Weight for It: Resistance Training Mitigates White Matter Hyperintensity-Related Disruption to Functional Networks in Older Females

White matter hyperintensities (WMH) are associated with impaired cognition and increased falls risk. Resistance training (RT) is a promising intervention to reduce WMH progression, improve executive functions, and reduce falls. However, the underlying neurobiological process by which RT improves exe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Alzheimer's disease Ročník 90; číslo 2; s. 553
Hlavní autoři: Crockett, Rachel A, Hsu, Chun Liang, Dao, Elizabeth, Tam, Roger, Eng, Janice J, Handy, Todd C, Liu-Ambrose, Teresa
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2022
ISSN:1875-8908, 1875-8908
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:White matter hyperintensities (WMH) are associated with impaired cognition and increased falls risk. Resistance training (RT) is a promising intervention to reduce WMH progression, improve executive functions, and reduce falls. However, the underlying neurobiological process by which RT improves executive functions and falls risk remain unclear. We hypothesized that: 1) RT reduces the level of WMH-related disruption to functional networks; and 2) reduced disruption to the sensorimotor and attention networks will be associated with improved executive function and reduced falls risk.BACKGROUNDWhite matter hyperintensities (WMH) are associated with impaired cognition and increased falls risk. Resistance training (RT) is a promising intervention to reduce WMH progression, improve executive functions, and reduce falls. However, the underlying neurobiological process by which RT improves executive functions and falls risk remain unclear. We hypothesized that: 1) RT reduces the level of WMH-related disruption to functional networks; and 2) reduced disruption to the sensorimotor and attention networks will be associated with improved executive function and reduced falls risk.Investigate the impact of 52 weeks of RT on WMH-related disruption to functional networks.OBJECTIVEInvestigate the impact of 52 weeks of RT on WMH-related disruption to functional networks.Thirty-two older females (65-75 years) were included in this exploratory analysis of a 52-week randomized controlled trial. Participants received either twice-weekly RT or balance and tone training (control). We used lesion network mapping to assess changes in WMH-related disruption to the sensorimotor, dorsal attention, and ventral attention networks. Executive function was measured using the Stroop Colour-Word Test. Falls risk was assessed using the Physiological Profile Assessment (PPA) and the foam sway test.METHODSThirty-two older females (65-75 years) were included in this exploratory analysis of a 52-week randomized controlled trial. Participants received either twice-weekly RT or balance and tone training (control). We used lesion network mapping to assess changes in WMH-related disruption to the sensorimotor, dorsal attention, and ventral attention networks. Executive function was measured using the Stroop Colour-Word Test. Falls risk was assessed using the Physiological Profile Assessment (PPA) and the foam sway test.RT significantly reduced the level of WMH-related disruption to the sensorimotor network (p = 0.012). Reduced disruption to the dorsal attention network was associated with improvements in Stroop performance (r = 0.527, p = 0.030). Reduced disruption to the ventral attention network was associated with reduced PPA score (r = 0.485, p = 0.049)Conclusion:RT may be a promising intervention to mitigate WMH-related disruption to the sensorimotor network. Additionally, reducing disruption to the dorsal and ventral attention networks may contribute to improved executive function and reduced falls risk respectively.RESULTSRT significantly reduced the level of WMH-related disruption to the sensorimotor network (p = 0.012). Reduced disruption to the dorsal attention network was associated with improvements in Stroop performance (r = 0.527, p = 0.030). Reduced disruption to the ventral attention network was associated with reduced PPA score (r = 0.485, p = 0.049)Conclusion:RT may be a promising intervention to mitigate WMH-related disruption to the sensorimotor network. Additionally, reducing disruption to the dorsal and ventral attention networks may contribute to improved executive function and reduced falls risk respectively.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1875-8908
1875-8908
DOI:10.3233/JAD-220142