Application of Extra-Trees Regression and Tree-Structured Parzen Estimators Optimization Algorithm to Predict Blast-Induced Mean Fragmentation Size in Open-Pit Mines

Blasting is an effective technique for fragmenting rock in open-pit mining operations. Blasting operations produce either boulders or fine fragments, both of which increase costs and pose environmental risks. As a result, predicting the mean fragmentation size (MFS) distribution of rock is critical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 15; číslo 15; s. 8363
Hlavní autoři: Mame, Madalitso, Huang, Shuai, Li, Chuanqi, Zhou, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 28.07.2025
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Blasting is an effective technique for fragmenting rock in open-pit mining operations. Blasting operations produce either boulders or fine fragments, both of which increase costs and pose environmental risks. As a result, predicting the mean fragmentation size (MFS) distribution of rock is critical for assessing blasting operations’ quality and mitigating risks. Due to the limitations of empirical and statistical models, several researchers are turning to artificial intelligence (AI)-based techniques to predict the MFS distribution of rock. Thus, this study uses three AI tree-based algorithms—extra trees (ET), gradient boosting (GB), and random forest (RF)—to predict the MFS distribution of rock. The prediction accuracy of the models is optimized utilizing the tree-structured Parzen estimators (TPEs) algorithm, which results in three models: TPE-ET, TPE-GB, and TPE-RF. The dataset used in this study was collected from the published literature and through the data augmentation of a large-scale dataset of 3740 blast samples. Among the evaluated models, the TPE-ET model exhibits the best performance with a coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE), and max error of 0.93, 0.04, 0.03, and 0.25 during the testing phase. Moreover, the block size (XB, m) and modulus of elasticity (E, GPa) parameters are identified as the most influential parameters for predicting the MFS distribution of rock. Lastly, an interactive web application has been developed to assist engineers with the timely prediction of MFS. The predictive model developed in this study is a reliable intelligent model because it combines high accuracy with a strong, explainable AI tool for predicting MFS.
AbstractList Blasting is an effective technique for fragmenting rock in open-pit mining operations. Blasting operations produce either boulders or fine fragments, both of which increase costs and pose environmental risks. As a result, predicting the mean fragmentation size (MFS) distribution of rock is critical for assessing blasting operations’ quality and mitigating risks. Due to the limitations of empirical and statistical models, several researchers are turning to artificial intelligence (AI)-based techniques to predict the MFS distribution of rock. Thus, this study uses three AI tree-based algorithms—extra trees (ET), gradient boosting (GB), and random forest (RF)—to predict the MFS distribution of rock. The prediction accuracy of the models is optimized utilizing the tree-structured Parzen estimators (TPEs) algorithm, which results in three models: TPE-ET, TPE-GB, and TPE-RF. The dataset used in this study was collected from the published literature and through the data augmentation of a large-scale dataset of 3740 blast samples. Among the evaluated models, the TPE-ET model exhibits the best performance with a coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE), and max error of 0.93, 0.04, 0.03, and 0.25 during the testing phase. Moreover, the block size (XB, m) and modulus of elasticity (E, GPa) parameters are identified as the most influential parameters for predicting the MFS distribution of rock. Lastly, an interactive web application has been developed to assist engineers with the timely prediction of MFS. The predictive model developed in this study is a reliable intelligent model because it combines high accuracy with a strong, explainable AI tool for predicting MFS.
Author Li, Chuanqi
Zhou, Jian
Mame, Madalitso
Huang, Shuai
Author_xml – sequence: 1
  givenname: Madalitso
  surname: Mame
  fullname: Mame, Madalitso
– sequence: 2
  givenname: Shuai
  surname: Huang
  fullname: Huang, Shuai
– sequence: 3
  givenname: Chuanqi
  orcidid: 0000-0002-8163-5432
  surname: Li
  fullname: Li, Chuanqi
– sequence: 4
  givenname: Jian
  orcidid: 0000-0003-4769-4487
  surname: Zhou
  fullname: Zhou, Jian
BookMark eNpNkc1uEzEQxy3USpTSU1_AEke0YHu8u84xVClEatWoH2fL8c4GRxt7sb0S5H14TxwWoc5lRvPxmxn935EzHzwScs3ZJ4AF-2zGkde8VtDAG3IhWNtUIHl79ip-S65S2rNiCw6KswvyezmOg7Mmu-Bp6OnqZ46meo6IiT7iLmJKp4rxHT0lq6ccJ5uniB3dmHhET1cpu4PJISb6MJbQHWfYctiF6PL3A82BbsqAs5l-GUzK1dp3ky2EezSe3kazO6DP89STOyJ1vqDQVxuX6b3zmN6T894MCa_--Uvycrt6vvlW3T18Xd8s7yoLQuZKSaUsNNgujFiAFB2ra8Z5h1ZIrjggF0YK27Td1mCDCAwbMFtR99Bz2zVwSdYztwtmr8dYHou_dDBO_02EuNMmZmcH1O3Wctmz2grBpASheItSNRItoELGC-vDzBpj-DFhynofpujL-RpE0UswXsvS9XHusjGkFLH_v5UzfZJVv5IV_gDr0Zgo
Cites_doi 10.3389/fnbot.2013.00021
10.1214/aos/1013203451
10.1007/BF02506177
10.6026/97320630013060
10.1007/s10064-018-1270-1
10.1016/j.enggeo.2010.05.008
10.1007/s10064-013-0521-4
10.1007/s00366-017-0544-8
10.1007/s00366-012-0298-2
10.1109/IIPHDW.2018.8388338
10.1016/S1003-6326(11)61195-3
10.1109/MITS.2023.3274787
10.1007/s12517-015-1952-y
10.1007/s10994-006-6226-1
10.1016/0148-9062(73)90007-7
10.1007/s00366-019-00822-0
10.1007/s00366-021-01522-4
10.3390/w14040545
10.1007/s00366-017-0543-9
10.1016/B978-0-443-18764-3.00003-5
10.1016/j.measurement.2016.10.047
10.1016/j.trc.2015.02.019
10.1016/j.gsf.2020.03.007
10.1016/j.trgeo.2024.101228
10.1016/j.accinf.2022.100572
10.1007/s00366-021-01418-3
10.1007/s00521-020-05197-8
10.1179/037178405X44539
10.1007/s12145-024-01313-7
10.1016/j.ijrmms.2009.05.003
10.1002/suco.202100082
10.1007/s10064-014-0588-6
10.1016/j.undsp.2024.09.002
10.1016/j.ijrmms.2020.104278
10.1016/B978-0-443-18764-3.00014-X
10.1016/j.heliyon.2024.e33982
10.1016/j.ssci.2019.05.046
10.1007/s00366-017-0535-9
10.1007/s00366-020-01207-4
10.1023/A:1022648800760
10.1080/19648189.2017.1399168
10.1371/journal.pone.0254841
10.1201/9781315139470
10.1007/s00521-016-2746-1
10.1016/j.jrmge.2021.07.013
10.1007/s12517-012-0770-8
10.1007/s11053-019-09603-4
10.1016/j.ijmst.2024.12.009
10.1016/j.soildyn.2020.106390
10.1007/s10064-015-0720-2
10.3390/rs13224694
10.1007/978-3-319-29451-3_57
10.1007/s12517-013-1174-0
10.1002/nag.957
10.3390/mining2020013
10.1080/17480930.2019.1585597
10.1007/s10706-012-9496-3
10.1023/A:1018054314350
10.1016/j.conbuildmat.2022.128483
10.1016/j.autcon.2021.103612
10.3390/pr10051013
10.1007/s10064-023-03138-y
10.1007/s00366-020-01151-3
10.1007/s12517-017-3189-4
10.1007/s12517-010-0185-3
10.1007/s00603-016-1131-9
10.1371/journal.pone.0286950
10.1023/A:1010933404324
10.1080/15376494.2023.2224782
10.1016/j.scs.2022.103677
10.1007/s00603-012-0269-3
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app15158363
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_7bc14f05c2204432817e4864ec3e8e01
10_3390_app15158363
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c324t-8488c36e79a29342d055011dec241813e12a42c67dbae6ee30e63ab25f3f1cd63
IEDL.DBID PIMPY
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548997100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:53:50 EDT 2025
Wed Aug 13 11:40:52 EDT 2025
Sat Nov 29 07:18:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-8488c36e79a29342d055011dec241813e12a42c67dbae6ee30e63ab25f3f1cd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8163-5432
0000-0003-4769-4487
OpenAccessLink https://www.proquest.com/publiccontent/docview/3239020154?pq-origsite=%requestingapplication%
PQID 3239020154
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_7bc14f05c2204432817e4864ec3e8e01
proquest_journals_3239020154
crossref_primary_10_3390_app15158363
PublicationCentury 2000
PublicationDate 2025-07-28
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-28
  day: 28
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_17) 2021; 13
Ekanayake (ref_79) 2022; 16
Adebola (ref_21) 2016; 6
Jang (ref_13) 2020; 34
ref_56
Shen (ref_31) 2024; 21
ref_51
Zhang (ref_63) 2022; 23
Ebrahimi (ref_5) 2016; 75
ref_19
Rong (ref_52) 2024; 17
ref_16
Kim (ref_81) 2022; 79
ref_59
Breiman (ref_66) 1996; 24
Yari (ref_33) 2023; 82
Xi (ref_62) 2023; 31
Ouchterlony (ref_14) 2018; 11
ref_60
Kulatilake (ref_37) 2012; 30
Zhang (ref_48) 2020; 29
Khandelwal (ref_6) 2013; 46
Zhou (ref_45) 2021; 37
ref_69
ref_24
ref_68
ref_65
ref_20
Schapire (ref_73) 1990; 5
Armaghani (ref_10) 2014; 7
Mehrdanesh (ref_50) 2023; 39
ref_27
Friedman (ref_72) 2001; 29
Ouchterlony (ref_22) 2005; 114
Dimitraki (ref_36) 2019; 78
Hasanipanah (ref_44) 2018; 30
Raina (ref_12) 2014; 73
Dong (ref_61) 2023; 15
Dai (ref_70) 2025; 35
Kuznetsov (ref_18) 1973; 9
Sayevand (ref_43) 2018; 34
Li (ref_3) 2024; 45
Arpaz (ref_11) 2013; 72
Ouchterlony (ref_23) 2017; 50
ref_78
Wahba (ref_64) 2024; 10
ref_76
ref_75
Hu (ref_1) 2020; 24
ref_74
Zhou (ref_29) 2022; 38
Mame (ref_32) 2024; 41
Zhou (ref_9) 2020; 139
Kulatilake (ref_38) 2010; 114
Biswas (ref_30) 2022; 346
Esmaeili (ref_8) 2014; 30
Gheibie (ref_25) 2009; 46
Ghaeini (ref_40) 2017; 10
Geurts (ref_67) 2006; 63
Amoako (ref_49) 2022; 2
Sachpazis (ref_54) 1990; 42
Zhang (ref_15) 2020; 128
Shams (ref_39) 2015; 8
Zhang (ref_71) 2015; 58
ref_83
Monjezi (ref_35) 2014; 7
ref_82
Huang (ref_46) 2022; 38
Sharma (ref_55) 2017; 96
Zhou (ref_28) 2019; 118
Zhang (ref_77) 2021; 12
Gao (ref_42) 2018; 34
Zhang (ref_80) 2022; 46
Bergmann (ref_26) 1973; 10
Yang (ref_4) 2021; 125
Shi (ref_34) 2012; 22
Hudaverdi (ref_57) 2011; 35
Fang (ref_47) 2021; 33
Breiman (ref_53) 2001; 45
Zhou (ref_2) 2022; 38
Renchao (ref_58) 2020; 39
Monjezi (ref_7) 2012; 5
Asl (ref_41) 2018; 34
References_xml – ident: ref_74
  doi: 10.3389/fnbot.2013.00021
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_72
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 42
  start-page: 75
  year: 1990
  ident: ref_54
  article-title: Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks
  publication-title: Bull. Eng. Geol. Environ.
– volume: 9
  start-page: 144
  year: 1973
  ident: ref_18
  article-title: The mean diameter of the fragments formed by blasting rock
  publication-title: Sov. Min. Sci.
  doi: 10.1007/BF02506177
– ident: ref_68
  doi: 10.6026/97320630013060
– volume: 78
  start-page: 2717
  year: 2019
  ident: ref_36
  article-title: Predicting the average size of blasted rocks in aggregate quarries using artificial neural networks
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1270-1
– volume: 114
  start-page: 298
  year: 2010
  ident: ref_38
  article-title: Mean particle size prediction in rock blast fragmentation using neural networks
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2010.05.008
– volume: 72
  start-page: 555
  year: 2013
  ident: ref_11
  article-title: Investigation of blast-induced ground vibrations in the Tülü boron open pit mine
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-013-0521-4
– volume: 34
  start-page: 339
  year: 2018
  ident: ref_42
  article-title: Developing GPR model for forecasting the rock fragmentation in surface mines
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0544-8
– volume: 30
  start-page: 549
  year: 2014
  ident: ref_8
  article-title: Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-012-0298-2
– ident: ref_59
  doi: 10.1109/IIPHDW.2018.8388338
– volume: 22
  start-page: 432
  year: 2012
  ident: ref_34
  article-title: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(11)61195-3
– volume: 15
  start-page: 8
  year: 2023
  ident: ref_61
  article-title: Gaussian noise data augmentation-based delay prediction for high-speed railways
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2023.3274787
– volume: 8
  start-page: 10819
  year: 2015
  ident: ref_39
  article-title: Application of fuzzy inference system for prediction of rock fragmentation induced by blasting
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-015-1952-y
– volume: 63
  start-page: 3
  year: 2006
  ident: ref_67
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 10
  start-page: 585
  year: 1973
  ident: ref_26
  article-title: Model rock blasting—Effect of explosives properties and other variables on blasting results
  publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
  doi: 10.1016/0148-9062(73)90007-7
– volume: 37
  start-page: 265
  year: 2021
  ident: ref_45
  article-title: Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00822-0
– ident: ref_56
– volume: 6
  start-page: 110
  year: 2016
  ident: ref_21
  article-title: Rock fragmentation prediction using Kuz-Ram model
  publication-title: J. Environ. Earth Sci.
– volume: 39
  start-page: 1317
  year: 2023
  ident: ref_50
  article-title: Application of various robust techniques to study and evaluate the role of effective parameters on rock fragmentation
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01522-4
– volume: 39
  start-page: 89
  year: 2020
  ident: ref_58
  article-title: Study on blasting fragmentation prediction model based on random forest regression method
  publication-title: J. Hydropower
– ident: ref_78
  doi: 10.3390/w14040545
– volume: 34
  start-page: 329
  year: 2018
  ident: ref_43
  article-title: Development of imperialist competitive algorithm in predicting the particle size distribution after mine blasting
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0543-9
– ident: ref_83
– ident: ref_16
  doi: 10.1016/B978-0-443-18764-3.00003-5
– volume: 96
  start-page: 34
  year: 2017
  ident: ref_55
  article-title: Establishment of blasting design parameters influencing mean fragment size using state-of-art statistical tools and techniques
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.10.047
– volume: 58
  start-page: 308
  year: 2015
  ident: ref_71
  article-title: A gradient boosting method to improve travel time prediction
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.02.019
– volume: 12
  start-page: 469
  year: 2021
  ident: ref_77
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.007
– volume: 45
  start-page: 101228
  year: 2024
  ident: ref_3
  article-title: Prediction and optimization of adverse responses for a highway tunnel after blasting excavation using a novel hybrid multi-objective intelligent model
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2024.101228
– volume: 46
  start-page: 100572
  year: 2022
  ident: ref_80
  article-title: Explainable Artificial Intelligence (XAI) in auditing
  publication-title: Int. J. Account. Inf. Syst.
  doi: 10.1016/j.accinf.2022.100572
– volume: 38
  start-page: 4197
  year: 2022
  ident: ref_29
  article-title: Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-induced liquefaction potential of soil: A multi-dataset investigation
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01418-3
– volume: 33
  start-page: 3503
  year: 2021
  ident: ref_47
  article-title: Modeling of rock fragmentation by firefly optimization algorithm and boosted generalized additive model
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05197-8
– ident: ref_20
– volume: 41
  start-page: 2325
  year: 2024
  ident: ref_32
  article-title: Mean Block Size Prediction in Rock Blast Fragmentation Using TPE-Tree-Based Model Approach with SHapley Additive exPlanations
  publication-title: Min. Metall. Explor.
– volume: 114
  start-page: 29
  year: 2005
  ident: ref_22
  article-title: The Swebrec© function: Linking fragmentation by blasting and crushing
  publication-title: Min. Technol.
  doi: 10.1179/037178405X44539
– volume: 17
  start-page: 2903
  year: 2024
  ident: ref_52
  article-title: Prediction of the mean fragment size in mine blasting operations by deep learning and grey wolf optimization algorithm
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-024-01313-7
– volume: 46
  start-page: 967
  year: 2009
  ident: ref_25
  article-title: Modified Kuz—Ram fragmentation model and its use at the Sungun Copper Mine
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2009.05.003
– volume: 23
  start-page: 2274
  year: 2022
  ident: ref_63
  article-title: Residual strength of concrete subjected to fatigue based on machine learning technique
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202100082
– volume: 73
  start-page: 1199
  year: 2014
  ident: ref_12
  article-title: Flyrock in bench blasting: A comprehensive review
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-014-0588-6
– volume: 21
  start-page: 198
  year: 2024
  ident: ref_31
  article-title: Interpretable model for rockburst intensity prediction based on Shapley values-based Optuna-random forest
  publication-title: Undergr. Space
  doi: 10.1016/j.undsp.2024.09.002
– volume: 128
  start-page: 104278
  year: 2020
  ident: ref_15
  article-title: Experimental study of surface constraint effect on rock fragmentation by blasting
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2020.104278
– ident: ref_24
– ident: ref_51
  doi: 10.1016/B978-0-443-18764-3.00014-X
– volume: 10
  start-page: e33982
  year: 2024
  ident: ref_64
  article-title: Forecasting of flash flood susceptibility mapping using random forest regression model and geographic information systems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e33982
– volume: 118
  start-page: 505
  year: 2019
  ident: ref_28
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.05.046
– volume: 34
  start-page: 241
  year: 2018
  ident: ref_41
  article-title: Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-017-0535-9
– volume: 38
  start-page: 2209
  year: 2022
  ident: ref_46
  article-title: A new auto-tuning model for predicting the rock fragmentation: A cat swarm optimization algorithm
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01207-4
– volume: 5
  start-page: 197
  year: 1990
  ident: ref_73
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022648800760
– volume: 24
  start-page: 481
  year: 2020
  ident: ref_1
  article-title: A new horizontal rock dam foundation blasting technique with a shock-reflection device arranged at the bottom of vertical borehole
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2017.1399168
– ident: ref_60
  doi: 10.1371/journal.pone.0254841
– ident: ref_65
  doi: 10.1201/9781315139470
– volume: 30
  start-page: 1015
  year: 2018
  ident: ref_44
  article-title: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2746-1
– volume: 13
  start-page: 1380
  year: 2021
  ident: ref_17
  article-title: Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.07.013
– volume: 7
  start-page: 505
  year: 2014
  ident: ref_35
  article-title: Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-012-0770-8
– volume: 29
  start-page: 867
  year: 2020
  ident: ref_48
  article-title: Prediction of rock size distribution in mine bench blasting using a novel ant colony optimization-based boosted regression tree technique
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09603-4
– volume: 35
  start-page: 41
  year: 2025
  ident: ref_70
  article-title: Quantitative principles of dynamic interaction between rock support and surrounding rock in rockburst roadways
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2024.12.009
– volume: 139
  start-page: 106390
  year: 2020
  ident: ref_9
  article-title: Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2020.106390
– volume: 75
  start-page: 27
  year: 2016
  ident: ref_5
  article-title: Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-015-0720-2
– ident: ref_76
  doi: 10.3390/rs13224694
– ident: ref_69
  doi: 10.1007/978-3-319-29451-3_57
– volume: 7
  start-page: 5383
  year: 2014
  ident: ref_10
  article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-013-1174-0
– volume: 11
  start-page: 25
  year: 2018
  ident: ref_14
  article-title: A review of the development of better prediction equations for blast fragmentation
  publication-title: Rock Dyn. Appl. 3
– volume: 35
  start-page: 1318
  year: 2011
  ident: ref_57
  article-title: Prediction of blast fragmentation using multivariate analysis procedures
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.957
– volume: 2
  start-page: 233
  year: 2022
  ident: ref_49
  article-title: Rock fragmentation prediction using an artificial neural network and support vector regression hybrid approach
  publication-title: Mining
  doi: 10.3390/mining2020013
– volume: 34
  start-page: 294
  year: 2020
  ident: ref_13
  article-title: Development of 3D rock fragmentation measurement system using photogrammetry
  publication-title: Int. J. Min. Reclam. Environ.
  doi: 10.1080/17480930.2019.1585597
– volume: 30
  start-page: 665
  year: 2012
  ident: ref_37
  article-title: New Prediction Models for Mean Particle Size in Rock Blast Fragmentation
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-012-9496-3
– ident: ref_75
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_66
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– volume: 346
  start-page: 128483
  year: 2022
  ident: ref_30
  article-title: Development of hybrid models using metaheuristic optimization techniques to predict the carbonation depth of fly ash concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128483
– volume: 125
  start-page: 103612
  year: 2021
  ident: ref_4
  article-title: Classification of rock fragments produced by tunnel boring machine using convolutional neural networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103612
– ident: ref_27
  doi: 10.3390/pr10051013
– volume: 82
  start-page: 187
  year: 2023
  ident: ref_33
  article-title: A novel ensemble machine learning model to predict mine blasting–induced rock fragmentation
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-023-03138-y
– volume: 16
  start-page: e01059
  year: 2022
  ident: ref_79
  article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP)
  publication-title: Case Stud. Constr. Mater.
– volume: 38
  start-page: 381
  year: 2022
  ident: ref_2
  article-title: A new hybrid model of information entropy and unascertained measurement with different membership functions for evaluating destressability in burst-prone underground mines
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01151-3
– volume: 10
  start-page: 409
  year: 2017
  ident: ref_40
  article-title: Prediction of blasting-induced fragmentation in Meydook copper mine using empirical, statistical, and mutual information models
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-017-3189-4
– volume: 5
  start-page: 441
  year: 2012
  ident: ref_7
  article-title: Prediction of flyrock and backbreak in open pit blasting operation: A neuro-genetic approach
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-010-0185-3
– ident: ref_19
– volume: 50
  start-page: 781
  year: 2017
  ident: ref_23
  article-title: A distribution-free description of fragmentation by blasting based on dimensional analysis
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-016-1131-9
– ident: ref_82
  doi: 10.1371/journal.pone.0286950
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_53
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 31
  start-page: 5999
  year: 2023
  ident: ref_62
  article-title: LGBM-based modeling scenarios to compressive strength of recycled aggregate concrete with SHAP analysis
  publication-title: Mech. Adv. Mater. Struct.
  doi: 10.1080/15376494.2023.2224782
– volume: 79
  start-page: 103677
  year: 2022
  ident: ref_81
  article-title: Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.103677
– volume: 46
  start-page: 389
  year: 2013
  ident: ref_6
  article-title: Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-012-0269-3
SSID ssj0000913810
Score 2.3264635
Snippet Blasting is an effective technique for fragmenting rock in open-pit mining operations. Blasting operations produce either boulders or fine fragments, both of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 8363
SubjectTerms Accuracy
Artificial intelligence
blasting
Civil engineering
Data analysis
Data collection
Datasets
Explosives
extra trees algorithm
Human error
mean fragmentation size
Mines
Mining engineering
Normal distribution
open-pit mines
Optimization algorithms
rock fragmentation
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiBYQCwXNoQc4WMSPdbzHLdqKS8uKFqm3yOuMl0isF2UDQv0__E9mkhQWceDC1XLiKPP6Rp75RogTp1ch2eBkouxHMiO49BpnMmBQU9Quljb2wybKiwt_fT1b7o364pqwgR54-HFvylVUNhXTqHVhrdFelWi9sxgNehw6twj17CVTvQ-eKaauGhryDOX1fB_MsdsbZ_4IQT1T_1-OuI8uZw_FgxEWwnz4nENxB_ORuL9HFngkDkcz3MGrkSv69SPxY_77Ahq2CRbfuzbIqxZp2wdcD0WuGUKugRflZU8X-7XFGpahvcEMC7LxDWfeO3hP7mMz9mXC_PN62zbdpw10W1i2fJ_TwSlh7U7yuI9IbzjHkIGQ73ozNjBluGxuEJoMXKcil00H51xW_1h8PFtcvX0nx8kLMhLA6qQns47GYTkLBAesrgtKZJSqMVLA98qg0sHq6Mp6FdAhmgKdCSs9TSapWDvzRBzkbcanAlwoQyrpASaii9PkKWQS5OQRH0XS2k_Eya0wqi8DwUZFiQnLrNqT2UScsqB-bWFW7H6BdKUadaX6l65MxPGtmKvRVHeV0XSUZij57H-c8Vzc0zwiuCil9sfigMSKL8Td-K1rdu3LXkt_Au3B7F4
  priority: 102
  providerName: Directory of Open Access Journals
Title Application of Extra-Trees Regression and Tree-Structured Parzen Estimators Optimization Algorithm to Predict Blast-Induced Mean Fragmentation Size in Open-Pit Mines
URI https://www.proquest.com/docview/3239020154
https://doaj.org/article/7bc14f05c2204432817e4864ec3e8e01
Volume 15
WOSCitedRecordID wos001548997100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELag5YE9ABsgCqPywx7gwVpsp477hFrUCR5aom1I4ylynUupRJMtCQjt__A_uUvdbQiJJ14dx7Lk83d3vrvvGDsyaumK2BlRoPcjiBFcWAVj4cDJESjjk9h3zSaSxcJeXIzTUB7dhLTKHSZ2QL1le6a8bQTh47zy9GJ-rBX66or0_7vLK0E9pCjWGhpq3Gd9It6yPdZPP87TLzdvLsSBaWW0LdPTuAJFiUmjW230H4qp4-__C547nXPy-P_u9gl7FGxPPtkKyz67B-UB27vDSHjA9sNdb_ibQEj99in7NbmNcvOq4LOfbe3EeQ047RRW20zakrsy5zQozjpO2u815Dx19TWUfIZAsiH3vuGfEKM2ofiTT76tcJ_t1w1vK57WFDRq-RQN-lZQTxGPK8zBlRzN69UmVEmV_Gx9DXxdckqGEem65XPK3X_GPp_Mzt9_EKG9g_BoxbXCInZ4bSAZO7Q5YpVH6C1JmYNHq8JKDVK5WHmT5EsHBkBHYLRbqlGhC-lzo5-zXlmV8IJx4xJXJPgDsd35UWFRL6NdS31EokIpO2BHu7PNLrcsHhl6PyQC2R0RGLApnfvNFKLe7gaqepWFm5wlSy_jIhp5paI41srKBGJrYvAaLERywA53IpEFPGiyWwl4-e_Pr9hDRR2Go0Qoe8h6eGDwmj3wP9p1Uw9ZfzpbpKfD7uVgGMT7N4WzCvs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHRJwADZAFAb4MCQ4WCR26rgHhDrotGpriViRtlNwnZdSiSYjCb_2_3Dlb-Q5SbchJG47cHUcK7K_vB-23_cBbCsxM2lgFE8p--GOEZxrgX1u0Pg9FMqGga3FJsLJRB8d9aM1-LWqhXHXKlc2sTbUSW7dHvkLKSg7F87jvzr5zJ1qlDtdXUloNLDYxx_fKGUrX47e0Po-FWJ3OH29x1tVAW4peKi4JshaqTDsG3J1gUg8CtJ9P0FLzkz7En1hAmFVmMwMKkTpoZJmJnqpTH2bKEnjXoH1gMCuO7AejcbR8dmujmPZ1L7XFAJK-mJ3Du1iBi2V_MP11QoBfzmA2qvt3vrf5uM23GzjZzZoAL8Ba5htwo0LrIqbsNHaq5I9a0m1n9-Bn4Pzk3qWp2z4vSoMnxZI3d7hvLkNnDGTJcw18sOaV_dLgQmLTHGKGRuSMVy6LYqSvSU7u2wLWNng05zmpfq4ZFXOosIdfFVsh5KSijtdFEsjjNFkjFKE-bKt9MrY4eIU2SJj7kIPjxYVG7v6g7vw_lIm7x50sjzD-8CUCU0a0guOsc_2Uk2xBcXmTgvFS4XQXdheoSc-aZhIYsrgHMjiCyDrwo5D1lkXRx9eN-TFPG6tURzOrB-kXs8K4QWBFNoPMdAqQCtRo-d3YWsFuri1aWV8jrgH_378BK7tTccH8cFosv8QrgunmOyFXOgt6NDi4SO4ar9Wi7J43P4-DD5cNkJ_A4WFWMs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxA8ABsgCgP8MCR4sJbYruM-INSxVlSjJWJD2p6C65yUSjQZabjt__An-HWck6bbEBJve-A1cazI_nwuPpePsW0jJy7TzogMvR9BHcGFldAVDlzYAWl8pH1NNhGNx_boqBuvsV-rWhhKq1zJxFpQp4WnO_IdJdE7l6Txd7ImLSLeG7w8-SyIQYoirSs6jSVE9uHHN3TfFi-Ge7jXT6Uc9A9fvRYNw4DwaEhUwiJ8vTIQdR2qPS3TAA32MEzBo2KzoYJQOi29idKJAwOgAjDKTWQnU1noU6Nw3itsHU1yrVtsPR6O4uOzGx7quGnDYFkUqPDvKSZN9oNVRv2hBmu2gL-UQa3hBrf-57W5zW42djXvLQ_CBluDfJPduNBtcZNtNHJswZ81zbaf32E_e-cRfF5kvP-9Kp04LAGHvYPpMks45y5POT0UB3W_3S8lpDx25SnkvI9Cck5XFwv-FuXvvCls5b1PU1yX6uOcVwWPSwqIVXwXnZVKEF-KxxlG4HKOrsN03lSA5fxgdgp8lnNK9BHxrOIjqku4y95fyuLdY628yOE-48ZFLovwA-rk5zuZRZsDbXbiSAkyKW2bba-QlJwsO5Qk6NkR4JILgGuzXULZ2RBqK14_KMpp0kipJJr4UGdBx0sZaK2kDSPQ1mjwCiwEYZttrQCYNLJukZyj78G_Xz9h1xCWyZvheP8huy6JSDmIhLRbrIV7B4_YVf-1mi3Kx81J4uzDZQP0NyUbYYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Extra-Trees+Regression+and+Tree-Structured+Parzen+Estimators+Optimization+Algorithm+to+Predict+Blast-Induced+Mean+Fragmentation+Size+in+Open-Pit+Mines&rft.jtitle=Applied+sciences&rft.au=Madalitso%2C+Mame&rft.au=Huang%2C+Shuai&rft.au=Li%2C+Chuanqi&rft.au=Zhou%2C+Jian&rft.date=2025-07-28&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=15&rft.spage=8363&rft_id=info:doi/10.3390%2Fapp15158363&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon