Robust Low-Tubal-Rank Tensor Completion Based on Tensor Factorization and Maximum Correntopy Criterion

The goal of tensor completion is to recover a tensor from a subset of its entries, often by exploiting its low-rank property. Among several useful definitions of tensor rank, the low tubal rank was shown to give a valuable characterization of the inherent low-rank structure of a tensor. While some l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 35; číslo 10; s. 14603 - 14617
Hlavní autoři: He, Yicong, Atia, George K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2024
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The goal of tensor completion is to recover a tensor from a subset of its entries, often by exploiting its low-rank property. Among several useful definitions of tensor rank, the low tubal rank was shown to give a valuable characterization of the inherent low-rank structure of a tensor. While some low-tubal-rank tensor completion algorithms with favorable performance have been recently proposed, these algorithms utilize second-order statistics to measure the error residual, which may not work well when the observed entries contain large outliers. In this article, we propose a new objective function for low-tubal-rank tensor completion, which uses correntropy as the error measure to mitigate the effect of the outliers. To efficiently optimize the proposed objective, we leverage a half-quadratic minimization technique whereby the optimization is transformed to a weighted low-tubal-rank tensor factorization problem. Subsequently, we propose two simple and efficient algorithms to obtain the solution and provide their convergence and complexity analysis. Numerical results using both synthetic and real data demonstrate the robust and superior performance of the proposed algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2023.3280086