Finite-Horizon H∞ State Estimation for Complex Networks With Uncertain Couplings and Packet Losses: Handling Amplify-and-Forward Relays
This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay prot...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 35; H. 12; S. 17493 - 17503 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.12.2024
|
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method. |
|---|---|
| AbstractList | This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method.This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method. This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method. This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over communication networks. The inner couplings are allowed to be uncertain and varying in a specific interval. The amplify-and-forward (AaF) relay protocols are introduced to improve the communication quality and enhance the propagation distance. The Bernoulli random variables are used to characterize the randomly occurring packet losses encountered in communication channels. The focus of this article is on the design of a state estimator for each node of CNs such that a prescribed performance constraint is satisfied for the dynamical error system over a finite horizon. A sufficient condition is first provided to verify the existence of the desired state estimator, and the estimator gain is then determined by solving two coupled backward Riccati difference equations (RDEs). Subsequently, a recursive state estimation algorithm is put forward that is suitable for online computation. Finally, a numerical example is given to demonstrate the effectiveness of the proposed estimation method. |
| Author | Meng, Xueyang Chen, Yun Wang, Fan Wang, Zidong |
| Author_xml | – sequence: 1 givenname: Xueyang orcidid: 0000-0003-0016-3718 surname: Meng fullname: Meng, Xueyang email: xueyangmeng@163.com organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: Zidong.Wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, U.K – sequence: 3 givenname: Fan orcidid: 0000-0002-0772-9801 surname: Wang fullname: Wang, Fan email: wangfan.92128@gmail.com organization: Institute for Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Duisburg, Germany – sequence: 4 givenname: Yun orcidid: 0000-0002-9934-9979 surname: Chen fullname: Chen, Yun email: yunchen@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37610894$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uEzEUhS3UipbSF0AIeclmgsf_w66KGoIUpVV_BLuRx3MHTCfj1HZU0icoL8HD8SQ4TagQC7yxfe93ruVzXqC9wQ-A0KuSjMqSVO-u5vPZ5YgSykaMES5K8Qwd0lLSgjKt957O6vMBOo7xG8lLEiF59RwdMCVLoit-iH5M3OASFFMf3L0f8PTXw098mUwCfBqTW5jkcrXzAY_9YtnDdzyHdOfDTcSfXPqKrwcLIRk35P5q2bvhS8RmaPG5sTeQ8MzHCPE9nubapolP8hDXrYt8LyY-3JnQ4gvozTq-RPud6SMc7_YjdD05vRpPi9nZh4_jk1lhGeWpEIoYSRrNOJfQdZS3jWpUV2koDbOG6JYAkdDKVqiOgtBSC2m5aCpCjCWEHaG327nL4G9XEFO9cNFC35sB_CrWtKKslIpXIqNvduiqWUBbL0M2JKzrP_ZlgG4BG_JHA3RPSEnqTUz1Y0z1JqZ6F1MW6X9E1qVHn1Mwrv-_9PVW6gDgr7coVYpx9htpd6H9 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TASE_2025_3578652 crossref_primary_10_1016_j_neucom_2024_129317 crossref_primary_10_1109_TNSE_2025_3567517 crossref_primary_10_1016_j_ins_2025_122355 crossref_primary_10_1080_21642583_2024_2357796 |
| Cites_doi | 10.1109/TNSE.2021.3076113 10.1109/TSP.2017.2686375 10.1109/TWC.2018.2834528 10.1080/00207721.2022.2146990 10.1109/TNSE.2022.3163258 10.1109/LCOMM.2019.2901480 10.1109/TCOMM.2020.3024579 10.1016/j.neucom.2022.04.096 10.1109/tnnls.2021.3131661 10.1109/OJCOMS.2022.3154292 10.1080/00207721.2022.2049918 10.1109/LPT.2015.2414938 10.1080/21642583.2022.2063203 10.1109/TNNLS.2013.2271357 10.1109/TCOMM.2015.2503392 10.53941/ijndi0201007 10.1109/TWC.2015.2496254 10.1109/TNNLS.2019.2900045 10.1017/S0305004100030929 10.1080/21642583.2022.2074169 10.1109/TAC.2015.2478129 10.1109/TII.2016.2607150 10.1016/j.jfranklin.2021.10.038 10.1109/WCL.2013.020513.120933 10.1080/00207721.2023.2216274 10.1126/science.aad9029 10.1109/TCYB.2020.3004288 10.1109/TCYB.2019.2924485 10.1080/00207721.2020.1754960 10.1109/TCYB.2017.2653242 10.1109/TSMC.2017.2723760 10.1109/TCNS.2020.3035759 10.1109/JAS.2022.105581 10.1109/TSP.2009.2030622 10.1080/21642583.2022.2048322 10.1109/TWC.2011.040511.101285 10.1364/JOCN.11.000362 10.1016/j.neucom.2022.03.002 10.1080/00207721.2023.2208130 10.1109/TNNLS.2021.3051052 10.1109/TVT.2017.2786308 10.1016/j.physd.2006.09.012 10.1109/TCSII.2017.2767859 10.1016/j.automatica.2014.04.012 10.1016/j.inffus.2019.07.008 10.1109/LCSYS.2020.3001715 10.1109/TNNLS.2020.3027467 10.1109/TCYB.2020.2977468 10.1109/TCOMM.2016.2574838 10.53941/ijndi0201003 10.1109/TCYB.2018.2870133 10.1080/21642583.2022.2158959 10.1109/TCOMM.2020.3023929 10.1109/WCL.2013.070113.130266 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNNLS.2023.3304515 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 17503 |
| ExternalDocumentID | 37610894 10_1109_TNNLS_2023_3304515 10227734 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent of China grantid: 2022ZB128 – fundername: China Postdoctoral Science Foundation grantid: 2022M710683 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 61973102; 61933007; U22A2044 funderid: 10.13039/501100001809 – fundername: Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany funderid: 10.13039/501100000288 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c324t-570a60b83446eff24db7b7f98e1a3ca08d0e06ed6d57f2e586856c45b900ac003 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001060531600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Thu Oct 02 07:15:20 EDT 2025 Wed Mar 05 02:44:32 EST 2025 Sat Nov 29 01:40:27 EST 2025 Tue Nov 18 22:41:42 EST 2025 Wed Aug 27 02:27:48 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-570a60b83446eff24db7b7f98e1a3ca08d0e06ed6d57f2e586856c45b900ac003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9576-7401 0000-0002-0772-9801 0000-0002-9934-9979 0000-0003-0016-3718 |
| PMID | 37610894 |
| PQID | 2923167495 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10227734 proquest_miscellaneous_2923167495 crossref_citationtrail_10_1109_TNNLS_2023_3304515 pubmed_primary_37610894 crossref_primary_10_1109_TNNLS_2023_3304515 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref23 doi: 10.1109/TNSE.2021.3076113 – ident: ref8 doi: 10.1109/TSP.2017.2686375 – ident: ref40 doi: 10.1109/TWC.2018.2834528 – ident: ref54 doi: 10.1080/00207721.2022.2146990 – ident: ref12 doi: 10.1109/TNSE.2022.3163258 – ident: ref32 doi: 10.1109/LCOMM.2019.2901480 – ident: ref16 doi: 10.1109/TCOMM.2020.3024579 – ident: ref20 doi: 10.1016/j.neucom.2022.04.096 – ident: ref33 doi: 10.1109/tnnls.2021.3131661 – ident: ref29 doi: 10.1109/OJCOMS.2022.3154292 – ident: ref24 doi: 10.1080/00207721.2022.2049918 – ident: ref31 doi: 10.1109/LPT.2015.2414938 – ident: ref49 doi: 10.1080/21642583.2022.2063203 – ident: ref37 doi: 10.1109/TNNLS.2013.2271357 – ident: ref35 doi: 10.1109/TCOMM.2015.2503392 – ident: ref48 doi: 10.53941/ijndi0201007 – ident: ref2 doi: 10.1109/TWC.2015.2496254 – ident: ref41 doi: 10.1109/TNNLS.2019.2900045 – ident: ref34 doi: 10.1017/S0305004100030929 – ident: ref1 doi: 10.1080/21642583.2022.2074169 – ident: ref22 doi: 10.1109/TAC.2015.2478129 – ident: ref53 doi: 10.1109/TII.2016.2607150 – ident: ref10 doi: 10.1016/j.jfranklin.2021.10.038 – ident: ref9 doi: 10.1109/WCL.2013.020513.120933 – ident: ref52 doi: 10.1080/00207721.2023.2216274 – ident: ref3 doi: 10.1126/science.aad9029 – ident: ref6 doi: 10.1109/TCYB.2020.3004288 – ident: ref36 doi: 10.1109/TCYB.2019.2924485 – ident: ref42 doi: 10.1080/00207721.2020.1754960 – ident: ref26 doi: 10.1109/TCYB.2017.2653242 – ident: ref51 doi: 10.1109/TSMC.2017.2723760 – ident: ref14 doi: 10.1109/TCNS.2020.3035759 – ident: ref17 doi: 10.1109/JAS.2022.105581 – ident: ref39 doi: 10.1109/TSP.2009.2030622 – ident: ref43 doi: 10.1080/21642583.2022.2048322 – ident: ref11 doi: 10.1109/TWC.2011.040511.101285 – ident: ref25 doi: 10.1364/JOCN.11.000362 – ident: ref47 doi: 10.1016/j.neucom.2022.03.002 – ident: ref21 doi: 10.1080/00207721.2023.2208130 – ident: ref18 doi: 10.1109/TNNLS.2021.3051052 – ident: ref38 doi: 10.1109/TVT.2017.2786308 – ident: ref28 doi: 10.1016/j.physd.2006.09.012 – ident: ref50 doi: 10.1109/TCSII.2017.2767859 – ident: ref13 doi: 10.1016/j.automatica.2014.04.012 – ident: ref4 doi: 10.1016/j.inffus.2019.07.008 – ident: ref30 doi: 10.1109/LCSYS.2020.3001715 – ident: ref45 doi: 10.1109/TNNLS.2020.3027467 – ident: ref5 doi: 10.1109/TCYB.2020.2977468 – ident: ref7 doi: 10.1109/TCOMM.2016.2574838 – ident: ref27 doi: 10.53941/ijndi0201003 – ident: ref46 doi: 10.1109/TCYB.2018.2870133 – ident: ref15 doi: 10.1080/21642583.2022.2158959 – ident: ref44 doi: 10.1109/TCOMM.2020.3023929 – ident: ref19 doi: 10.1109/WCL.2013.070113.130266 |
| SSID | ssj0000605649 |
| Score | 2.5250056 |
| Snippet | This article is concerned with the state estimation problem for a class of complex networks (CNs) with uncertain inner couplings and packet losses over... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17493 |
| SubjectTerms | Amplify-and-forward (AaF) relay protocols Complex networks complex networks (CNs) coupled backward Riccati difference Couplings Packet loss packet losses Protocols Relays State estimation Symmetric matrices uncertain couplings |
| Title | Finite-Horizon H∞ State Estimation for Complex Networks With Uncertain Couplings and Packet Losses: Handling Amplify-and-Forward Relays |
| URI | https://ieeexplore.ieee.org/document/10227734 https://www.ncbi.nlm.nih.gov/pubmed/37610894 https://www.proquest.com/docview/2923167495 |
| Volume | 35 |
| WOSCitedRecordID | wos001060531600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZohVAvLY9SlkdlJG7IWyfrR8KtQl3toYoq0Yq9RY4fsFKVoE22ovwC-BP8OH4JM06ygkORuCWyx4k039jf2DMeQt5IaQAoImPBB88EOAAsty4HLyUBSHNudGpisQldFNlymV8MyeoxF8Z7H4PP_BQf41m-a-wGt8pO0DvReiZ2yI7Wqk_W2m6ocCDmKtLdNFEpS2d6OSbJ8PzksijOP0yxVvgUPXhYxffIAzCuhGe5-GtNikVW7uabcd2ZH_znHz8k-wPBpKc9Ih6Re75-TA7G4g10sOUn5Md8hXSTLZr16ltT08Wv7z9ppJ70DMy-z2ikQGkpyl77r7ToI8Zb-nHVfaZXMEqMJoD2Dab1fmqpqR29MDAvdPS8wdPkd3SBtzhAIz3F0PVwy-CdzZs1ButSjMS7bQ_J1fzs8v2CDXUZmAX61TGpuVG8wgodyoeQClfpSoc884mZWcMzxz1X3ikndUi9zFQmlRWyykH3FqaRp2S3bmr_jNAKZGRlK-90ENwpI6UVPjNOq6Bl8BOSjJop7XBpOdbOuC6j88LzMiq2RMWWg2In5O1W5kt_Zcc_ex-i2v7o2WtsQl6PCCjB4vAYxdS-2bRlipxYafAsJ-Soh8ZWekTU8ztGfUH24OOij4d5SXa79ca_IvftTbdq18cA62V2HGH9Gx7I80M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagIOiF8lPK8mskbshbJxvbCbcKdbWIJarEVuwtcvxTVqoStMlWlCeAl-DheBJmnGQFhyJxS2SPZWlm7G_sGX-EvBJCg6EkKfPOO5ZAAMAyYzOIUiIwac61inUgm1B5ni6X2UlfrB5qYZxzIfnMjfEz3OXb2mzwqOwQoxOlJsl1cgOps7KuXGt7pMIBmssAeONIxiyeqOVQJsOzw0Wezz-OkS18jDE87OO75Ba4V8TTLPlrVwo0K1cjzrDzTPf-c853yZ0eYtKjzibukWuuuk_2BvoG2nvzA_JjukLAyWb1evWtrujs1_efNIBPegyO39U0UgC1FGXP3VeadznjDf20aj_TUxgl5BNA-wYLe88aqitLTzSsDC2d13if_IbO8B0HaKRHmLzuLxn8s2m9xnRdirl4l80-OZ0eL97OWM_MwAwAsJYJxbXkJXJ0SOd9nNhSlcpnqYv0xGieWu64dFZaoXzsRCpTIU0iygy0b2AheUh2qrpyjwgtQUaUpnRW-YRbqYUwiUu1VdIr4d2IRINmCtM_W47sGedFCF94VgTFFqjYolfsiLzeynzpHu34Z-99VNsfPTuNjcjLwQIK8Dm8SNGVqzdNESMqlgpiyxE56ExjKz1Y1OMrRn1Bbs8WH-bF_F3-_gnZhYkkXXbMU7LTrjfuGblpLtpVs34ejPs3Qkj1qg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Horizon+H+%E2%88%9E+State+Estimation+for+Complex+Networks+With+Uncertain+Couplings+and+Packet+Losses%3A+Handling+Amplify-and-Forward+Relays&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Meng%2C+Xueyang&rft.au=Wang%2C+Zidong&rft.au=Wang%2C+Fan&rft.au=Chen%2C+Yun&rft.date=2024-12-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=12&rft.spage=17493&rft.epage=17503&rft_id=info:doi/10.1109%2FTNNLS.2023.3304515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2023_3304515 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |