Application of Extra-Trees Regression and Tree-Structured Parzen Estimators Optimization Algorithm to Predict Blast-Induced Mean Fragmentation Size in Open-Pit Mines
Blasting is an effective technique for fragmenting rock in open-pit mining operations. Blasting operations produce either boulders or fine fragments, both of which increase costs and pose environmental risks. As a result, predicting the mean fragmentation size (MFS) distribution of rock is critical...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 15; číslo 15; s. 8363 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
28.07.2025
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Blasting is an effective technique for fragmenting rock in open-pit mining operations. Blasting operations produce either boulders or fine fragments, both of which increase costs and pose environmental risks. As a result, predicting the mean fragmentation size (MFS) distribution of rock is critical for assessing blasting operations’ quality and mitigating risks. Due to the limitations of empirical and statistical models, several researchers are turning to artificial intelligence (AI)-based techniques to predict the MFS distribution of rock. Thus, this study uses three AI tree-based algorithms—extra trees (ET), gradient boosting (GB), and random forest (RF)—to predict the MFS distribution of rock. The prediction accuracy of the models is optimized utilizing the tree-structured Parzen estimators (TPEs) algorithm, which results in three models: TPE-ET, TPE-GB, and TPE-RF. The dataset used in this study was collected from the published literature and through the data augmentation of a large-scale dataset of 3740 blast samples. Among the evaluated models, the TPE-ET model exhibits the best performance with a coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE), and max error of 0.93, 0.04, 0.03, and 0.25 during the testing phase. Moreover, the block size (XB, m) and modulus of elasticity (E, GPa) parameters are identified as the most influential parameters for predicting the MFS distribution of rock. Lastly, an interactive web application has been developed to assist engineers with the timely prediction of MFS. The predictive model developed in this study is a reliable intelligent model because it combines high accuracy with a strong, explainable AI tool for predicting MFS. |
|---|---|
| AbstractList | Blasting is an effective technique for fragmenting rock in open-pit mining operations. Blasting operations produce either boulders or fine fragments, both of which increase costs and pose environmental risks. As a result, predicting the mean fragmentation size (MFS) distribution of rock is critical for assessing blasting operations’ quality and mitigating risks. Due to the limitations of empirical and statistical models, several researchers are turning to artificial intelligence (AI)-based techniques to predict the MFS distribution of rock. Thus, this study uses three AI tree-based algorithms—extra trees (ET), gradient boosting (GB), and random forest (RF)—to predict the MFS distribution of rock. The prediction accuracy of the models is optimized utilizing the tree-structured Parzen estimators (TPEs) algorithm, which results in three models: TPE-ET, TPE-GB, and TPE-RF. The dataset used in this study was collected from the published literature and through the data augmentation of a large-scale dataset of 3740 blast samples. Among the evaluated models, the TPE-ET model exhibits the best performance with a coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE), and max error of 0.93, 0.04, 0.03, and 0.25 during the testing phase. Moreover, the block size (XB, m) and modulus of elasticity (E, GPa) parameters are identified as the most influential parameters for predicting the MFS distribution of rock. Lastly, an interactive web application has been developed to assist engineers with the timely prediction of MFS. The predictive model developed in this study is a reliable intelligent model because it combines high accuracy with a strong, explainable AI tool for predicting MFS. |
| Author | Li, Chuanqi Zhou, Jian Mame, Madalitso Huang, Shuai |
| Author_xml | – sequence: 1 givenname: Madalitso surname: Mame fullname: Mame, Madalitso – sequence: 2 givenname: Shuai surname: Huang fullname: Huang, Shuai – sequence: 3 givenname: Chuanqi orcidid: 0000-0002-8163-5432 surname: Li fullname: Li, Chuanqi – sequence: 4 givenname: Jian orcidid: 0000-0003-4769-4487 surname: Zhou fullname: Zhou, Jian |
| BookMark | eNpNkc1uEzEQxy3USpTSU1_AEke0YHu8u84xVClEatWoH2fL8c4GRxt7sb0S5H14TxwWoc5lRvPxmxn935EzHzwScs3ZJ4AF-2zGkde8VtDAG3IhWNtUIHl79ip-S65S2rNiCw6KswvyezmOg7Mmu-Bp6OnqZ46meo6IiT7iLmJKp4rxHT0lq6ccJ5uniB3dmHhET1cpu4PJISb6MJbQHWfYctiF6PL3A82BbsqAs5l-GUzK1dp3ky2EezSe3kazO6DP89STOyJ1vqDQVxuX6b3zmN6T894MCa_--Uvycrt6vvlW3T18Xd8s7yoLQuZKSaUsNNgujFiAFB2ra8Z5h1ZIrjggF0YK27Td1mCDCAwbMFtR99Bz2zVwSdYztwtmr8dYHou_dDBO_02EuNMmZmcH1O3Wctmz2grBpASheItSNRItoELGC-vDzBpj-DFhynofpujL-RpE0UswXsvS9XHusjGkFLH_v5UzfZJVv5IV_gDr0Zgo |
| Cites_doi | 10.3389/fnbot.2013.00021 10.1214/aos/1013203451 10.1007/BF02506177 10.6026/97320630013060 10.1007/s10064-018-1270-1 10.1016/j.enggeo.2010.05.008 10.1007/s10064-013-0521-4 10.1007/s00366-017-0544-8 10.1007/s00366-012-0298-2 10.1109/IIPHDW.2018.8388338 10.1016/S1003-6326(11)61195-3 10.1109/MITS.2023.3274787 10.1007/s12517-015-1952-y 10.1007/s10994-006-6226-1 10.1016/0148-9062(73)90007-7 10.1007/s00366-019-00822-0 10.1007/s00366-021-01522-4 10.3390/w14040545 10.1007/s00366-017-0543-9 10.1016/B978-0-443-18764-3.00003-5 10.1016/j.measurement.2016.10.047 10.1016/j.trc.2015.02.019 10.1016/j.gsf.2020.03.007 10.1016/j.trgeo.2024.101228 10.1016/j.accinf.2022.100572 10.1007/s00366-021-01418-3 10.1007/s00521-020-05197-8 10.1179/037178405X44539 10.1007/s12145-024-01313-7 10.1016/j.ijrmms.2009.05.003 10.1002/suco.202100082 10.1007/s10064-014-0588-6 10.1016/j.undsp.2024.09.002 10.1016/j.ijrmms.2020.104278 10.1016/B978-0-443-18764-3.00014-X 10.1016/j.heliyon.2024.e33982 10.1016/j.ssci.2019.05.046 10.1007/s00366-017-0535-9 10.1007/s00366-020-01207-4 10.1023/A:1022648800760 10.1080/19648189.2017.1399168 10.1371/journal.pone.0254841 10.1201/9781315139470 10.1007/s00521-016-2746-1 10.1016/j.jrmge.2021.07.013 10.1007/s12517-012-0770-8 10.1007/s11053-019-09603-4 10.1016/j.ijmst.2024.12.009 10.1016/j.soildyn.2020.106390 10.1007/s10064-015-0720-2 10.3390/rs13224694 10.1007/978-3-319-29451-3_57 10.1007/s12517-013-1174-0 10.1002/nag.957 10.3390/mining2020013 10.1080/17480930.2019.1585597 10.1007/s10706-012-9496-3 10.1023/A:1018054314350 10.1016/j.conbuildmat.2022.128483 10.1016/j.autcon.2021.103612 10.3390/pr10051013 10.1007/s10064-023-03138-y 10.1007/s00366-020-01151-3 10.1007/s12517-017-3189-4 10.1007/s12517-010-0185-3 10.1007/s00603-016-1131-9 10.1371/journal.pone.0286950 10.1023/A:1010933404324 10.1080/15376494.2023.2224782 10.1016/j.scs.2022.103677 10.1007/s00603-012-0269-3 |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app15158363 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_7bc14f05c2204432817e4864ec3e8e01 10_3390_app15158363 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c324t-8488c36e79a29342d055011dec241813e12a42c67dbae6ee30e63ab25f3f1cd63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548997100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:53:50 EDT 2025 Wed Aug 13 11:40:52 EDT 2025 Sat Nov 29 07:18:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-8488c36e79a29342d055011dec241813e12a42c67dbae6ee30e63ab25f3f1cd63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8163-5432 0000-0003-4769-4487 |
| OpenAccessLink | https://doaj.org/article/7bc14f05c2204432817e4864ec3e8e01 |
| PQID | 3239020154 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7bc14f05c2204432817e4864ec3e8e01 proquest_journals_3239020154 crossref_primary_10_3390_app15158363 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-28 |
| PublicationDateYYYYMMDD | 2025-07-28 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_17) 2021; 13 Ekanayake (ref_79) 2022; 16 Adebola (ref_21) 2016; 6 Jang (ref_13) 2020; 34 ref_56 Shen (ref_31) 2024; 21 ref_51 Zhang (ref_63) 2022; 23 Ebrahimi (ref_5) 2016; 75 ref_19 Rong (ref_52) 2024; 17 ref_16 Kim (ref_81) 2022; 79 ref_59 Breiman (ref_66) 1996; 24 Yari (ref_33) 2023; 82 Xi (ref_62) 2023; 31 Ouchterlony (ref_14) 2018; 11 ref_60 Kulatilake (ref_37) 2012; 30 Zhang (ref_48) 2020; 29 Khandelwal (ref_6) 2013; 46 Zhou (ref_45) 2021; 37 ref_69 ref_24 ref_68 ref_65 ref_20 Schapire (ref_73) 1990; 5 Armaghani (ref_10) 2014; 7 Mehrdanesh (ref_50) 2023; 39 ref_27 Friedman (ref_72) 2001; 29 Ouchterlony (ref_22) 2005; 114 Dimitraki (ref_36) 2019; 78 Hasanipanah (ref_44) 2018; 30 Raina (ref_12) 2014; 73 Dong (ref_61) 2023; 15 Dai (ref_70) 2025; 35 Kuznetsov (ref_18) 1973; 9 Sayevand (ref_43) 2018; 34 Li (ref_3) 2024; 45 Arpaz (ref_11) 2013; 72 Ouchterlony (ref_23) 2017; 50 ref_78 Wahba (ref_64) 2024; 10 ref_76 ref_75 Hu (ref_1) 2020; 24 ref_74 Zhou (ref_29) 2022; 38 Mame (ref_32) 2024; 41 Zhou (ref_9) 2020; 139 Kulatilake (ref_38) 2010; 114 Biswas (ref_30) 2022; 346 Esmaeili (ref_8) 2014; 30 Gheibie (ref_25) 2009; 46 Ghaeini (ref_40) 2017; 10 Geurts (ref_67) 2006; 63 Amoako (ref_49) 2022; 2 Sachpazis (ref_54) 1990; 42 Zhang (ref_15) 2020; 128 Shams (ref_39) 2015; 8 Zhang (ref_71) 2015; 58 ref_83 Monjezi (ref_35) 2014; 7 ref_82 Huang (ref_46) 2022; 38 Sharma (ref_55) 2017; 96 Zhou (ref_28) 2019; 118 Zhang (ref_77) 2021; 12 Gao (ref_42) 2018; 34 Zhang (ref_80) 2022; 46 Bergmann (ref_26) 1973; 10 Yang (ref_4) 2021; 125 Shi (ref_34) 2012; 22 Hudaverdi (ref_57) 2011; 35 Fang (ref_47) 2021; 33 Breiman (ref_53) 2001; 45 Zhou (ref_2) 2022; 38 Renchao (ref_58) 2020; 39 Monjezi (ref_7) 2012; 5 Asl (ref_41) 2018; 34 |
| References_xml | – ident: ref_74 doi: 10.3389/fnbot.2013.00021 – volume: 29 start-page: 1189 year: 2001 ident: ref_72 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 42 start-page: 75 year: 1990 ident: ref_54 article-title: Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks publication-title: Bull. Eng. Geol. Environ. – volume: 9 start-page: 144 year: 1973 ident: ref_18 article-title: The mean diameter of the fragments formed by blasting rock publication-title: Sov. Min. Sci. doi: 10.1007/BF02506177 – ident: ref_68 doi: 10.6026/97320630013060 – volume: 78 start-page: 2717 year: 2019 ident: ref_36 article-title: Predicting the average size of blasted rocks in aggregate quarries using artificial neural networks publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1270-1 – volume: 114 start-page: 298 year: 2010 ident: ref_38 article-title: Mean particle size prediction in rock blast fragmentation using neural networks publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2010.05.008 – volume: 72 start-page: 555 year: 2013 ident: ref_11 article-title: Investigation of blast-induced ground vibrations in the Tülü boron open pit mine publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-013-0521-4 – volume: 34 start-page: 339 year: 2018 ident: ref_42 article-title: Developing GPR model for forecasting the rock fragmentation in surface mines publication-title: Eng. Comput. doi: 10.1007/s00366-017-0544-8 – volume: 30 start-page: 549 year: 2014 ident: ref_8 article-title: Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting publication-title: Eng. Comput. doi: 10.1007/s00366-012-0298-2 – ident: ref_59 doi: 10.1109/IIPHDW.2018.8388338 – volume: 22 start-page: 432 year: 2012 ident: ref_34 article-title: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(11)61195-3 – volume: 15 start-page: 8 year: 2023 ident: ref_61 article-title: Gaussian noise data augmentation-based delay prediction for high-speed railways publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2023.3274787 – volume: 8 start-page: 10819 year: 2015 ident: ref_39 article-title: Application of fuzzy inference system for prediction of rock fragmentation induced by blasting publication-title: Arab. J. Geosci. doi: 10.1007/s12517-015-1952-y – volume: 63 start-page: 3 year: 2006 ident: ref_67 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 10 start-page: 585 year: 1973 ident: ref_26 article-title: Model rock blasting—Effect of explosives properties and other variables on blasting results publication-title: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. doi: 10.1016/0148-9062(73)90007-7 – volume: 37 start-page: 265 year: 2021 ident: ref_45 article-title: Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting publication-title: Eng. Comput. doi: 10.1007/s00366-019-00822-0 – ident: ref_56 – volume: 6 start-page: 110 year: 2016 ident: ref_21 article-title: Rock fragmentation prediction using Kuz-Ram model publication-title: J. Environ. Earth Sci. – volume: 39 start-page: 1317 year: 2023 ident: ref_50 article-title: Application of various robust techniques to study and evaluate the role of effective parameters on rock fragmentation publication-title: Eng. Comput. doi: 10.1007/s00366-021-01522-4 – volume: 39 start-page: 89 year: 2020 ident: ref_58 article-title: Study on blasting fragmentation prediction model based on random forest regression method publication-title: J. Hydropower – ident: ref_78 doi: 10.3390/w14040545 – volume: 34 start-page: 329 year: 2018 ident: ref_43 article-title: Development of imperialist competitive algorithm in predicting the particle size distribution after mine blasting publication-title: Eng. Comput. doi: 10.1007/s00366-017-0543-9 – ident: ref_83 – ident: ref_16 doi: 10.1016/B978-0-443-18764-3.00003-5 – volume: 96 start-page: 34 year: 2017 ident: ref_55 article-title: Establishment of blasting design parameters influencing mean fragment size using state-of-art statistical tools and techniques publication-title: Measurement doi: 10.1016/j.measurement.2016.10.047 – volume: 58 start-page: 308 year: 2015 ident: ref_71 article-title: A gradient boosting method to improve travel time prediction publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.02.019 – volume: 12 start-page: 469 year: 2021 ident: ref_77 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.007 – volume: 45 start-page: 101228 year: 2024 ident: ref_3 article-title: Prediction and optimization of adverse responses for a highway tunnel after blasting excavation using a novel hybrid multi-objective intelligent model publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2024.101228 – volume: 46 start-page: 100572 year: 2022 ident: ref_80 article-title: Explainable Artificial Intelligence (XAI) in auditing publication-title: Int. J. Account. Inf. Syst. doi: 10.1016/j.accinf.2022.100572 – volume: 38 start-page: 4197 year: 2022 ident: ref_29 article-title: Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-induced liquefaction potential of soil: A multi-dataset investigation publication-title: Eng. Comput. doi: 10.1007/s00366-021-01418-3 – volume: 33 start-page: 3503 year: 2021 ident: ref_47 article-title: Modeling of rock fragmentation by firefly optimization algorithm and boosted generalized additive model publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05197-8 – ident: ref_20 – volume: 41 start-page: 2325 year: 2024 ident: ref_32 article-title: Mean Block Size Prediction in Rock Blast Fragmentation Using TPE-Tree-Based Model Approach with SHapley Additive exPlanations publication-title: Min. Metall. Explor. – volume: 114 start-page: 29 year: 2005 ident: ref_22 article-title: The Swebrec© function: Linking fragmentation by blasting and crushing publication-title: Min. Technol. doi: 10.1179/037178405X44539 – volume: 17 start-page: 2903 year: 2024 ident: ref_52 article-title: Prediction of the mean fragment size in mine blasting operations by deep learning and grey wolf optimization algorithm publication-title: Earth Sci. Inform. doi: 10.1007/s12145-024-01313-7 – volume: 46 start-page: 967 year: 2009 ident: ref_25 article-title: Modified Kuz—Ram fragmentation model and its use at the Sungun Copper Mine publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2009.05.003 – volume: 23 start-page: 2274 year: 2022 ident: ref_63 article-title: Residual strength of concrete subjected to fatigue based on machine learning technique publication-title: Struct. Concr. doi: 10.1002/suco.202100082 – volume: 73 start-page: 1199 year: 2014 ident: ref_12 article-title: Flyrock in bench blasting: A comprehensive review publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-014-0588-6 – volume: 21 start-page: 198 year: 2024 ident: ref_31 article-title: Interpretable model for rockburst intensity prediction based on Shapley values-based Optuna-random forest publication-title: Undergr. Space doi: 10.1016/j.undsp.2024.09.002 – volume: 128 start-page: 104278 year: 2020 ident: ref_15 article-title: Experimental study of surface constraint effect on rock fragmentation by blasting publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2020.104278 – ident: ref_24 – ident: ref_51 doi: 10.1016/B978-0-443-18764-3.00014-X – volume: 10 start-page: e33982 year: 2024 ident: ref_64 article-title: Forecasting of flash flood susceptibility mapping using random forest regression model and geographic information systems publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e33982 – volume: 118 start-page: 505 year: 2019 ident: ref_28 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.05.046 – volume: 34 start-page: 241 year: 2018 ident: ref_41 article-title: Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-017-0535-9 – volume: 38 start-page: 2209 year: 2022 ident: ref_46 article-title: A new auto-tuning model for predicting the rock fragmentation: A cat swarm optimization algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-020-01207-4 – volume: 5 start-page: 197 year: 1990 ident: ref_73 article-title: The strength of weak learnability publication-title: Mach. Learn. doi: 10.1023/A:1022648800760 – volume: 24 start-page: 481 year: 2020 ident: ref_1 article-title: A new horizontal rock dam foundation blasting technique with a shock-reflection device arranged at the bottom of vertical borehole publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2017.1399168 – ident: ref_60 doi: 10.1371/journal.pone.0254841 – ident: ref_65 doi: 10.1201/9781315139470 – volume: 30 start-page: 1015 year: 2018 ident: ref_44 article-title: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2746-1 – volume: 13 start-page: 1380 year: 2021 ident: ref_17 article-title: Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2021.07.013 – volume: 7 start-page: 505 year: 2014 ident: ref_35 article-title: Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects publication-title: Arab. J. Geosci. doi: 10.1007/s12517-012-0770-8 – volume: 29 start-page: 867 year: 2020 ident: ref_48 article-title: Prediction of rock size distribution in mine bench blasting using a novel ant colony optimization-based boosted regression tree technique publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09603-4 – volume: 35 start-page: 41 year: 2025 ident: ref_70 article-title: Quantitative principles of dynamic interaction between rock support and surrounding rock in rockburst roadways publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2024.12.009 – volume: 139 start-page: 106390 year: 2020 ident: ref_9 article-title: Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2020.106390 – volume: 75 start-page: 27 year: 2016 ident: ref_5 article-title: Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-015-0720-2 – ident: ref_76 doi: 10.3390/rs13224694 – ident: ref_69 doi: 10.1007/978-3-319-29451-3_57 – volume: 7 start-page: 5383 year: 2014 ident: ref_10 article-title: Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization publication-title: Arab. J. Geosci. doi: 10.1007/s12517-013-1174-0 – volume: 11 start-page: 25 year: 2018 ident: ref_14 article-title: A review of the development of better prediction equations for blast fragmentation publication-title: Rock Dyn. Appl. 3 – volume: 35 start-page: 1318 year: 2011 ident: ref_57 article-title: Prediction of blast fragmentation using multivariate analysis procedures publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.957 – volume: 2 start-page: 233 year: 2022 ident: ref_49 article-title: Rock fragmentation prediction using an artificial neural network and support vector regression hybrid approach publication-title: Mining doi: 10.3390/mining2020013 – volume: 34 start-page: 294 year: 2020 ident: ref_13 article-title: Development of 3D rock fragmentation measurement system using photogrammetry publication-title: Int. J. Min. Reclam. Environ. doi: 10.1080/17480930.2019.1585597 – volume: 30 start-page: 665 year: 2012 ident: ref_37 article-title: New Prediction Models for Mean Particle Size in Rock Blast Fragmentation publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-012-9496-3 – ident: ref_75 – volume: 24 start-page: 123 year: 1996 ident: ref_66 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 – volume: 346 start-page: 128483 year: 2022 ident: ref_30 article-title: Development of hybrid models using metaheuristic optimization techniques to predict the carbonation depth of fly ash concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128483 – volume: 125 start-page: 103612 year: 2021 ident: ref_4 article-title: Classification of rock fragments produced by tunnel boring machine using convolutional neural networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103612 – ident: ref_27 doi: 10.3390/pr10051013 – volume: 82 start-page: 187 year: 2023 ident: ref_33 article-title: A novel ensemble machine learning model to predict mine blasting–induced rock fragmentation publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-023-03138-y – volume: 16 start-page: e01059 year: 2022 ident: ref_79 article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP) publication-title: Case Stud. Constr. Mater. – volume: 38 start-page: 381 year: 2022 ident: ref_2 article-title: A new hybrid model of information entropy and unascertained measurement with different membership functions for evaluating destressability in burst-prone underground mines publication-title: Eng. Comput. doi: 10.1007/s00366-020-01151-3 – volume: 10 start-page: 409 year: 2017 ident: ref_40 article-title: Prediction of blasting-induced fragmentation in Meydook copper mine using empirical, statistical, and mutual information models publication-title: Arab. J. Geosci. doi: 10.1007/s12517-017-3189-4 – volume: 5 start-page: 441 year: 2012 ident: ref_7 article-title: Prediction of flyrock and backbreak in open pit blasting operation: A neuro-genetic approach publication-title: Arab. J. Geosci. doi: 10.1007/s12517-010-0185-3 – ident: ref_19 – volume: 50 start-page: 781 year: 2017 ident: ref_23 article-title: A distribution-free description of fragmentation by blasting based on dimensional analysis publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-016-1131-9 – ident: ref_82 doi: 10.1371/journal.pone.0286950 – volume: 45 start-page: 5 year: 2001 ident: ref_53 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 31 start-page: 5999 year: 2023 ident: ref_62 article-title: LGBM-based modeling scenarios to compressive strength of recycled aggregate concrete with SHAP analysis publication-title: Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2023.2224782 – volume: 79 start-page: 103677 year: 2022 ident: ref_81 article-title: Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2022.103677 – volume: 46 start-page: 389 year: 2013 ident: ref_6 article-title: Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-012-0269-3 |
| SSID | ssj0000913810 |
| Score | 2.3264635 |
| Snippet | Blasting is an effective technique for fragmenting rock in open-pit mining operations. Blasting operations produce either boulders or fine fragments, both of... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 8363 |
| SubjectTerms | Accuracy Artificial intelligence blasting Civil engineering Data analysis Data collection Datasets Explosives extra trees algorithm Human error mean fragmentation size Mines Mining engineering Normal distribution open-pit mines Optimization algorithms rock fragmentation Variables |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVgywEOQAuIhYJ86AEOVuOPOM4JbdFWILElokUqpyixJ9uV2KRNUoT6f_ifjBNvW4TEiRwdy7Lk8ZsZz8wbQvYgtSIyqWVVCTFTTnOWJq5kJo6cilNteTmw639Kjo7M6WmahfLoLqRVbjBxAOqR7dnnbSMI77vG-hfzfSnQVxde_787v2C-h5SPtYaGGnfJlifeMhOylX1cZN-u31w8B6bh0VimJ3EFHyX2Gt1ILf9QTAN__1_wPOicw0f_d7ePycNge9LZKCzb5A7UO-TBLUbCHbId7npH3wRC6rdPyK_ZTZSbNhWd_-zbgp20gNO-wHLMpK1pUTvqB9nxwEl72YKjWdFeQU3nCCRr79539DNi1DoUf9LZ9yXusz9b076hWeuDRj09QIO-Z76niMUVFlDUFM3r5TpUSdX0eHUFdFVTnwzDslVPFz53_yn5ejg_ef-BhfYOzKIV1zOD2GGlhiQt0OZQwkXoLXHuwKJVYbgELgolrEbRKUADyAi0LEoRV7Li1mn5jEzqpobnhMqC2wISgf6jVmjTpCV-TvFSuLJCj3BK9jZnm5-PLB45ej9eBPJbIjAlB_7cr6d46u1hoGmXebjJeVJarqootkJESklheALKaAVWgoGIT8nuRiTygAddfiMBL_79-yW5L3yH4ShhwuySCR4YvCL37I9-1bWvg0D_BheNCYM priority: 102 providerName: ProQuest |
| Title | Application of Extra-Trees Regression and Tree-Structured Parzen Estimators Optimization Algorithm to Predict Blast-Induced Mean Fragmentation Size in Open-Pit Mines |
| URI | https://www.proquest.com/docview/3239020154 https://doaj.org/article/7bc14f05c2204432817e4864ec3e8e01 |
| Volume | 15 |
| WOSCitedRecordID | wos001548997100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ4QAHRAuIhVLNoQc4WMQf6zjHXbQVSOwStUUqp8ixJ0skNouyAaH-H_4n4ySFRRy4kFssK448M5438swbxk4x8zKxmedViVOugxE8S0PJ7TQJepoZL8qeXf9dulrZq6ss32v1FXPCBnrgYeNepaUXukqmXspEayWtSFFbo9ErtDhUbhHq2Qum-jM4E5G6aijIUxTXx_vg6LutMuoPF9Qz9f91EPfe5ewBuz_CQpgNv3PIbmFzxO7tkQUescPRDHfwYuSKfvmQ_Zj9voCGbQWL713r-GWLNO0c10OSawOuCRAH-UVPF_u1xQC5a6-xgQXZ-CZG3jt4T8fHZqzLhNnn9batu08b6LaQt_E-p4M5Ye2Ox3Yfnr6wRNcAId_1ZixgauCivkaoG4h5KjyvO1jGtPpH7MPZ4vL1Gz52XuCeAFbHLZm1VwbTzBEc0DIkFMgIEdCTw7dCoZBOS29Iqg4NokrQKFfKaaUq4YNRj9lBs23wCQPlhHeYSgrtjCa4kZX0BC1KGcqKgrUJO70RRvFlINgoKDCJMiv2ZDZh8yioX1MiK3Y_QLpSjLpS_EtXJuz4RszFaKq7QklaSkYo-fR_rPGM3ZWxRXCScmmP2QGJFZ-zO_5bV-_aE3Z7vljl5ye9ttJb_naZf_wJFmjwwQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFolyAFpALBTwoUhwsIgfSZwDQlvYqqvuLhFdpPYUEnuyXYnNliS8-n-48hsZZ7NtERK3HsjRsSzL_jwzn8czQ8gOREZ4OjIsz8BnygacRaHNmPY9q_woMDxrsusPw_FYHx1F8Rr5tYqFcc8qVzKxEdR2Ydwd-UspkJ0Lp_Ffn35mrmqU866uSmgsYXEAP74hZateDd7i_j4TYq8_ebPP2qoCzKDxUDONkDUygDBKUdUpYT000jm3YFCZaS6Bi1QJE-CMUwgApAeBTDPh5zLnxgYSx71G1hWCXXfIejwYxcfntzouy6bm3jIQUOKMnR_a2QxaBvIP1ddUCPhLATRabe_2_7Yed8it1n6mvSXgN8kaFFvk5qWsiltks5VXFX3eJtV-cZf87F146ukip_3vdZmySQnY7T1Ml6-BC5oWlrpGdtjk1f1SgqVxWp5BQfsoDOfuiqKi71DOztsAVtr7NMV1qU_mtF7QuHSOr5ruIimpmauLYnCEEaQFRYownbeRXgU9nJ0BnRXUPehh8aymIxd_cI98uJLFu086xaKAB4TKlJsUQoEcOFBol0UZflbxTNgsR1bbJTsr9CSny0wkCTI4B7LkEsi6ZNch67yLSx_eNCzKadJKoyTMDFe55xshPKWk0DwEpQMFRoIGj3fJ9gp0SSvTquQCcQ___fspubE_GQ2T4WB88IhsCFcx2QuZ0Nukg5sHj8l187WeVeWT9vhQ8vGqEfobIJpZ4g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9MwHLdGhxAcgA0QhQE-DAkO1uJHEueAUMdaUW0tERvSOIXE_qdUoulIw2vfhy_Bp-PvPLYhJG47kKNjWZb98__9IGQbIiM8HRmWZ-AzZQPOotBmTPueVX4UGJ7V1fUPwulUHx9H8Rr51eXCuLDKjibWhNoujbOR70iB2rlwHH8nb8Mi4r3Ry5PPzHWQcp7Wrp1GA5F9-PEN1bfVi_Ee3vVTIUbDo1evWdthgBkUJCqmEb5GBhBGKbI9JayHAjvnFgwyNs0lcJEqYQLcfQoBgPQgkGkm_Fzm3NhA4rpXyDqK5Er1yHo8nsTvzyw8ruKm5l6TFChx984n7eQHLQP5BxusuwX8xQxqDje69T-fzW1ys5Wr6aB5CBtkDYpNcuNCtcVNstHSsRV91hbbfn6H_Byce_DpMqfD71WZsqMScNpbmDVRwgVNC0vdIDus6-1-KcHSOC1PoaBDJJILZ7pY0TdIfxdtYisdfJrhuVQfF7Ra0rh0DrGK7qKyUjHXL8XgChNIC4qqw2zRZoAV9HB-CnReUBfow-J5RScuL-EueXcph3eP9IplAfcJlSk3KYQCdeNAobwWZfhZxTNhsxy13T7Z7pCUnDQVShLU7BzgkguA65Ndh7KzKa6seD2wLGdJS6WSMDNc5Z5vhPCUkkLzEJQOFBgJGjzeJ1sdAJOW1q2Sc_Q9-PfvJ-QawjI5GE_3H5LrwjVS9kIm9Bbp4d3BI3LVfK3mq_Jx-5Io-XDZAP0NwIpiow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Extra-Trees+Regression+and+Tree-Structured+Parzen+Estimators+Optimization+Algorithm+to+Predict+Blast-Induced+Mean+Fragmentation+Size+in+Open-Pit+Mines&rft.jtitle=Applied+sciences&rft.au=Madalitso+Mame&rft.au=Shuai+Huang&rft.au=Chuanqi+Li&rft.au=Jian+Zhou&rft.date=2025-07-28&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=15&rft.spage=8363&rft_id=info:doi/10.3390%2Fapp15158363&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7bc14f05c2204432817e4864ec3e8e01 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |