Finite-Horizon H∞ State Estimation for Complex Networks With Uncertain Couplings and Packet Losses: Handling Amplify-and-Forward Relays

This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 35; H. 12; S. 17493 - 17503
Hauptverfasser: Meng, Xueyang, Wang, Zidong, Wang, Fan, Chen, Yun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.12.2024
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method.
AbstractList This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method.This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method.
This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method.
This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method.
Author Meng, Xueyang
Chen, Yun
Wang, Fan
Wang, Zidong
Author_xml – sequence: 1
  givenname: Xueyang
  orcidid: 0000-0003-0016-3718
  surname: Meng
  fullname: Meng, Xueyang
  email: xueyangmeng@163.com
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: Zidong.Wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 3
  givenname: Fan
  orcidid: 0000-0002-0772-9801
  surname: Wang
  fullname: Wang, Fan
  email: wangfan.92128@gmail.com
  organization: Institute for Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Duisburg, Germany
– sequence: 4
  givenname: Yun
  orcidid: 0000-0002-9934-9979
  surname: Chen
  fullname: Chen, Yun
  email: yunchen@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37610894$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS3UipbSF0AIeclmgsf_w66KGoIUpVV_BLuRx3MHTCfj1HZU0icoL8HD8SQ4TagQC7yxfe93ruVzXqC9wQ-A0KuSjMqSVO-u5vPZ5YgSykaMES5K8Qwd0lLSgjKt957O6vMBOo7xG8lLEiF59RwdMCVLoit-iH5M3OASFFMf3L0f8PTXw098mUwCfBqTW5jkcrXzAY_9YtnDdzyHdOfDTcSfXPqKrwcLIRk35P5q2bvhS8RmaPG5sTeQ8MzHCPE9nubapolP8hDXrYt8LyY-3JnQ4gvozTq-RPud6SMc7_YjdD05vRpPi9nZh4_jk1lhGeWpEIoYSRrNOJfQdZS3jWpUV2koDbOG6JYAkdDKVqiOgtBSC2m5aCpCjCWEHaG327nL4G9XEFO9cNFC35sB_CrWtKKslIpXIqNvduiqWUBbL0M2JKzrP_ZlgG4BG_JHA3RPSEnqTUz1Y0z1JqZ6F1MW6X9E1qVHn1Mwrv-_9PVW6gDgr7coVYpx9htpd6H9
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TASE_2025_3578652
crossref_primary_10_1016_j_neucom_2024_129317
crossref_primary_10_1109_TNSE_2025_3567517
crossref_primary_10_1016_j_ins_2025_122355
crossref_primary_10_1080_21642583_2024_2357796
Cites_doi 10.1109/TNSE.2021.3076113
10.1109/TSP.2017.2686375
10.1109/TWC.2018.2834528
10.1080/00207721.2022.2146990
10.1109/TNSE.2022.3163258
10.1109/LCOMM.2019.2901480
10.1109/TCOMM.2020.3024579
10.1016/j.neucom.2022.04.096
10.1109/tnnls.2021.3131661
10.1109/OJCOMS.2022.3154292
10.1080/00207721.2022.2049918
10.1109/LPT.2015.2414938
10.1080/21642583.2022.2063203
10.1109/TNNLS.2013.2271357
10.1109/TCOMM.2015.2503392
10.53941/ijndi0201007
10.1109/TWC.2015.2496254
10.1109/TNNLS.2019.2900045
10.1017/S0305004100030929
10.1080/21642583.2022.2074169
10.1109/TAC.2015.2478129
10.1109/TII.2016.2607150
10.1016/j.jfranklin.2021.10.038
10.1109/WCL.2013.020513.120933
10.1080/00207721.2023.2216274
10.1126/science.aad9029
10.1109/TCYB.2020.3004288
10.1109/TCYB.2019.2924485
10.1080/00207721.2020.1754960
10.1109/TCYB.2017.2653242
10.1109/TSMC.2017.2723760
10.1109/TCNS.2020.3035759
10.1109/JAS.2022.105581
10.1109/TSP.2009.2030622
10.1080/21642583.2022.2048322
10.1109/TWC.2011.040511.101285
10.1364/JOCN.11.000362
10.1016/j.neucom.2022.03.002
10.1080/00207721.2023.2208130
10.1109/TNNLS.2021.3051052
10.1109/TVT.2017.2786308
10.1016/j.physd.2006.09.012
10.1109/TCSII.2017.2767859
10.1016/j.automatica.2014.04.012
10.1016/j.inffus.2019.07.008
10.1109/LCSYS.2020.3001715
10.1109/TNNLS.2020.3027467
10.1109/TCYB.2020.2977468
10.1109/TCOMM.2016.2574838
10.53941/ijndi0201003
10.1109/TCYB.2018.2870133
10.1080/21642583.2022.2158959
10.1109/TCOMM.2020.3023929
10.1109/WCL.2013.070113.130266
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3304515
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 17503
ExternalDocumentID 37610894
10_1109_TNNLS_2023_3304515
10227734
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent of China
  grantid: 2022ZB128
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M710683
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61973102; 61933007; U22A2044
  funderid: 10.13039/501100001809
– fundername: Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany
  funderid: 10.13039/501100000288
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c324t-570a60b83446eff24db7b7f98e1a3ca08d0e06ed6d57f2e586856c45b900ac003
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001060531600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 07:15:20 EDT 2025
Wed Mar 05 02:44:32 EST 2025
Sat Nov 29 01:40:27 EST 2025
Tue Nov 18 22:41:42 EST 2025
Wed Aug 27 02:27:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-570a60b83446eff24db7b7f98e1a3ca08d0e06ed6d57f2e586856c45b900ac003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9576-7401
0000-0002-0772-9801
0000-0002-9934-9979
0000-0003-0016-3718
PMID 37610894
PQID 2923167495
PQPubID 23479
PageCount 11
ParticipantIDs ieee_primary_10227734
proquest_miscellaneous_2923167495
crossref_citationtrail_10_1109_TNNLS_2023_3304515
pubmed_primary_37610894
crossref_primary_10_1109_TNNLS_2023_3304515
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref23
  doi: 10.1109/TNSE.2021.3076113
– ident: ref8
  doi: 10.1109/TSP.2017.2686375
– ident: ref40
  doi: 10.1109/TWC.2018.2834528
– ident: ref54
  doi: 10.1080/00207721.2022.2146990
– ident: ref12
  doi: 10.1109/TNSE.2022.3163258
– ident: ref32
  doi: 10.1109/LCOMM.2019.2901480
– ident: ref16
  doi: 10.1109/TCOMM.2020.3024579
– ident: ref20
  doi: 10.1016/j.neucom.2022.04.096
– ident: ref33
  doi: 10.1109/tnnls.2021.3131661
– ident: ref29
  doi: 10.1109/OJCOMS.2022.3154292
– ident: ref24
  doi: 10.1080/00207721.2022.2049918
– ident: ref31
  doi: 10.1109/LPT.2015.2414938
– ident: ref49
  doi: 10.1080/21642583.2022.2063203
– ident: ref37
  doi: 10.1109/TNNLS.2013.2271357
– ident: ref35
  doi: 10.1109/TCOMM.2015.2503392
– ident: ref48
  doi: 10.53941/ijndi0201007
– ident: ref2
  doi: 10.1109/TWC.2015.2496254
– ident: ref41
  doi: 10.1109/TNNLS.2019.2900045
– ident: ref34
  doi: 10.1017/S0305004100030929
– ident: ref1
  doi: 10.1080/21642583.2022.2074169
– ident: ref22
  doi: 10.1109/TAC.2015.2478129
– ident: ref53
  doi: 10.1109/TII.2016.2607150
– ident: ref10
  doi: 10.1016/j.jfranklin.2021.10.038
– ident: ref9
  doi: 10.1109/WCL.2013.020513.120933
– ident: ref52
  doi: 10.1080/00207721.2023.2216274
– ident: ref3
  doi: 10.1126/science.aad9029
– ident: ref6
  doi: 10.1109/TCYB.2020.3004288
– ident: ref36
  doi: 10.1109/TCYB.2019.2924485
– ident: ref42
  doi: 10.1080/00207721.2020.1754960
– ident: ref26
  doi: 10.1109/TCYB.2017.2653242
– ident: ref51
  doi: 10.1109/TSMC.2017.2723760
– ident: ref14
  doi: 10.1109/TCNS.2020.3035759
– ident: ref17
  doi: 10.1109/JAS.2022.105581
– ident: ref39
  doi: 10.1109/TSP.2009.2030622
– ident: ref43
  doi: 10.1080/21642583.2022.2048322
– ident: ref11
  doi: 10.1109/TWC.2011.040511.101285
– ident: ref25
  doi: 10.1364/JOCN.11.000362
– ident: ref47
  doi: 10.1016/j.neucom.2022.03.002
– ident: ref21
  doi: 10.1080/00207721.2023.2208130
– ident: ref18
  doi: 10.1109/TNNLS.2021.3051052
– ident: ref38
  doi: 10.1109/TVT.2017.2786308
– ident: ref28
  doi: 10.1016/j.physd.2006.09.012
– ident: ref50
  doi: 10.1109/TCSII.2017.2767859
– ident: ref13
  doi: 10.1016/j.automatica.2014.04.012
– ident: ref4
  doi: 10.1016/j.inffus.2019.07.008
– ident: ref30
  doi: 10.1109/LCSYS.2020.3001715
– ident: ref45
  doi: 10.1109/TNNLS.2020.3027467
– ident: ref5
  doi: 10.1109/TCYB.2020.2977468
– ident: ref7
  doi: 10.1109/TCOMM.2016.2574838
– ident: ref27
  doi: 10.53941/ijndi0201003
– ident: ref46
  doi: 10.1109/TCYB.2018.2870133
– ident: ref15
  doi: 10.1080/21642583.2022.2158959
– ident: ref44
  doi: 10.1109/TCOMM.2020.3023929
– ident: ref19
  doi: 10.1109/WCL.2013.070113.130266
SSID ssj0000605649
Score 2.5250056
Snippet This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17493
SubjectTerms Amplify-and-forward (AaF) relay protocols
Complex networks
complex networks (CNs)
coupled backward Riccati difference
Couplings
Packet loss
packet losses
Protocols
Relays
State estimation
Symmetric matrices
uncertain couplings
Title Finite-Horizon H∞ State Estimation for Complex Networks With Uncertain Couplings and Packet Losses: Handling Amplify-and-Forward Relays
URI https://ieeexplore.ieee.org/document/10227734
https://www.ncbi.nlm.nih.gov/pubmed/37610894
https://www.proquest.com/docview/2923167495
Volume 35
WOSCitedRecordID wos001060531600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZohVAvLY9SlkdlJG7IWyfrR8KtQl3toYoq0Yq9RY4fsFKVoE22ovwC-BP8OH4JM06ygkORuCWyx4k039jf2DMeQt5IaQAoImPBB88EOAAsty4HLyUBSHNudGpisQldFNlymV8MyeoxF8Z7H4PP_BQf41m-a-wGt8pO0DvReiZ2yI7Wqk_W2m6ocCDmKtLdNFEpS2d6OSbJ8PzksijOP0yxVvgUPXhYxffIAzCuhGe5-GtNikVW7uabcd2ZH_znHz8k-wPBpKc9Ih6Re75-TA7G4g10sOUn5Md8hXSTLZr16ltT08Wv7z9ppJ70DMy-z2ikQGkpyl77r7ToI8Zb-nHVfaZXMEqMJoD2Dab1fmqpqR29MDAvdPS8wdPkd3SBtzhAIz3F0PVwy-CdzZs1ButSjMS7bQ_J1fzs8v2CDXUZmAX61TGpuVG8wgodyoeQClfpSoc884mZWcMzxz1X3ikndUi9zFQmlRWyykH3FqaRp2S3bmr_jNAKZGRlK-90ENwpI6UVPjNOq6Bl8BOSjJop7XBpOdbOuC6j88LzMiq2RMWWg2In5O1W5kt_Zcc_ex-i2v7o2WtsQl6PCCjB4vAYxdS-2bRlipxYafAsJ-Soh8ZWekTU8ztGfUH24OOij4d5SXa79ca_IvftTbdq18cA62V2HGH9Gx7I80M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagIOiF8lPK8mskbshbJxvbCbcKdbWIJarEVuwtcvxTVqoStMlWlCeAl-DheBJmnGQFhyJxS2SPZWlm7G_sGX-EvBJCg6EkKfPOO5ZAAMAyYzOIUiIwac61inUgm1B5ni6X2UlfrB5qYZxzIfnMjfEz3OXb2mzwqOwQoxOlJsl1cgOps7KuXGt7pMIBmssAeONIxiyeqOVQJsOzw0Wezz-OkS18jDE87OO75Ba4V8TTLPlrVwo0K1cjzrDzTPf-c853yZ0eYtKjzibukWuuuk_2BvoG2nvzA_JjukLAyWb1evWtrujs1_efNIBPegyO39U0UgC1FGXP3VeadznjDf20aj_TUxgl5BNA-wYLe88aqitLTzSsDC2d13if_IbO8B0HaKRHmLzuLxn8s2m9xnRdirl4l80-OZ0eL97OWM_MwAwAsJYJxbXkJXJ0SOd9nNhSlcpnqYv0xGieWu64dFZaoXzsRCpTIU0iygy0b2AheUh2qrpyjwgtQUaUpnRW-YRbqYUwiUu1VdIr4d2IRINmCtM_W47sGedFCF94VgTFFqjYolfsiLzeynzpHu34Z-99VNsfPTuNjcjLwQIK8Dm8SNGVqzdNESMqlgpiyxE56ExjKz1Y1OMrRn1Bbs8WH-bF_F3-_gnZhYkkXXbMU7LTrjfuGblpLtpVs34ejPs3Qkj1qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Horizon+H+%E2%88%9E+State+Estimation+for+Complex+Networks+With+Uncertain+Couplings+and+Packet+Losses%3A+Handling+Amplify-and-Forward+Relays&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Meng%2C+Xueyang&rft.au=Wang%2C+Zidong&rft.au=Wang%2C+Fan&rft.au=Chen%2C+Yun&rft.date=2024-12-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=12&rft.spage=17493&rft.epage=17503&rft_id=info:doi/10.1109%2FTNNLS.2023.3304515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2023_3304515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon