Multi-Objective Constrained Optimization Model and Molten Iron Allocation Application Based on Hybrid Archimedes Optimization Algorithm
The challenge of distributing molten iron involves the optimal allocation of blast furnace output to various steelmaking furnaces, considering the blast furnace’s production capacity and the steelmaking converter’s consumption capacity. The primary objective is to prioritize the distribution from th...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 12; číslo 16; s. 2437 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2024
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The challenge of distributing molten iron involves the optimal allocation of blast furnace output to various steelmaking furnaces, considering the blast furnace’s production capacity and the steelmaking converter’s consumption capacity. The primary objective is to prioritize the distribution from the blast furnace to achieve a balance between iron and steel production while ensuring that the volume of hot metal within the system remains within a safe range. To address this, a constrained multi-objective nonlinear programming model is abstracted. A linear weighting method combines multiple objectives into a single objective function, while the Lagrange multiplier method addresses constraints. The proposed hybrid Archimedes optimization algorithm effectively solves this problem, demonstrating significant improvements in time efficiency and precision compared to existing methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math12162437 |