wise+Weight%3A+Which+Is+Better+for+Multi-View+Clustering%3F&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Hu%2C+Shizhe&rft.au=Lou%2C+Zhengzheng&rft.au=Ye%2C+Yangdong&rft.date=2022&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=31&rft.spage=58&rft.epage=71&rft_id=info:doi/10.1109%2FTIP.2021.3128323&rft_id=info%3Apmid%2F34807826&rft.externalDocID=9623366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon