Reduced-order modeling via convolutional autoencoder for emulating combustion of hydrogen/methane fuel blends

Numerical simulations are essential in comprehending the processes of flow and combustion in aerospace and power-generation systems. Yet, substantial computational demands render these simulations prohibitively expensive for design and optimization, owing to the large amount of design parameters to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame Jg. 274; S. 113981
Hauptverfasser: Ding, Siyu, Ni, Chenxu, Chu, Xu, Lu, Qingzhou, Wang, Xingjian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.04.2025
Schlagworte:
ISSN:0010-2180
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Numerical simulations are essential in comprehending the processes of flow and combustion in aerospace and power-generation systems. Yet, substantial computational demands render these simulations prohibitively expensive for design and optimization, owing to the large amount of design parameters to be surveyed in a wide design space. This study presents parametric reduced order models (ROMs) that leverage deep neural network-based dimension reduction through a convolutional autoencoder (AE) to emulate spatial distributions of physical flowfields in combustion problems. The proposed AE-based ROMs integrate multiple advancements, including design of experiment, nonlinear dimension reduction, and regression methods like kriging and deep neural networks (DNN) to enable parametric predictability. For comparison, proper orthogonal decomposition (POD)-based ROMs are also developed. Two distinct test scenarios are outlined: steam-diluted methane/hydrogen-blending oxy-combustion from a triple-coaxial nozzle and hydrogen-enriched combustion in a practical aero-derivative combustor. Results suggest that ROMs with kriging show superior performance against those with DNN. In both test scenarios, AE-based ROMs exhibit better prediction accuracy in emulating spatial distributions for physical variables of interest than POD-based ROMs. This is mainly due to the effective capture of nonlinear features by AE through intricate network structure. Such nonlinearity effect is examined by introducing interpretable “AE modes”, which demonstrate multiscale characteristics, distinct from POD modes, enabling a more detailed representation of local flow features. Both AE- and POD-based ROMs achieve a dramatic acceleration in prediction process, 8–9 orders of magnitude faster than traditional combustion simulations. While POD-based ROMs slightly underperform concerning prediction accuracy, they remain competitive in terms of training and prediction efficiency with a limited number of reduced bases. The novelty of this research is the proposal of innovative parametric reduced order models (ROMs) that leverage deep neural network-based dimension reduction through a convolutional autoencoder (AE), for emulation of spatial distributions of physical variables in hydrogen-blended combustion problems. The proposed AE-based ROMs integrate design of experiment, nonlinear dimension reduction, and regression methods such as kriging and deep neural networks (DNN). Notably, they excel in capturing nonlinear features, through the introduction of interpretable “AE modes”, as opposed to intrinsically linear characteristics of POD modes. It is significant because the constructed data-driven ROMs are expected to serve as reliable surrogates of numerical simulations, substantially reducing processing times while enhancing efficiency. These ROMs achieve online prediction time 8–9 orders of magnitude shorter than conventional combustion simulations, making them applicable across diverse engineering systems for design and optimization.
AbstractList Numerical simulations are essential in comprehending the processes of flow and combustion in aerospace and power-generation systems. Yet, substantial computational demands render these simulations prohibitively expensive for design and optimization, owing to the large amount of design parameters to be surveyed in a wide design space. This study presents parametric reduced order models (ROMs) that leverage deep neural network-based dimension reduction through a convolutional autoencoder (AE) to emulate spatial distributions of physical flowfields in combustion problems. The proposed AE-based ROMs integrate multiple advancements, including design of experiment, nonlinear dimension reduction, and regression methods like kriging and deep neural networks (DNN) to enable parametric predictability. For comparison, proper orthogonal decomposition (POD)-based ROMs are also developed. Two distinct test scenarios are outlined: steam-diluted methane/hydrogen-blending oxy-combustion from a triple-coaxial nozzle and hydrogen-enriched combustion in a practical aero-derivative combustor. Results suggest that ROMs with kriging show superior performance against those with DNN. In both test scenarios, AE-based ROMs exhibit better prediction accuracy in emulating spatial distributions for physical variables of interest than POD-based ROMs. This is mainly due to the effective capture of nonlinear features by AE through intricate network structure. Such nonlinearity effect is examined by introducing interpretable “AE modes”, which demonstrate multiscale characteristics, distinct from POD modes, enabling a more detailed representation of local flow features. Both AE- and POD-based ROMs achieve a dramatic acceleration in prediction process, 8–9 orders of magnitude faster than traditional combustion simulations. While POD-based ROMs slightly underperform concerning prediction accuracy, they remain competitive in terms of training and prediction efficiency with a limited number of reduced bases. The novelty of this research is the proposal of innovative parametric reduced order models (ROMs) that leverage deep neural network-based dimension reduction through a convolutional autoencoder (AE), for emulation of spatial distributions of physical variables in hydrogen-blended combustion problems. The proposed AE-based ROMs integrate design of experiment, nonlinear dimension reduction, and regression methods such as kriging and deep neural networks (DNN). Notably, they excel in capturing nonlinear features, through the introduction of interpretable “AE modes”, as opposed to intrinsically linear characteristics of POD modes. It is significant because the constructed data-driven ROMs are expected to serve as reliable surrogates of numerical simulations, substantially reducing processing times while enhancing efficiency. These ROMs achieve online prediction time 8–9 orders of magnitude shorter than conventional combustion simulations, making them applicable across diverse engineering systems for design and optimization.
ArticleNumber 113981
Author Ni, Chenxu
Ding, Siyu
Lu, Qingzhou
Wang, Xingjian
Chu, Xu
Author_xml – sequence: 1
  givenname: Siyu
  orcidid: 0000-0002-5143-8059
  surname: Ding
  fullname: Ding, Siyu
– sequence: 2
  givenname: Chenxu
  surname: Ni
  fullname: Ni, Chenxu
– sequence: 3
  givenname: Xu
  surname: Chu
  fullname: Chu, Xu
– sequence: 4
  givenname: Qingzhou
  orcidid: 0009-0009-9022-1846
  surname: Lu
  fullname: Lu, Qingzhou
– sequence: 5
  givenname: Xingjian
  surname: Wang
  fullname: Wang, Xingjian
  email: xingjianwang@tsinghua.edu.cn
BookMark eNqNkMtOwzAQRb0oEuXxDxb7lHGch8sKxFuqhIRgbTn2uLhybOQ4lfh7EpUFYsVqNveemTknZBFiQEIuGKwYsOZyt9Kx78YhW696XJVQ1ivG-FqwBVkCMChKJuCYnAzDDgDaivMl6V_RjBpNEZPBRPto0LuwpXunqI5hH_2YXQzKUzXmiEHHOWZjotiPXuU5-7N2itFo6ceXSXGL4bLH_KECUjuip53HYIYzcmSVH_D8Z56S94f7t9unYvPy-Hx7syk0L6tcKKh4CZwrELZuG6UtmgbXChoFjNUtF2J6gJkWWlHXomvWnUVeiVpDp8qm5Kfk-sDVKQ5DQiu1y2q-MCflvGQgZ2VyJ38rk7MyeVA2Ia7-ID6T61X6-l_57lDG6cm9wyQH7SZ5aFxCnaWJ7j-YbySiljc
CitedBy_id crossref_primary_10_1016_j_ijhydene_2025_151405
crossref_primary_10_1016_j_proci_2025_105796
crossref_primary_10_3390_pr13041093
crossref_primary_10_1016_j_applthermaleng_2025_127969
crossref_primary_10_1016_j_jcp_2025_114300
Cites_doi 10.1115/1.4049346
10.1016/j.combustflame.2022.112286
10.1006/jcph.2002.7146
10.1016/j.proci.2020.06.303
10.2514/1.J059877
10.1016/j.combustflame.2023.112743
10.1615/AtomizSpr.2020034830
10.1016/j.cma.2022.114764
10.1016/j.paerosci.2017.11.003
10.1016/j.combustflame.2024.113366
10.1016/j.proci.2020.06.045
10.2514/1.J060574
10.1038/s41467-023-42213-6
10.1016/j.combustflame.2016.03.027
10.1016/j.cma.2020.113379
10.2514/1.J057803
10.1016/j.cja.2024.08.012
10.1016/j.compfluid.2018.07.021
10.1016/j.pecs.2023.101073
10.1038/s42254-021-00314-5
10.1146/annurev.fl.25.010193.002543
10.1016/j.jcp.2019.108973
10.1016/j.cma.2018.07.017
10.1109/TNNLS.2021.3084827
10.1007/s10915-021-01462-7
10.1016/0169-7439(87)80084-9
10.1016/j.combustflame.2023.112900
10.1063/5.0020721
10.1016/j.paerosci.2005.02.001
10.1080/01621459.2017.1409123
10.1126/science.1127647
10.1063/5.0012906
10.1016/j.combustflame.2022.112600
10.1016/j.proci.2022.07.040
10.1007/s13748-019-00203-0
10.1038/s42256-021-00345-8
10.1137/130932715
10.1063/5.0217845
10.1146/annurev-fluid-010719-060214
10.1016/j.jcp.2019.01.031
10.1016/j.apenergy.2019.114159
ContentType Journal Article
Copyright 2025 The Combustion Institute
Copyright_xml – notice: 2025 The Combustion Institute
DBID AAYXX
CITATION
DOI 10.1016/j.combustflame.2025.113981
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_combustflame_2025_113981
S0010218025000197
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABDEX
ABDMP
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c324t-a0432033a08f576acfed6e9a06a011573880001d7078558b69bfe3485c0ba2623
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001416272900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-2180
IngestDate Tue Nov 18 21:02:17 EST 2025
Sat Nov 29 08:09:40 EST 2025
Sat Mar 22 15:53:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Proper orthogonal decomposition
Nonlinear feature
Convolutional autoencoder
Reduced-order model (ROM)
Kriging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-a0432033a08f576acfed6e9a06a011573880001d7078558b69bfe3485c0ba2623
ORCID 0000-0002-5143-8059
0009-0009-9022-1846
ParticipantIDs crossref_citationtrail_10_1016_j_combustflame_2025_113981
crossref_primary_10_1016_j_combustflame_2025_113981
elsevier_sciencedirect_doi_10_1016_j_combustflame_2025_113981
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Combustion and flame
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jin, Kim (bib0002) 2024; 262
DeMers, Cottrell (bib0024) 1992; 5
Wold, Esbensen, Geladi (bib0013) 1987; 2
Guo, Hesthaven (bib0015) 2018; 341
Swischuk, Mainini, Peherstorfer, Willcox (bib0016) 2019; 179
Milano, Koumoutsakos (bib0025) 2002; 182
Fukami, Taira (bib0028) 2023; 14
Fresca, Dede, Manzoni (bib0037) 2021; 87
Hinton, Salakhutdinov (bib0022) 2006; 313
Fukami, Nakamura, Fukagata (bib0038) 2020; 32
Ebi, Clemens (bib0003) 2016; 168
Lee, Carlberg (bib0033) 2020; 404
Gruber, Gunzburger, Ju, Wang (bib0029) 2022; 393
Dhillon, Verma (bib0035) 2019; 9
M. Frenklach, C.T. Bowman, G.P. Smith, W.C. Gardiner, World Wide Web location.
Noble, Wu, Emerson, Sheppard, Lieuwen, Angello (bib0004) 2021; 143
Milan, Torelli, Lusch, Magnotti (bib0031) 2020; 30
Mak, Sung, Wang, Yeh, Chang, Joseph, Yang, Wu (bib0039) 2018; 113
Chang, Zhang, Wang, Yeh, Mak, Sung, Jeff Wu, Yang (bib0017) 2019; 57
Version 3.0, 1999.
Han, Hossain, Wang, Li, Xu (bib0032) 2020; 259
Wei, Zhang, Wang, Huang (bib0007) 2023; 249
Wang, Hesthaven, Ray (bib0011) 2019; 384
Mitra (bib0041) 2021; 3
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bib0042) 2021; 3
Ding, Wang, Lu, Wang (bib0027) 2024; 37
Yondo, Andrés, Valero (bib0043) 2018; 96
Brunton, Noack, Koumoutsakos (bib0010) 2020; 52
Berkooz, Holmes, Lumley (bib0012) 1993; 25
Chang, Wang, Zhang, Li, Mak, Wu, Yang (bib0020) 2021; 59
Zhang, Zhao (bib0030) 2021; 59
Zhang, Lu, Yang (bib0005) 2023; 255
Agostini (bib0023) 2020; 32
Xia, Han, Wei, Zhang, Wang, Huang, Hasse (bib0006) 2023; 39
Wang, Chang, Li, Yang, Su (bib0018) 2021; 38
Queipo, Haftka, Shyy, Goel, Vaidyanathan, Kevin Tucker (bib0008) 2005; 41
Xu, Duraisamy (bib0026) 2020; 372
Aversano, Ferrarotti, Parente (bib0019) 2021; 38
Su-ungkavatin, Tiruta-Barna, Hamelin (bib0001) 2023; 96
Li, Liu, Yang, Peng, Zhou (bib0036) 2022; 33
Ni, Ding, Li, Chu, Ren, Wang (bib0021) 2024; 36
Benner, Gugercin, Willcox (bib0009) 2015; 57
Dai, Zhou, Zhang, Cheng, Liu, Zhao, Wang, Gao (bib0034) 2023; 252
Perry, Henry de Frahan, Yellapantula (bib0014) 2022; 244
Guo (10.1016/j.combustflame.2025.113981_bib0015) 2018; 341
Agostini (10.1016/j.combustflame.2025.113981_bib0023) 2020; 32
DeMers (10.1016/j.combustflame.2025.113981_bib0024) 1992; 5
Jin (10.1016/j.combustflame.2025.113981_bib0002) 2024; 262
Brunton (10.1016/j.combustflame.2025.113981_bib0010) 2020; 52
Ni (10.1016/j.combustflame.2025.113981_bib0021) 2024; 36
Berkooz (10.1016/j.combustflame.2025.113981_bib0012) 1993; 25
Wang (10.1016/j.combustflame.2025.113981_bib0018) 2021; 38
Zhang (10.1016/j.combustflame.2025.113981_bib0030) 2021; 59
Noble (10.1016/j.combustflame.2025.113981_bib0004) 2021; 143
Wei (10.1016/j.combustflame.2025.113981_bib0007) 2023; 249
Benner (10.1016/j.combustflame.2025.113981_bib0009) 2015; 57
Li (10.1016/j.combustflame.2025.113981_bib0036) 2022; 33
10.1016/j.combustflame.2025.113981_bib0040
Milano (10.1016/j.combustflame.2025.113981_bib0025) 2002; 182
Fukami (10.1016/j.combustflame.2025.113981_bib0028) 2023; 14
Gruber (10.1016/j.combustflame.2025.113981_bib0029) 2022; 393
Fukami (10.1016/j.combustflame.2025.113981_bib0038) 2020; 32
Mitra (10.1016/j.combustflame.2025.113981_bib0041) 2021; 3
Chang (10.1016/j.combustflame.2025.113981_bib0017) 2019; 57
Perry (10.1016/j.combustflame.2025.113981_bib0014) 2022; 244
Chang (10.1016/j.combustflame.2025.113981_bib0020) 2021; 59
Swischuk (10.1016/j.combustflame.2025.113981_bib0016) 2019; 179
Dai (10.1016/j.combustflame.2025.113981_bib0034) 2023; 252
Queipo (10.1016/j.combustflame.2025.113981_bib0008) 2005; 41
Ebi (10.1016/j.combustflame.2025.113981_bib0003) 2016; 168
Lee (10.1016/j.combustflame.2025.113981_bib0033) 2020; 404
Ding (10.1016/j.combustflame.2025.113981_bib0027) 2024; 37
Xia (10.1016/j.combustflame.2025.113981_bib0006) 2023; 39
Hinton (10.1016/j.combustflame.2025.113981_bib0022) 2006; 313
Fresca (10.1016/j.combustflame.2025.113981_bib0037) 2021; 87
Yondo (10.1016/j.combustflame.2025.113981_bib0043) 2018; 96
Wold (10.1016/j.combustflame.2025.113981_bib0013) 1987; 2
Mak (10.1016/j.combustflame.2025.113981_bib0039) 2018; 113
Zhang (10.1016/j.combustflame.2025.113981_bib0005) 2023; 255
Xu (10.1016/j.combustflame.2025.113981_bib0026) 2020; 372
Milan (10.1016/j.combustflame.2025.113981_bib0031) 2020; 30
Han (10.1016/j.combustflame.2025.113981_bib0032) 2020; 259
Aversano (10.1016/j.combustflame.2025.113981_bib0019) 2021; 38
Karniadakis (10.1016/j.combustflame.2025.113981_bib0042) 2021; 3
Dhillon (10.1016/j.combustflame.2025.113981_bib0035) 2019; 9
Wang (10.1016/j.combustflame.2025.113981_bib0011) 2019; 384
Su-ungkavatin (10.1016/j.combustflame.2025.113981_bib0001) 2023; 96
References_xml – volume: 38
  start-page: 5373
  year: 2021
  end-page: 5381
  ident: bib0019
  article-title: Digital twin of a combustion furnace operating in flameless conditions: reduced-order model development from CFD simulations
  publication-title: Proc. Combust. Inst.
– volume: 143
  year: 2021
  ident: bib0004
  article-title: Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future
  publication-title: J. Eng. Gas Turbines Power
– volume: 30
  start-page: 401
  year: 2020
  end-page: 429
  ident: bib0031
  article-title: Data-driven model reduction of multiphase flow in a single-hole automotive injector
  publication-title: Atomization Sprays
– reference: M. Frenklach, C.T. Bowman, G.P. Smith, W.C. Gardiner, World Wide Web location.
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: bib0042
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
– volume: 39
  start-page: 4541
  year: 2023
  end-page: 4551
  ident: bib0006
  article-title: Numerical investigation of boundary layer flashback of CH4/H2/air swirl flames under different thermal boundary conditions in a bluff-body swirl burner
  publication-title: Proc. Combust. Inst.
– volume: 59
  start-page: 3291
  year: 2021
  end-page: 3303
  ident: bib0020
  article-title: Reduced-order modeling for complex flow emulation by common kernel-smoothed proper orthogonal decomposition
  publication-title: AIAA J.
– volume: 255
  year: 2023
  ident: bib0005
  article-title: Modeling the boundary-layer flashback of premixed hydrogen-enriched swirling flames at high pressures
  publication-title: Combust. Flame
– volume: 57
  start-page: 483
  year: 2015
  end-page: 531
  ident: bib0009
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
– volume: 14
  start-page: 6480
  year: 2023
  ident: bib0028
  article-title: Grasping extreme aerodynamics on a low-dimensional manifold
  publication-title: Nat. Commun.
– volume: 96
  start-page: 23
  year: 2018
  end-page: 61
  ident: bib0043
  article-title: A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses
  publication-title: Prog. Aerosp. Sci.
– volume: 244
  year: 2022
  ident: bib0014
  article-title: Co-optimized machine-learned manifold models for large eddy simulation of turbulent combustion
  publication-title: Combust. Flame
– volume: 59
  start-page: 868
  year: 2021
  end-page: 879
  ident: bib0030
  article-title: Machine-learning-based surrogate modeling of aerodynamic flow around distributed structures
  publication-title: AIAA J.
– volume: 341
  start-page: 807
  year: 2018
  end-page: 826
  ident: bib0015
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 182
  start-page: 1
  year: 2002
  end-page: 26
  ident: bib0025
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J. Comput. Phys.
– volume: 259
  year: 2020
  ident: bib0032
  article-title: Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network
  publication-title: Appl. Energy
– volume: 384
  start-page: 289
  year: 2019
  end-page: 307
  ident: bib0011
  article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
  publication-title: J. Comput. Phys.
– volume: 179
  start-page: 704
  year: 2019
  end-page: 717
  ident: bib0016
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput. Fluids
– volume: 393
  year: 2022
  ident: bib0029
  article-title: A comparison of neural network architectures for data-driven reduced-order modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 41
  start-page: 1
  year: 2005
  end-page: 28
  ident: bib0008
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog. Aerosp. Sci.
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: bib0013
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 249
  year: 2023
  ident: bib0007
  article-title: Investigation on lean blow-off characteristics and stabilization mechanism of premixed hydrogen enhanced ammonia/air swirl flames in a gas turbine combustor
  publication-title: Combust. Flame
– volume: 404
  year: 2020
  ident: bib0033
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
– volume: 36
  year: 2024
  ident: bib0021
  article-title: Projection-based reduced order modeling of multi-species mixing and combustion
  publication-title: Phys. Fluids
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: bib0012
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 113
  start-page: 1443
  year: 2018
  end-page: 1456
  ident: bib0039
  article-title: An efficient surrogate model for emulation and physics extraction of large eddy simulations
  publication-title: J. Am. Stat. Assoc.
– volume: 32
  year: 2020
  ident: bib0038
  article-title: Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data
  publication-title: Phys. Fluids
– volume: 96
  year: 2023
  ident: bib0001
  article-title: Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems
  publication-title: Prog. Energy Combust. Sci.
– volume: 38
  start-page: 6393
  year: 2021
  end-page: 6401
  ident: bib0018
  article-title: Surrogate-based modeling for emulation of supercritical injector flow and combustion
  publication-title: Proc. Combust. Inst.
– volume: 87
  start-page: 1
  year: 2021
  end-page: 36
  ident: bib0037
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
  publication-title: J. Sci. Comput.
– volume: 168
  start-page: 39
  year: 2016
  end-page: 52
  ident: bib0003
  article-title: Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames
  publication-title: Combust. Flame
– volume: 32
  year: 2020
  ident: bib0023
  article-title: Exploration and prediction of fluid dynamical systems using auto-encoder technology
  publication-title: Phys. Fluids
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: bib0010
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 5
  year: 1992
  ident: bib0024
  article-title: Non-linear dimensionality reduction
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: , Version 3.0, 1999.
– volume: 372
  year: 2020
  ident: bib0026
  article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 9
  start-page: 85
  year: 2019
  end-page: 112
  ident: bib0035
  article-title: Convolutional neural network: a review of models, methodologies and applications to object detection
  publication-title: Prog. Artif. Intell.
– volume: 37
  start-page: 139
  year: 2024
  end-page: 155
  ident: bib0027
  article-title: Data-driven surrogate modeling and optimization of supercritical jet into supersonic crossflow
  publication-title: Chin. J. Aeronaut.
– volume: 33
  start-page: 6999
  year: 2022
  end-page: 7019
  ident: bib0036
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 57
  start-page: 5269
  year: 2019
  end-page: 5280
  ident: bib0017
  article-title: Kernel-smoothed proper orthogonal decomposition–based emulation for spatiotemporally evolving flow dynamics prediction
  publication-title: AIAA J.
– volume: 3
  start-page: 378
  year: 2021
  end-page: 386
  ident: bib0041
  article-title: Fitting elephants in modern machine learning by statistically consistent interpolation
  publication-title: Nat. Mach. Intell.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0022
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 262
  year: 2024
  ident: bib0002
  article-title: Hybrid rich- and lean-premixed ammonia-hydrogen combustion for mitigation of NOx emissions and thermoacoustic instabilities
  publication-title: Combust. Flame
– volume: 252
  year: 2023
  ident: bib0034
  article-title: 3-D soot temperature and volume fraction reconstruction of afterburner flame via deep learning algorithms
  publication-title: Combust. Flame
– volume: 143
  year: 2021
  ident: 10.1016/j.combustflame.2025.113981_bib0004
  article-title: Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4049346
– volume: 244
  year: 2022
  ident: 10.1016/j.combustflame.2025.113981_bib0014
  article-title: Co-optimized machine-learned manifold models for large eddy simulation of turbulent combustion
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2022.112286
– volume: 182
  start-page: 1
  year: 2002
  ident: 10.1016/j.combustflame.2025.113981_bib0025
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7146
– volume: 38
  start-page: 6393
  year: 2021
  ident: 10.1016/j.combustflame.2025.113981_bib0018
  article-title: Surrogate-based modeling for emulation of supercritical injector flow and combustion
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.06.303
– volume: 59
  start-page: 868
  year: 2021
  ident: 10.1016/j.combustflame.2025.113981_bib0030
  article-title: Machine-learning-based surrogate modeling of aerodynamic flow around distributed structures
  publication-title: AIAA J.
  doi: 10.2514/1.J059877
– volume: 252
  year: 2023
  ident: 10.1016/j.combustflame.2025.113981_bib0034
  article-title: 3-D soot temperature and volume fraction reconstruction of afterburner flame via deep learning algorithms
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2023.112743
– volume: 30
  start-page: 401
  year: 2020
  ident: 10.1016/j.combustflame.2025.113981_bib0031
  article-title: Data-driven model reduction of multiphase flow in a single-hole automotive injector
  publication-title: Atomization Sprays
  doi: 10.1615/AtomizSpr.2020034830
– volume: 393
  year: 2022
  ident: 10.1016/j.combustflame.2025.113981_bib0029
  article-title: A comparison of neural network architectures for data-driven reduced-order modeling
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114764
– volume: 96
  start-page: 23
  year: 2018
  ident: 10.1016/j.combustflame.2025.113981_bib0043
  article-title: A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2017.11.003
– volume: 262
  year: 2024
  ident: 10.1016/j.combustflame.2025.113981_bib0002
  article-title: Hybrid rich- and lean-premixed ammonia-hydrogen combustion for mitigation of NOx emissions and thermoacoustic instabilities
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2024.113366
– volume: 38
  start-page: 5373
  year: 2021
  ident: 10.1016/j.combustflame.2025.113981_bib0019
  article-title: Digital twin of a combustion furnace operating in flameless conditions: reduced-order model development from CFD simulations
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.06.045
– volume: 59
  start-page: 3291
  year: 2021
  ident: 10.1016/j.combustflame.2025.113981_bib0020
  article-title: Reduced-order modeling for complex flow emulation by common kernel-smoothed proper orthogonal decomposition
  publication-title: AIAA J.
  doi: 10.2514/1.J060574
– volume: 14
  start-page: 6480
  year: 2023
  ident: 10.1016/j.combustflame.2025.113981_bib0028
  article-title: Grasping extreme aerodynamics on a low-dimensional manifold
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42213-6
– volume: 168
  start-page: 39
  year: 2016
  ident: 10.1016/j.combustflame.2025.113981_bib0003
  article-title: Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2016.03.027
– volume: 372
  year: 2020
  ident: 10.1016/j.combustflame.2025.113981_bib0026
  article-title: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113379
– ident: 10.1016/j.combustflame.2025.113981_bib0040
– volume: 57
  start-page: 5269
  year: 2019
  ident: 10.1016/j.combustflame.2025.113981_bib0017
  article-title: Kernel-smoothed proper orthogonal decomposition–based emulation for spatiotemporally evolving flow dynamics prediction
  publication-title: AIAA J.
  doi: 10.2514/1.J057803
– volume: 37
  start-page: 139
  year: 2024
  ident: 10.1016/j.combustflame.2025.113981_bib0027
  article-title: Data-driven surrogate modeling and optimization of supercritical jet into supersonic crossflow
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2024.08.012
– volume: 179
  start-page: 704
  year: 2019
  ident: 10.1016/j.combustflame.2025.113981_bib0016
  article-title: Projection-based model reduction: formulations for physics-based machine learning
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.07.021
– volume: 96
  year: 2023
  ident: 10.1016/j.combustflame.2025.113981_bib0001
  article-title: Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2023.101073
– volume: 3
  start-page: 422
  year: 2021
  ident: 10.1016/j.combustflame.2025.113981_bib0042
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 25
  start-page: 539
  year: 1993
  ident: 10.1016/j.combustflame.2025.113981_bib0012
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 404
  year: 2020
  ident: 10.1016/j.combustflame.2025.113981_bib0033
  article-title: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108973
– volume: 5
  year: 1992
  ident: 10.1016/j.combustflame.2025.113981_bib0024
  article-title: Non-linear dimensionality reduction
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 341
  start-page: 807
  year: 2018
  ident: 10.1016/j.combustflame.2025.113981_bib0015
  article-title: Reduced order modeling for nonlinear structural analysis using Gaussian process regression
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.07.017
– volume: 33
  start-page: 6999
  year: 2022
  ident: 10.1016/j.combustflame.2025.113981_bib0036
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– volume: 87
  start-page: 1
  year: 2021
  ident: 10.1016/j.combustflame.2025.113981_bib0037
  article-title: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01462-7
– volume: 2
  start-page: 37
  year: 1987
  ident: 10.1016/j.combustflame.2025.113981_bib0013
  article-title: Principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(87)80084-9
– volume: 255
  year: 2023
  ident: 10.1016/j.combustflame.2025.113981_bib0005
  article-title: Modeling the boundary-layer flashback of premixed hydrogen-enriched swirling flames at high pressures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2023.112900
– volume: 32
  year: 2020
  ident: 10.1016/j.combustflame.2025.113981_bib0038
  article-title: Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data
  publication-title: Phys. Fluids
  doi: 10.1063/5.0020721
– volume: 41
  start-page: 1
  year: 2005
  ident: 10.1016/j.combustflame.2025.113981_bib0008
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2005.02.001
– volume: 113
  start-page: 1443
  year: 2018
  ident: 10.1016/j.combustflame.2025.113981_bib0039
  article-title: An efficient surrogate model for emulation and physics extraction of large eddy simulations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1409123
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.combustflame.2025.113981_bib0022
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 32
  year: 2020
  ident: 10.1016/j.combustflame.2025.113981_bib0023
  article-title: Exploration and prediction of fluid dynamical systems using auto-encoder technology
  publication-title: Phys. Fluids
  doi: 10.1063/5.0012906
– volume: 249
  year: 2023
  ident: 10.1016/j.combustflame.2025.113981_bib0007
  article-title: Investigation on lean blow-off characteristics and stabilization mechanism of premixed hydrogen enhanced ammonia/air swirl flames in a gas turbine combustor
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2022.112600
– volume: 39
  start-page: 4541
  year: 2023
  ident: 10.1016/j.combustflame.2025.113981_bib0006
  article-title: Numerical investigation of boundary layer flashback of CH4/H2/air swirl flames under different thermal boundary conditions in a bluff-body swirl burner
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2022.07.040
– volume: 9
  start-page: 85
  year: 2019
  ident: 10.1016/j.combustflame.2025.113981_bib0035
  article-title: Convolutional neural network: a review of models, methodologies and applications to object detection
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-019-00203-0
– volume: 3
  start-page: 378
  year: 2021
  ident: 10.1016/j.combustflame.2025.113981_bib0041
  article-title: Fitting elephants in modern machine learning by statistically consistent interpolation
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00345-8
– volume: 57
  start-page: 483
  year: 2015
  ident: 10.1016/j.combustflame.2025.113981_bib0009
  article-title: A survey of projection-based model reduction methods for parametric dynamical systems
  publication-title: SIAM Rev.
  doi: 10.1137/130932715
– volume: 36
  year: 2024
  ident: 10.1016/j.combustflame.2025.113981_bib0021
  article-title: Projection-based reduced order modeling of multi-species mixing and combustion
  publication-title: Phys. Fluids
  doi: 10.1063/5.0217845
– volume: 52
  start-page: 477
  year: 2020
  ident: 10.1016/j.combustflame.2025.113981_bib0010
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 384
  start-page: 289
  year: 2019
  ident: 10.1016/j.combustflame.2025.113981_bib0011
  article-title: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.01.031
– volume: 259
  year: 2020
  ident: 10.1016/j.combustflame.2025.113981_bib0032
  article-title: Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114159
SSID ssj0007433
Score 2.498305
Snippet Numerical simulations are essential in comprehending the processes of flow and combustion in aerospace and power-generation systems. Yet, substantial...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113981
SubjectTerms Convolutional autoencoder
Kriging
Nonlinear feature
Proper orthogonal decomposition
Reduced-order model (ROM)
Title Reduced-order modeling via convolutional autoencoder for emulating combustion of hydrogen/methane fuel blends
URI https://dx.doi.org/10.1016/j.combustflame.2025.113981
Volume 274
WOSCitedRecordID wos001416272900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0010-2180
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007433
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKhgQ8IBggBgP5gTeUkTZ1Ez_wMHWbBpomYAP1LbIde-vUJVNpqo6_njv_SNMBUhHiJWpPvbr1fXXPzt33EfJGpbKrTCaiWCgW9SVDDsg0iSRjWqNWErMd3t-O05OTbDTinzodE3ph5pO0LLPFgl__11CDDYKNrbN_Ee7mTcEAjyHocIWww3WtwH9BMlZdRJZU0ynd4HHAfCxsibkfGykC6lmFNJb4Mkv8fWWlvFwTrkSVL59L3hTT6hyXp0PUmxaQlppaT97KifZtwg3VwdIPz-MNoK3Bzb4XTzkd39TLmyHujr8uF41teFGjcdQYju3zz-D-46Kq26cUPdYqbrFHZ6F9ZqW6EzekEeQYcXs57jnVnl-WdnfKcLnrp8B-hV0cCmVpuNN9uUWdfWoZ85DjjtlcNr1DNnsp47CAb-59OBh9bP6zIY9ytQj-AwV6WlsJ-KcRf5_KtNKTs0fkod9X0D2Hh8eko8stcm8Y5Py2yIMW8-QTcrWCEhpQQgEldAUltIUSCiihDUroEiW0MjSg5J3HCEWMUIeRp-Tr4cHZ8CjyyhuRggR7FgkkaoyTRMSZgQ2pUEYXA81FPBC4hUiRQQjmqkCqKMYyOeDS6KSfMRVL0YOM-hnZKKtSPycUHGWSMGESrvqMSQEbcmO6kneLfiaF3iY8TGKuPC09qqNM8lB_eJm3A5BjAHIXgG2SNL7XjpxlLa_3IVa5TzNd-pgD1Nbwf_GP_i_J_eUvZIdszKa1fkXuqvls_H362iPzJ1S4rtk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced-order+modeling+via+convolutional+autoencoder+for+emulating+combustion+of+hydrogen%2Fmethane+fuel+blends&rft.jtitle=Combustion+and+flame&rft.au=Ding%2C+Siyu&rft.au=Ni%2C+Chenxu&rft.au=Chu%2C+Xu&rft.au=Lu%2C+Qingzhou&rft.date=2025-04-01&rft.pub=Elsevier+Inc&rft.issn=0010-2180&rft.volume=274&rft_id=info:doi/10.1016%2Fj.combustflame.2025.113981&rft.externalDocID=S0010218025000197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon