Sparse Approximation and Recovery by Greedy Algorithms

We study sparse approximation by greedy algorithms. Our contribution is twofold. First, we prove exact recovery with high probability of random K-sparse signals within ΓK(1+ε)l iterations of the orthogonal matching pursuit (OMP). This result shows that in a probabilistic sense, the OMP is almost opt...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 60; číslo 7; s. 3989 - 4000
Hlavní autori: Livshitz, Eugene D., Temlyakov, Vladimir N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study sparse approximation by greedy algorithms. Our contribution is twofold. First, we prove exact recovery with high probability of random K-sparse signals within ΓK(1+ε)l iterations of the orthogonal matching pursuit (OMP). This result shows that in a probabilistic sense, the OMP is almost optimal for exact recovery. Second, we prove the Lebesgue-type inequalities for the weak Chebyshev greedy algorithm, a generalization of the weak orthogonal matching pursuit to the case of a Banach space. The main novelty of these results is a Banach space setting instead of a Hilbert space setting. However, even in the case of a Hilbert space, our results add some new elements to known results on the Lebesgue-type inequalities for the restricted isometry property dictionaries. Our technique is a development of the recent technique created by Zhang.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2320932