Robust Focus Volume Regularization in Shape From Focus

Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 30; pp. 7215 - 7227
Main Authors: Ali, Usman, Mahmood, Muhammad Tariq
Format: Journal Article
Language:English
Published: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches.
AbstractList Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches.
Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches.Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches.
Author Ali, Usman
Mahmood, Muhammad Tariq
Author_xml – sequence: 1
  givenname: Usman
  orcidid: 0000-0002-8986-3173
  surname: Ali
  fullname: Ali, Usman
  email: usmanali@koreatech.ac.kr
  organization: School of Computer Science and Engineering, Future Convergence Engineering, Korea University of Technology and Education, Cheonan, South Korea
– sequence: 2
  givenname: Muhammad Tariq
  orcidid: 0000-0001-6814-3137
  surname: Mahmood
  fullname: Mahmood, Muhammad Tariq
  email: tariq@koreatech.ac.kr
  organization: School of Computer Science and Engineering, Future Convergence Engineering, Korea University of Technology and Education, Cheonan, South Korea
BookMark eNp9kD1PwzAQQC1URD9gR2KJxMKScrbPcTwiRKFSJVAprJFjHEiVxsVOBvj1pKRi6MDkG967s96YDGpXW0LOKUwpBXW9mj9NGTA65RSAJekRGVGFNAZANuhmEDKWFNWQjENYA1AUNDkhQ44cpVDJiCRLl7ehiWbOtCF6dVW7sdHSvreV9uW3bkpXR2UdPX_orY1m3m168pQcF7oK9mz_TsjL7G51-xAvHu_ntzeL2HCGTYyWSq6xYMZopa3WRr4VVAuVA_K0QMyBMstVgZAralIpIdWdykzOELXlE3LV791699na0GSbMhhbVbq2rg0ZEyJFwRNMO_TyAF271tfd7zoqYZwqJXhHQU8Z70Lwtsi2vtxo_5VRyHZNs65ptmua7Zt2SnKgmLL5LdN4XVb_iRe9WFpr_-4oAZIlkv8AYVaB4A
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_109931
crossref_primary_10_1016_j_measurement_2025_116668
crossref_primary_10_1016_j_eng_2025_03_035
crossref_primary_10_1016_j_patcog_2025_112112
crossref_primary_10_1109_TPAMI_2025_3577595
crossref_primary_10_1109_TMM_2023_3306072
crossref_primary_10_3390_math10183273
crossref_primary_10_1007_s11042_023_14984_z
crossref_primary_10_1007_s11045_022_00854_8
crossref_primary_10_1016_j_optlaseng_2023_107754
crossref_primary_10_1109_TIM_2025_3573361
crossref_primary_10_3390_app14041374
crossref_primary_10_1109_TMM_2022_3169055
crossref_primary_10_3390_math12010102
crossref_primary_10_1016_j_optlastec_2025_112563
crossref_primary_10_1016_j_cviu_2022_103619
crossref_primary_10_3390_biomimetics9010049
crossref_primary_10_1016_j_optlaseng_2023_107784
crossref_primary_10_3390_math11143056
Cites_doi 10.1109/IVMSPW.2013.6611940
10.1016/j.patcog.2014.10.008
10.1109/83.967395
10.1016/j.ins.2019.03.056
10.1016/j.patrec.2006.09.005
10.1007/978-3-642-02611-9_57
10.1109/ICIP.2019.8803256
10.1109/TIP.2012.2186144
10.1145/1360612.1360666
10.1109/TIP.2019.2937064
10.1109/TIP.2008.2007049
10.1137/140957639
10.1109/TCSVT.2014.2358873
10.1145/1015330.1015342
10.1137/080725891
10.1111/cgf.12625
10.1109/TIP.2010.2066983
10.1117/1.602498
10.1109/ICCV.2017.179
10.1016/j.patcog.2006.05.032
10.1145/2461912.2461992
10.1109/TCSVT.2005.844450
10.1109/TIP.2012.2190612
10.1111/j.1365-2818.2011.03567.x
10.1109/CVPR.2015.7298972
10.1016/j.patcog.2007.12.014
10.1007/978-3-319-10578-9_53
10.1016/j.patcog.2012.11.011
10.1016/j.jvcir.2018.06.029
10.1109/TPAMI.2017.2669034
10.1109/34.308479
10.1109/34.643894
10.1109/TPAMI.2011.144
10.1007/s10851-019-00918-8
10.1109/34.368191
10.1364/OE.18.014212
10.1109/LSP.2008.2008938
10.1109/TPAMI.2012.213
10.1109/TIP.2015.2479469
10.1145/1015706.1015777
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3100268
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 7227
ExternalDocumentID 10_1109_TIP_2021_3100268
9507267
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF) funded by the Ministry of Education
  funderid: 10.13039/501100003725
– fundername: BK-21 FOUR Program, Basic Science Research Program
  grantid: 2016R1D1A1B03933860
– fundername: Creative Challenge Research Program
  grantid: 2021R1I1A1A01052521
  funderid: 10.13039/501100003725
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c324t-4e173a4f2cca9aeaac7df1a59b0438f44b012e39f40b91c87708ac322cb244ae3
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685887500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 06:05:15 EDT 2025
Mon Jun 30 10:18:17 EDT 2025
Sat Nov 29 03:21:15 EST 2025
Tue Nov 18 21:15:22 EST 2025
Wed Aug 27 02:33:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-4e173a4f2cca9aeaac7df1a59b0438f44b012e39f40b91c87708ac322cb244ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8986-3173
0000-0001-6814-3137
PMID 34347596
PQID 2562319953
PQPubID 85429
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIP_2021_3100268
ieee_primary_9507267
proquest_miscellaneous_2558453648
proquest_journals_2562319953
crossref_primary_10_1109_TIP_2021_3100268
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
hazirbas (ref32) 2018
ref10
yang (ref19) 2003; 3
ref2
ref1
ref17
ref38
gaganov (ref13) 2009
ref16
ref18
honauer (ref39) 2016
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
dansereau (ref40) 2020
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1109/IVMSPW.2013.6611940
– ident: ref29
  doi: 10.1016/j.patcog.2014.10.008
– ident: ref8
  doi: 10.1109/83.967395
– ident: ref11
  doi: 10.1016/j.ins.2019.03.056
– ident: ref18
  doi: 10.1016/j.patrec.2006.09.005
– ident: ref22
  doi: 10.1007/978-3-642-02611-9_57
– ident: ref42
  doi: 10.1109/ICIP.2019.8803256
– ident: ref10
  doi: 10.1109/TIP.2012.2186144
– ident: ref41
  doi: 10.1145/1360612.1360666
– start-page: 19
  year: 2016
  ident: ref39
  article-title: A dataset and evaluation methodology for depth estimation on 4D light fields
  publication-title: Proc Asian Conf Comput Vis
– ident: ref4
  doi: 10.1109/TIP.2019.2937064
– ident: ref27
  doi: 10.1109/TIP.2008.2007049
– ident: ref37
  doi: 10.1137/140957639
– ident: ref14
  doi: 10.1109/TCSVT.2014.2358873
– ident: ref36
  doi: 10.1145/1015330.1015342
– ident: ref43
  doi: 10.1137/080725891
– ident: ref45
  doi: 10.1111/cgf.12625
– ident: ref17
  doi: 10.1109/TIP.2010.2066983
– ident: ref24
  doi: 10.1117/1.602498
– ident: ref6
  doi: 10.1109/ICCV.2017.179
– ident: ref26
  doi: 10.1016/j.patcog.2006.05.032
– ident: ref38
  doi: 10.1145/2461912.2461992
– ident: ref9
  doi: 10.1109/TCSVT.2005.844450
– ident: ref30
  doi: 10.1109/TIP.2012.2190612
– ident: ref28
  doi: 10.1111/j.1365-2818.2011.03567.x
– ident: ref2
  doi: 10.1109/CVPR.2015.7298972
– ident: ref20
  doi: 10.1016/j.patcog.2007.12.014
– volume: 3
  start-page: 2143
  year: 2003
  ident: ref19
  article-title: Wavelet-based autofocusing and unsupervised segmentation of microscopic images
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst
– ident: ref34
  doi: 10.1007/978-3-319-10578-9_53
– start-page: 74
  year: 2009
  ident: ref13
  article-title: Robust shape from focus via Markov random fields
  publication-title: Proc Graphicon Conf
– ident: ref5
  doi: 10.1016/j.patcog.2012.11.011
– ident: ref3
  doi: 10.1016/j.jvcir.2018.06.029
– ident: ref35
  doi: 10.1109/TPAMI.2017.2669034
– ident: ref1
  doi: 10.1109/34.308479
– ident: ref16
  doi: 10.1109/34.643894
– ident: ref25
  doi: 10.1109/TPAMI.2011.144
– ident: ref12
  doi: 10.1007/s10851-019-00918-8
– ident: ref7
  doi: 10.1109/34.368191
– ident: ref23
  doi: 10.1364/OE.18.014212
– ident: ref21
  doi: 10.1109/LSP.2008.2008938
– start-page: 525
  year: 2018
  ident: ref32
  article-title: Deep depth from focus
  publication-title: Proc Asian Conf Comput Vis
– year: 2020
  ident: ref40
  publication-title: Light Field ToolBox v0 4
– ident: ref44
  doi: 10.1109/TPAMI.2012.213
– ident: ref15
  doi: 10.1109/TIP.2015.2479469
– ident: ref33
  doi: 10.1145/1015706.1015777
SSID ssj0014516
Score 2.471797
SecondaryResourceType review_article
Snippet Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7215
SubjectTerms Algorithms
Cameras
Convergence
depth map
focus measure
Frequency modulation
Image quality
Image reconstruction
Image sequences
non-convex optimization
Optimization
Regularization
Robustness
Sequences
Shape
Shape from focus (SFF)
Shape recognition
Solution space
Three-dimensional displays
volume regularization
Title Robust Focus Volume Regularization in Shape From Focus
URI https://ieeexplore.ieee.org/document/9507267
https://www.proquest.com/docview/2562319953
https://www.proquest.com/docview/2558453648
Volume 30
WOSCitedRecordID wos000685887500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_S0IfuYV2bjWZLiwp9KdSJbSmW9ThGwwYlhH6RNyPJEiu0doiT_f3TyYpZ6RjszeCTbO5Dd9Lp7gdwETOmnR2pSHGEMDOJjnKnVpExlk8tV0x6jKXHGz6f58ulWPTgqquFMcb4y2dmjI8-l1_WeotHZRPhgpc043uwx3nW1mp1GQMEnPWZzSmPuAv7dynJWEzufyzcRjBNxniYnWYI0UcZxUZ32Stv5OFV3qzJ3tHMDv_vFz_A-xBQkq-tBhxBz1THcBiCSxJMtzmGd390HhxAdlurbbMhMzdjQx79EkVuPS79OlRmkqeK3P2UK0Nm6_qlpfwID7Pr-2_fowChEGkXKW2Q-ZxKZlMnKCGNlJqXNpFToTADaBlTzkEZKiyLlUh0znmcSzc01cr5fWnoJ-hXdWVOgFCRlLmVzr1LbNpnhcwybUsuLS2ZMukQJjtWFjr0F0eYi-fC7zNiUTg5FCiHIshhCJfdiFXbW-MftANkdkcX-DyE0U5aRTC-pkgxpsPSczqE8-61MxvMhcjK1FukcZHXlGYs__z3mb_AAX6_PW0ZQX-z3ppT2Ne_Nk_N-sxp4DI_8xr4G1MW1Fk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66rrD2YV1_0WzdpsJeBnNjW7JlPY6xkLA0lDYrfTOSLLHCapc46d8_nayYlo7B3gw-CXGn033W-e4D-BQzpp0fqUhxpDAziY4Kt60iYyzPLFdMeo6l6ymfzYqbG3GxAV_6WhhjjP_5zJzho8_lV41e4VXZUDjwkub8BbzMGEvjrlqrzxkg5azPbWY84g74r5OSsRjOJxfuUzBNzvA6O82RpI8yiq3u8ifxyBOsPDuVfagZ7f7fIt_A6wApydduD-zBhqn3YTfASxKct92HnUe9Bw8gv2zUql2SkZuxJdf-kCKXnpl-EWozyW1Nrn7Je0NGi-aukzyEn6Pv82_jKJAoRNphpSWqn1PJbOpMJaSRUvPKJjITCnOAljHlQpShwrJYiUQXnMeFdENTrVzkl4YewWbd1OYYCBVJVVjpArzEtn1WyDzXtuLS0oopkw5guFZlqUOHcSS6-F36L41YlM4OJdqhDHYYwOd-xH3XXeMfsgeo7F4u6HkAJ2trlcH92jJFVIfF53QAp_1r5ziYDZG1aVYo47BXRnNWvP37zB_h1Xh-Pi2nk9mPd7CNa-nuXk5gc7lYmfewpR-Wt-3ig9-HfwCHpda4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Focus+Volume+Regularization+in+Shape+From+Focus&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Ali%2C+Usman&rft.au=Mahmood%2C+Muhammad+Tariq&rft.date=2021&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=30&rft.spage=7215&rft.epage=7227&rft_id=info:doi/10.1109%2FTIP.2021.3100268&rft_id=info%3Apmid%2F34347596&rft.externalDocID=9507267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon