External cavity beam combining of 21 semiconductor lasers using SPGD
Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity...
Saved in:
| Published in: | Applied optics. Optical technology and biomedical optics Vol. 51; no. 11; p. 1724 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
10.04.2012
|
| ISSN: | 1559-128X, 2155-3165, 1539-4522 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with an upper limit of 90% efficiency in the particular configuration of the experiment. Our beam combining system utilizes a stochastic parallel gradient descent (SPGD) algorithm for active phase control. This work demonstrates that active beam combining is not subject to the scaling limits imposed on passive-phasing systems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1559-128X 2155-3165 1539-4522 |
| DOI: | 10.1364/AO.51.001724 |