Robust Focus Volume Regularization in Shape From Focus
Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while...
Saved in:
| Published in: | IEEE transactions on image processing Vol. 30; pp. 7215 - 7227 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches. |
|---|---|
| AbstractList | Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches. Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches.Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the accuracy of image focus volume (FV). Traditional SFF techniques exhibit poor performance in preserving structural edges and fine details while removing noisy artifacts, and mostly they do not incorporate any additional shape prior. Therefore, in this paper, we propose to refine FV by formulating an energy minimization framework that employs a nonconvex regularizer and incorporates two types of shape priors. The proposed regularizer is robust against noisy focus values. The first proposed shape prior is input image sequence and it is a single and static shape prior. While, the second shape prior corresponds to a series of shape priors. These shape priors are FVs which are iteratively obtained on-the-fly. Both of these shape priors constrain the solution space for output FV. We optimize nonconvex energy function through majorize-minimization algorithm which iteratively guarantees a local minimum and converges quickly. Experiments have been conducted to evaluate accuracy and convergence properties of the proposed method. Experimental results of synthetic and real image sequences demonstrate that our method achieves superior results in terms of ability to reconstruct accurate 3D shapes as compared to existing approaches. |
| Author | Ali, Usman Mahmood, Muhammad Tariq |
| Author_xml | – sequence: 1 givenname: Usman orcidid: 0000-0002-8986-3173 surname: Ali fullname: Ali, Usman email: usmanali@koreatech.ac.kr organization: School of Computer Science and Engineering, Future Convergence Engineering, Korea University of Technology and Education, Cheonan, South Korea – sequence: 2 givenname: Muhammad Tariq orcidid: 0000-0001-6814-3137 surname: Mahmood fullname: Mahmood, Muhammad Tariq email: tariq@koreatech.ac.kr organization: School of Computer Science and Engineering, Future Convergence Engineering, Korea University of Technology and Education, Cheonan, South Korea |
| BookMark | eNp9kD1PwzAQQC1URD9gR2KJxMKScrbPcTwiRKFSJVAprJFjHEiVxsVOBvj1pKRi6MDkG967s96YDGpXW0LOKUwpBXW9mj9NGTA65RSAJekRGVGFNAZANuhmEDKWFNWQjENYA1AUNDkhQ44cpVDJiCRLl7ehiWbOtCF6dVW7sdHSvreV9uW3bkpXR2UdPX_orY1m3m168pQcF7oK9mz_TsjL7G51-xAvHu_ntzeL2HCGTYyWSq6xYMZopa3WRr4VVAuVA_K0QMyBMstVgZAralIpIdWdykzOELXlE3LV791699na0GSbMhhbVbq2rg0ZEyJFwRNMO_TyAF271tfd7zoqYZwqJXhHQU8Z70Lwtsi2vtxo_5VRyHZNs65ptmua7Zt2SnKgmLL5LdN4XVb_iRe9WFpr_-4oAZIlkv8AYVaB4A |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_optlastec_2023_109931 crossref_primary_10_1016_j_measurement_2025_116668 crossref_primary_10_1016_j_eng_2025_03_035 crossref_primary_10_1016_j_patcog_2025_112112 crossref_primary_10_1109_TPAMI_2025_3577595 crossref_primary_10_1109_TMM_2023_3306072 crossref_primary_10_3390_math10183273 crossref_primary_10_1007_s11042_023_14984_z crossref_primary_10_1007_s11045_022_00854_8 crossref_primary_10_1016_j_optlaseng_2023_107754 crossref_primary_10_1109_TIM_2025_3573361 crossref_primary_10_3390_app14041374 crossref_primary_10_1109_TMM_2022_3169055 crossref_primary_10_3390_math12010102 crossref_primary_10_1016_j_optlastec_2025_112563 crossref_primary_10_1016_j_cviu_2022_103619 crossref_primary_10_3390_biomimetics9010049 crossref_primary_10_1016_j_optlaseng_2023_107784 crossref_primary_10_3390_math11143056 |
| Cites_doi | 10.1109/IVMSPW.2013.6611940 10.1016/j.patcog.2014.10.008 10.1109/83.967395 10.1016/j.ins.2019.03.056 10.1016/j.patrec.2006.09.005 10.1007/978-3-642-02611-9_57 10.1109/ICIP.2019.8803256 10.1109/TIP.2012.2186144 10.1145/1360612.1360666 10.1109/TIP.2019.2937064 10.1109/TIP.2008.2007049 10.1137/140957639 10.1109/TCSVT.2014.2358873 10.1145/1015330.1015342 10.1137/080725891 10.1111/cgf.12625 10.1109/TIP.2010.2066983 10.1117/1.602498 10.1109/ICCV.2017.179 10.1016/j.patcog.2006.05.032 10.1145/2461912.2461992 10.1109/TCSVT.2005.844450 10.1109/TIP.2012.2190612 10.1111/j.1365-2818.2011.03567.x 10.1109/CVPR.2015.7298972 10.1016/j.patcog.2007.12.014 10.1007/978-3-319-10578-9_53 10.1016/j.patcog.2012.11.011 10.1016/j.jvcir.2018.06.029 10.1109/TPAMI.2017.2669034 10.1109/34.308479 10.1109/34.643894 10.1109/TPAMI.2011.144 10.1007/s10851-019-00918-8 10.1109/34.368191 10.1364/OE.18.014212 10.1109/LSP.2008.2008938 10.1109/TPAMI.2012.213 10.1109/TIP.2015.2479469 10.1145/1015706.1015777 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2021.3100268 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 7227 |
| ExternalDocumentID | 10_1109_TIP_2021_3100268 9507267 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) funded by the Ministry of Education funderid: 10.13039/501100003725 – fundername: BK-21 FOUR Program, Basic Science Research Program grantid: 2016R1D1A1B03933860 – fundername: Creative Challenge Research Program grantid: 2021R1I1A1A01052521 funderid: 10.13039/501100003725 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c324t-4e173a4f2cca9aeaac7df1a59b0438f44b012e39f40b91c87708ac322cb244ae3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685887500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 06:05:15 EDT 2025 Mon Jun 30 10:18:17 EDT 2025 Sat Nov 29 03:21:15 EST 2025 Tue Nov 18 21:15:22 EST 2025 Wed Aug 27 02:33:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-4e173a4f2cca9aeaac7df1a59b0438f44b012e39f40b91c87708ac322cb244ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8986-3173 0000-0001-6814-3137 |
| PMID | 34347596 |
| PQID | 2562319953 |
| PQPubID | 85429 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIP_2021_3100268 ieee_primary_9507267 proquest_miscellaneous_2558453648 proquest_journals_2562319953 crossref_primary_10_1109_TIP_2021_3100268 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 hazirbas (ref32) 2018 ref10 yang (ref19) 2003; 3 ref2 ref1 ref17 ref38 gaganov (ref13) 2009 ref16 ref18 honauer (ref39) 2016 ref24 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 dansereau (ref40) 2020 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref31 doi: 10.1109/IVMSPW.2013.6611940 – ident: ref29 doi: 10.1016/j.patcog.2014.10.008 – ident: ref8 doi: 10.1109/83.967395 – ident: ref11 doi: 10.1016/j.ins.2019.03.056 – ident: ref18 doi: 10.1016/j.patrec.2006.09.005 – ident: ref22 doi: 10.1007/978-3-642-02611-9_57 – ident: ref42 doi: 10.1109/ICIP.2019.8803256 – ident: ref10 doi: 10.1109/TIP.2012.2186144 – ident: ref41 doi: 10.1145/1360612.1360666 – start-page: 19 year: 2016 ident: ref39 article-title: A dataset and evaluation methodology for depth estimation on 4D light fields publication-title: Proc Asian Conf Comput Vis – ident: ref4 doi: 10.1109/TIP.2019.2937064 – ident: ref27 doi: 10.1109/TIP.2008.2007049 – ident: ref37 doi: 10.1137/140957639 – ident: ref14 doi: 10.1109/TCSVT.2014.2358873 – ident: ref36 doi: 10.1145/1015330.1015342 – ident: ref43 doi: 10.1137/080725891 – ident: ref45 doi: 10.1111/cgf.12625 – ident: ref17 doi: 10.1109/TIP.2010.2066983 – ident: ref24 doi: 10.1117/1.602498 – ident: ref6 doi: 10.1109/ICCV.2017.179 – ident: ref26 doi: 10.1016/j.patcog.2006.05.032 – ident: ref38 doi: 10.1145/2461912.2461992 – ident: ref9 doi: 10.1109/TCSVT.2005.844450 – ident: ref30 doi: 10.1109/TIP.2012.2190612 – ident: ref28 doi: 10.1111/j.1365-2818.2011.03567.x – ident: ref2 doi: 10.1109/CVPR.2015.7298972 – ident: ref20 doi: 10.1016/j.patcog.2007.12.014 – volume: 3 start-page: 2143 year: 2003 ident: ref19 article-title: Wavelet-based autofocusing and unsupervised segmentation of microscopic images publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst – ident: ref34 doi: 10.1007/978-3-319-10578-9_53 – start-page: 74 year: 2009 ident: ref13 article-title: Robust shape from focus via Markov random fields publication-title: Proc Graphicon Conf – ident: ref5 doi: 10.1016/j.patcog.2012.11.011 – ident: ref3 doi: 10.1016/j.jvcir.2018.06.029 – ident: ref35 doi: 10.1109/TPAMI.2017.2669034 – ident: ref1 doi: 10.1109/34.308479 – ident: ref16 doi: 10.1109/34.643894 – ident: ref25 doi: 10.1109/TPAMI.2011.144 – ident: ref12 doi: 10.1007/s10851-019-00918-8 – ident: ref7 doi: 10.1109/34.368191 – ident: ref23 doi: 10.1364/OE.18.014212 – ident: ref21 doi: 10.1109/LSP.2008.2008938 – start-page: 525 year: 2018 ident: ref32 article-title: Deep depth from focus publication-title: Proc Asian Conf Comput Vis – year: 2020 ident: ref40 publication-title: Light Field ToolBox v0 4 – ident: ref44 doi: 10.1109/TPAMI.2012.213 – ident: ref15 doi: 10.1109/TIP.2015.2479469 – ident: ref33 doi: 10.1145/1015706.1015777 |
| SSID | ssj0014516 |
| Score | 2.471797 |
| SecondaryResourceType | review_article |
| Snippet | Shape from focus (SFF) reconstructs 3D shape of the scene from a sequence of multi-focus images, and the quality of reconstructed shape mainly depends on the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7215 |
| SubjectTerms | Algorithms Cameras Convergence depth map focus measure Frequency modulation Image quality Image reconstruction Image sequences non-convex optimization Optimization Regularization Robustness Sequences Shape Shape from focus (SFF) Shape recognition Solution space Three-dimensional displays volume regularization |
| Title | Robust Focus Volume Regularization in Shape From Focus |
| URI | https://ieeexplore.ieee.org/document/9507267 https://www.proquest.com/docview/2562319953 https://www.proquest.com/docview/2558453648 |
| Volume | 30 |
| WOSCitedRecordID | wos000685887500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_S0IfuYV2bjWZLiwp9KdSJbSmW9ThGwwYlhH6RNyPJEiu0doiT_f3TyYpZ6RjszeCTbO5Dd9Lp7gdwETOmnR2pSHGEMDOJjnKnVpExlk8tV0x6jKXHGz6f58ulWPTgqquFMcb4y2dmjI8-l1_WeotHZRPhgpc043uwx3nW1mp1GQMEnPWZzSmPuAv7dynJWEzufyzcRjBNxniYnWYI0UcZxUZ32Stv5OFV3qzJ3tHMDv_vFz_A-xBQkq-tBhxBz1THcBiCSxJMtzmGd390HhxAdlurbbMhMzdjQx79EkVuPS79OlRmkqeK3P2UK0Nm6_qlpfwID7Pr-2_fowChEGkXKW2Q-ZxKZlMnKCGNlJqXNpFToTADaBlTzkEZKiyLlUh0znmcSzc01cr5fWnoJ-hXdWVOgFCRlLmVzr1LbNpnhcwybUsuLS2ZMukQJjtWFjr0F0eYi-fC7zNiUTg5FCiHIshhCJfdiFXbW-MftANkdkcX-DyE0U5aRTC-pkgxpsPSczqE8-61MxvMhcjK1FukcZHXlGYs__z3mb_AAX6_PW0ZQX-z3ppT2Ne_Nk_N-sxp4DI_8xr4G1MW1Fk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66rrD2YV1_0WzdpsJeBnNjW7JlPY6xkLA0lDYrfTOSLLHCapc46d8_nayYlo7B3gw-CXGn033W-e4D-BQzpp0fqUhxpDAziY4Kt60iYyzPLFdMeo6l6ymfzYqbG3GxAV_6WhhjjP_5zJzho8_lV41e4VXZUDjwkub8BbzMGEvjrlqrzxkg5azPbWY84g74r5OSsRjOJxfuUzBNzvA6O82RpI8yiq3u8ifxyBOsPDuVfagZ7f7fIt_A6wApydduD-zBhqn3YTfASxKct92HnUe9Bw8gv2zUql2SkZuxJdf-kCKXnpl-EWozyW1Nrn7Je0NGi-aukzyEn6Pv82_jKJAoRNphpSWqn1PJbOpMJaSRUvPKJjITCnOAljHlQpShwrJYiUQXnMeFdENTrVzkl4YewWbd1OYYCBVJVVjpArzEtn1WyDzXtuLS0oopkw5guFZlqUOHcSS6-F36L41YlM4OJdqhDHYYwOd-xH3XXeMfsgeo7F4u6HkAJ2trlcH92jJFVIfF53QAp_1r5ziYDZG1aVYo47BXRnNWvP37zB_h1Xh-Pi2nk9mPd7CNa-nuXk5gc7lYmfewpR-Wt-3ig9-HfwCHpda4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Focus+Volume+Regularization+in+Shape+From+Focus&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Ali%2C+Usman&rft.au=Mahmood%2C+Muhammad+Tariq&rft.date=2021&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=30&rft.spage=7215&rft.epage=7227&rft_id=info:doi/10.1109%2FTIP.2021.3100268&rft_id=info%3Apmid%2F34347596&rft.externalDocID=9507267 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |