View-Wise Versus Cluster-Wise Weight: Which Is Better for Multi-View Clustering?
Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most ex...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 31; S. 58 - 71 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods. |
|---|---|
| AbstractList | Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods. Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods.Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in a weighted manner to obtain a consistent clustering result. However, when the cluster-wise weights across views are vastly different, most existing weighted MVC methods may fail to fully utilize the complementary information, because they are based on view-wise weight learning and can not learn the fine-grained cluster-wise weights. Additionally, extra parameters are needed for most of them to control the weight distribution sparsity or smoothness, which are hard to tune without prior knowledge. To address these issues, in this paper we propose a novel and effective Cluster-weighted mUlti-view infoRmation bottlEneck (CURE) clustering algorithm, which can automatically learn the cluster-wise weights to discover the discriminative clusters across multiple views and thus can enhance the clustering performance by properly exploiting the cluster-level complementary information. To learn the cluster-wise weights, we design a new weight learning scheme by exploring the relation between the mutual information of the joint distribution of a specific cluster (containing a group of data samples) and the weight of this cluster. Finally, a novel draw-and-merge method is presented to solve the optimization problem. Experimental results on various multi-view datasets show the superiority and effectiveness of our cluster-wise weighted CURE over several state-of-the-art methods. |
| Author | Lou, Zhengzheng Ye, Yangdong Hu, Shizhe |
| Author_xml | – sequence: 1 givenname: Shizhe orcidid: 0000-0003-1301-2396 surname: Hu fullname: Hu, Shizhe email: ieshizhehu@gmail.com organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 2 givenname: Zhengzheng orcidid: 0000-0002-6902-5260 surname: Lou fullname: Lou, Zhengzheng email: zzlou@zzu.edu.cn organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 3 givenname: Yangdong orcidid: 0000-0001-7027-8313 surname: Ye fullname: Ye, Yangdong email: ieydye@zzu.edu.cn organization: School of Information Engineering, Zhengzhou University, Zhengzhou, China |
| BookMark | eNp9kD1PwzAQhi0EAgrsSCyRWFhSzh-xYxYEFR-ViugAdIxc90KNQgK2I8S_x1WBgYHJlu95fHfvgGy2XYuEHFIYUgr69GE8HTJgdMgpKznjG2SXakFzAME20x0KlSsq9A4ZhPACQEVB5TbZ4aIEVTK5S6ZPDj_ymQuYPaEPfchGTR8i-vXbDN3zMp5ls6Wzy2wcskuMqZjVnc_u-ia6fOX_OK59Pt8nW7VpAh58n3vk8frqYXSbT-5vxqOLSW45EzE3ApSSXKDhoNDI2sznfKEBNBcLUwuxsCCQ16UWTFFjUYCk1khrC5jzAvkeOVn_--a79x5DrF5dsNg0psWuDxWTaduS6oIm9PgP-tL1vk3TrSihqdIKEgVryvouBI919ebdq_GfFYVqlXaV0q5WaVffaSdF_lGsiya6ro3euOY_8WgtOkT87aNlKknJvwBbkIqc |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1109_TIP_2023_3297410 crossref_primary_10_1109_TNNLS_2023_3238041 crossref_primary_10_1016_j_ipm_2023_103511 crossref_primary_10_1016_j_patcog_2025_111844 crossref_primary_10_1016_j_inffus_2022_10_020 crossref_primary_10_1007_s44443_025_00130_2 crossref_primary_10_1109_TNNLS_2022_3224058 crossref_primary_10_1016_j_eswa_2023_122918 crossref_primary_10_1109_TIP_2023_3246802 crossref_primary_10_1109_TIP_2024_3451931 crossref_primary_10_1016_j_knosys_2024_112106 crossref_primary_10_1016_j_ipm_2022_102967 crossref_primary_10_1016_j_ipm_2024_103735 crossref_primary_10_1016_j_knosys_2024_112562 crossref_primary_10_1109_TIP_2024_3388974 crossref_primary_10_1109_TCSVT_2023_3302326 crossref_primary_10_1109_TIP_2025_3587586 crossref_primary_10_1109_TNNLS_2022_3224748 crossref_primary_10_1016_j_ipm_2023_103284 crossref_primary_10_1016_j_eswa_2022_118374 crossref_primary_10_1007_s11704_024_40004_w crossref_primary_10_1109_TIP_2023_3261746 crossref_primary_10_1109_TMM_2024_3521747 crossref_primary_10_1016_j_neunet_2024_106503 crossref_primary_10_1016_j_engappai_2023_107092 crossref_primary_10_1016_j_neucom_2024_128037 crossref_primary_10_1109_TPAMI_2024_3366349 |
| Cites_doi | 10.1023/b:visi.0000029664.99615.94 10.1109/CVPR.2008.4587756 10.1109/18.61115 10.1016/j.knosys.2019.105459 10.1609/aaai.v29i1.9598 10.1145/1646396.1646452 10.1609/aaai.v28i1.8950 10.1109/TIP.2021.3083072 10.24963/ijcai.2017/357 10.1109/TKDE.2019.2903810 10.1109/TKDE.2020.2986201 10.1109/ICME.2015.7177432 10.1007/11744023_32 10.1109/ICCV.2011.6126543 10.1002/0471200611 10.1609/aaai.v34i04.5922 10.1109/ICDM.2004.10095 10.1109/TIP.2016.2627806 10.24963/ijcai.2018/367 10.26599/BDMA.2018.9020003 10.1016/j.ins.2017.11.038 10.1609/aaai.v34i04.6180 10.1109/CVPR.2011.5995740 10.1109/TIP.2015.2479917 10.1137/1.9781611975673.5 10.1109/TIP.2015.2490539 10.1109/TNNLS.2021.3056420 10.1109/TNNLS.2019.2944851 10.1109/TIP.2005.860593 10.1109/TIP.2019.2913081 10.1109/TIP.2017.2665976 10.1016/j.cviu.2016.03.013 10.1109/TIP.2015.2463223 10.1109/CVPR.2017.431 10.1109/34.868688 10.1007/978-3-540-71703-4_78 10.1109/TIP.2017.2754939 10.1109/TNNLS.2021.3069424 10.1109/TPAMI.2013.2296528 10.1109/TIP.2009.2017823 10.1016/j.patcog.2019.107101 10.1016/j.cviu.2005.09.012 10.1016/j.neunet.2020.05.021 10.1007/s10479-011-0841-3 10.1109/TIP.2018.2877335 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2021.3128323 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 71 |
| ExternalDocumentID | 10_1109_TIP_2021_3128323 9623366 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61772475 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Plan “Advanced Rail Transit” grantid: 2018YFB1201403 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c324t-a4077634ea307ea6fabb3d900934daf44dc04e3f894271ace4061ca6cc50b35e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724479800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Thu Oct 02 07:37:40 EDT 2025 Mon Jun 30 10:09:13 EDT 2025 Sat Nov 29 03:21:15 EST 2025 Tue Nov 18 21:43:02 EST 2025 Wed Aug 27 05:01:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-a4077634ea307ea6fabb3d900934daf44dc04e3f894271ace4061ca6cc50b35e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7027-8313 0000-0002-6902-5260 0000-0003-1301-2396 |
| PMID | 34807826 |
| PQID | 2604917970 |
| PQPubID | 85429 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9623366 proquest_miscellaneous_2601481951 crossref_primary_10_1109_TIP_2021_3128323 crossref_citationtrail_10_1109_TIP_2021_3128323 proquest_journals_2604917970 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 Lou (ref28) ref11 ref10 Tishby (ref23) ref17 ref16 ref19 ref18 ref50 ref46 ref45 Cai (ref13) ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 Wolf (ref38) ref33 ref32 ref2 ref1 ref39 ref24 ref26 ref25 ref20 ref22 Wang (ref40) ref21 ref27 ref29 |
| References_xml | – start-page: 1290 volume-title: Proc. CVPR ident: ref40 article-title: Mining actionlet ensemble for action recognition with depth cameras – ident: ref37 doi: 10.1023/b:visi.0000029664.99615.94 – ident: ref42 doi: 10.1109/CVPR.2008.4587756 – ident: ref32 doi: 10.1109/18.61115 – start-page: 1 volume-title: Proc. Eur. Conf. Comput. Vis. ident: ref38 article-title: Descriptor based methods in the wild – ident: ref22 doi: 10.1016/j.knosys.2019.105459 – ident: ref14 doi: 10.1609/aaai.v29i1.9598 – ident: ref39 doi: 10.1145/1646396.1646452 – ident: ref45 doi: 10.1609/aaai.v28i1.8950 – ident: ref8 doi: 10.1109/TIP.2021.3083072 – ident: ref16 doi: 10.24963/ijcai.2017/357 – ident: ref19 doi: 10.1109/TKDE.2019.2903810 – ident: ref46 doi: 10.1109/TKDE.2020.2986201 – ident: ref2 doi: 10.1109/ICME.2015.7177432 – ident: ref31 doi: 10.1007/11744023_32 – ident: ref41 doi: 10.1109/ICCV.2011.6126543 – ident: ref29 doi: 10.1002/0471200611 – ident: ref21 doi: 10.1609/aaai.v34i04.5922 – ident: ref1 doi: 10.1109/ICDM.2004.10095 – start-page: 2598 volume-title: Proc. IJCAI ident: ref13 article-title: Multi-view K-means clustering on big data – ident: ref4 doi: 10.1109/TIP.2016.2627806 – ident: ref17 doi: 10.24963/ijcai.2018/367 – ident: ref35 doi: 10.26599/BDMA.2018.9020003 – ident: ref11 doi: 10.1016/j.ins.2017.11.038 – ident: ref47 doi: 10.1609/aaai.v34i04.6180 – ident: ref9 doi: 10.1109/CVPR.2011.5995740 – start-page: 1508 volume-title: Proc. IJCAI ident: ref28 article-title: The multi-feature information bottleneck with application to unsupervised image categorization – start-page: 368 volume-title: Proc. Annu. Allerton Conf. Commun., Control Comput. ident: ref23 article-title: The information bottleneck method – ident: ref3 doi: 10.1109/TIP.2015.2479917 – ident: ref33 doi: 10.1137/1.9781611975673.5 – ident: ref49 doi: 10.1109/TIP.2015.2490539 – ident: ref43 doi: 10.1109/TNNLS.2021.3056420 – ident: ref6 doi: 10.1109/TNNLS.2019.2944851 – ident: ref25 doi: 10.1109/TIP.2005.860593 – ident: ref18 doi: 10.1109/TIP.2019.2913081 – ident: ref15 doi: 10.1109/TIP.2017.2665976 – ident: ref30 doi: 10.1016/j.cviu.2016.03.013 – ident: ref12 doi: 10.1109/TIP.2015.2463223 – ident: ref34 doi: 10.1109/CVPR.2017.431 – ident: ref44 doi: 10.1109/34.868688 – ident: ref26 doi: 10.1007/978-3-540-71703-4_78 – ident: ref10 doi: 10.1109/TIP.2017.2754939 – ident: ref7 doi: 10.1109/TNNLS.2021.3069424 – ident: ref24 doi: 10.1109/TPAMI.2013.2296528 – ident: ref27 doi: 10.1109/TIP.2009.2017823 – ident: ref20 doi: 10.1016/j.patcog.2019.107101 – ident: ref36 doi: 10.1016/j.cviu.2005.09.012 – ident: ref50 doi: 10.1016/j.neunet.2020.05.021 – ident: ref48 doi: 10.1007/s10479-011-0841-3 – ident: ref5 doi: 10.1109/TIP.2018.2877335 |
| SSID | ssj0014516 |
| Score | 2.5320652 |
| Snippet | Weighted multi-view clustering (MVC) aims to combine the complementary information of multi-view data (such as image data with different types of features) in... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 58 |
| SubjectTerms | Algorithms Clustering Clustering algorithms Image color analysis information bottleneck Learning Linear programming Multi-view clustering Mutual information Optimization Random variables Shape Smoothness weight learning |
| Title | View-Wise Versus Cluster-Wise Weight: Which Is Better for Multi-View Clustering? |
| URI | https://ieeexplore.ieee.org/document/9623366 https://www.proquest.com/docview/2604917970 https://www.proquest.com/docview/2601481951 |
| Volume | 31 |
| WOSCitedRecordID | wos000724479800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7a0If1YVmblmVriwp9KUyNHSuytZfRlZUWSshDuuTNyPKZBkIy4nj793enOCawUtibsSVh9Ol8v_zdAVxlmCUBJoFENehL1hiS9DxKXSBH3OKsCD1R-CkeDpPp1Iz24EvDhUFE__MZ3vClz-XnS1dxqKxnSFdHWu_DfhzrDVeryRhww1mf2RzEMiazf5uSDExv_DgiR7Afkn_KjXm4dU7ETOqEKyrsaCPfXuWfb7JXNPft_3vFD_C-NijF7eYEHMEeLo6hXRuXohbd8hgOdyoPdmD0c4Z_5GRWouCIWVWKu3nFNRM29yY-YPpVTF5m7kU8luK7Z_0IsnCFp-xKnr-dQyt-O4Hn-x_juwdZN1eQjmyotbSKC_lECi1JOVpd2CyLcsMRDpXbQqncBQqjIjGqH4fWIePorHZuEGSEZnQKrcVygR9BaO1o26PC8M-dIa0QapubTIW5wtAWWRd6201OXV15nBtgzFPvgQQmJYRSRiitEerCdTPj16bqxhtjOwxDM65GoAtnWxzTWizLlJw3Rf6piYMuXDaPSaA4S2IXuKz8GHIRQ7I8P72-8md412cOhI_DnEFrvarwHA7c7_WsXF3Q2ZwmF_5s_gXSR9xm |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xqAQcCuUhQnlspV6QWOLHxvb2UhUEIiJEOYSGm7Vej0UklCAct3-fmY1jIbVC4mbZuytrP4_ntd8MwPcMs8TDxJOoOoFkjSFJz6OMCuSIW5wVviMK9-J-P3l40IMlOGu4MIjoDp_hOV-6XH4-tRWHytqadHUYRcuw2lEq8OZsrSZnwC1nXW6zE8uYDP9FUtLT7WF3QK5g4JOHyq15uHlOyFzqhGsqvNFHrsHKP39lp2quNz_2klvwuTYpxa_5N_AFlnCyDZu1eSlq4S23YeNN7cEdGPwe4185GpcoOGZWleLyqeKqCfN7Ixcy_SFGj2P7KLqluHC8H0E2rnCkXcnzF3NoxZ-7cH99Nby8kXV7BWnJippJo7iUT6jQkJyjiQqTZWGuOcahclMolVtPYVgkWgWxbywyktZE1na8jPAM92BlMp3gPogosrTtYaH5eKdPK_iRyXWm_Fyhb4qsBe3FJqe2rj3OLTCeUueDeDolhFJGKK0RasFpM-N5XnfjnbE7DEMzrkagBYcLHNNaMMuU3DdFHqqOvRZ8ax6TSHGexExwWrkx5CT6ZHse_H_lE1i7Gd710l63f_sV1gNmRLiozCGszF4qPIJP9s9sXL4cuy_0FUD13sU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=View-Wise+Versus+Cluster-Wise+Weight%3A+Which+Is+Better+for+Multi-View+Clustering%3F&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Hu%2C+Shizhe&rft.au=Lou%2C+Zhengzheng&rft.au=Ye%2C+Yangdong&rft.date=2022&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=31&rft.spage=58&rft.epage=71&rft_id=info:doi/10.1109%2FTIP.2021.3128323&rft_id=info%3Apmid%2F34807826&rft.externalDocID=9623366 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |