Light types for polynomial time computation in lambda calculus
We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial time: dual light affine logic (DLAL). DLAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of light affin...
Uloženo v:
| Vydáno v: | Information and computation Ročník 207; číslo 1; s. 41 - 62 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
2009
Elsevier |
| Témata: | |
| ISSN: | 0890-5401, 1090-2651 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial time:
dual light affine logic (DLAL). DLAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of
light affine logic (LAL). We show that contrarily to LAL, DLAL ensures good properties on lambda-terms (and not only on proof-nets): subject reduction is satisfied and a well-typed term admits a polynomial bound on the length of any of its beta reduction sequences. We also give a translation of LAL into DLAL and deduce from it that all polynomial time functions can be represented in DLAL. |
|---|---|
| ISSN: | 0890-5401 1090-2651 |
| DOI: | 10.1016/j.ic.2008.08.005 |