Assessment of flame stability through a convolutional denoising autoencoder and statistical analysis
Flame stability assessment is essential for optimizing combustion operation and improving combustion quality. However, an accurate and reliable assessment of stability is difficult, heavily relying on prior expert knowledge and massive labeled data. This study proposes a novel method for flame stabi...
Gespeichert in:
| Veröffentlicht in: | Combustion and flame Jg. 258; S. 113069 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.12.2023
|
| Schlagworte: | |
| ISSN: | 0010-2180 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Flame stability assessment is essential for optimizing combustion operation and improving combustion quality. However, an accurate and reliable assessment of stability is difficult, heavily relying on prior expert knowledge and massive labeled data. This study proposes a novel method for flame stability assessment through flame images and deep learning techniques. In this method, the deep image features are extracted by an unsupervised convolutional denoising autoencoder (CDAE), and then quantitatively analyzed by a stability index. In particular, the CDAE introduces a new loss function composed of denoising coding constraints and reconstruction similarity to improve its training efficiency. The stability index is established based on clustering analysis and statistical analysis of the deep image features, with a numerical interval of [0, 1]. The effectiveness of the proposed method is verified by the flame images obtained from ethylene-air diffusion combustion conditions. Results show that the proposed method extracts representative flame features accurately and quantifies the flame stability with strong robustness and generalization ability. |
|---|---|
| AbstractList | Flame stability assessment is essential for optimizing combustion operation and improving combustion quality. However, an accurate and reliable assessment of stability is difficult, heavily relying on prior expert knowledge and massive labeled data. This study proposes a novel method for flame stability assessment through flame images and deep learning techniques. In this method, the deep image features are extracted by an unsupervised convolutional denoising autoencoder (CDAE), and then quantitatively analyzed by a stability index. In particular, the CDAE introduces a new loss function composed of denoising coding constraints and reconstruction similarity to improve its training efficiency. The stability index is established based on clustering analysis and statistical analysis of the deep image features, with a numerical interval of [0, 1]. The effectiveness of the proposed method is verified by the flame images obtained from ethylene-air diffusion combustion conditions. Results show that the proposed method extracts representative flame features accurately and quantifies the flame stability with strong robustness and generalization ability. |
| ArticleNumber | 113069 |
| Author | Tang, Xiaoyu Hossain, Md. Moinul Xu, Chuanlong Han, Zhezhe |
| Author_xml | – sequence: 1 givenname: Zhezhe surname: Han fullname: Han, Zhezhe organization: School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing, 211167, PR China – sequence: 2 givenname: Xiaoyu surname: Tang fullname: Tang, Xiaoyu organization: School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing, 211167, PR China – sequence: 3 givenname: Md. Moinul orcidid: 0000-0003-4184-2397 surname: Hossain fullname: Hossain, Md. Moinul organization: School of Engineering, University of Kent, Canterbury, Kent, CT2 7NT, UK – sequence: 4 givenname: Chuanlong surname: Xu fullname: Xu, Chuanlong email: chuanlongxu@seu.edu.cn organization: School of Energy and Environment, Southeast University, Nanjing, 210096, PR China |
| BookMark | eNqNkD1PwzAQhj0UibbwHyz2BDt2k5SJqnxKlVhgtpzzpXWV2Mh2KvXfk1IGxMR00ul9Xt09MzJx3iEhN5zlnPHydp-D75shprbTPeYFK0TOuWDlckKmjHGWFbxml2QW454xVkkhpsSsYsQYe3SJ-pZ-ozQm3djOpiNNu-CH7Y5qCt4dfDck653uqEHnbbRuS_WQPDrwBgPVzpzYZGOyMKb0GD1GG6_IRau7iNc_c04-nh7f1y_Z5u35db3aZCAKmTKpdQmlkU1bIBRmWQEuJNRttYC6rKAqAFitZSWhqmvDUGDDagalHHelWHIxJ_fnXgg-xoCtAns6x7sUtO0UZ-pkSu3Vb1PqZEqdTY0Vd38qPoPtdTj-D344wzg-ebAYVAQ7ykFjA0JSxtv_1HwBohWURQ |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110574 crossref_primary_10_1016_j_combustflame_2023_113215 crossref_primary_10_1016_j_fuel_2025_135518 crossref_primary_10_1016_j_ast_2025_110243 crossref_primary_10_1016_j_proci_2024_105730 crossref_primary_10_23919_CHAIN_2025_000009 |
| Cites_doi | 10.1016/j.fuel.2013.05.077 10.1016/j.paerosci.2018.01.002 10.1109/TIM.2015.2444262 10.1016/j.energy.2017.05.012 10.1016/j.combustflame.2020.05.024 10.1016/j.jprocont.2011.01.006 10.1016/j.apenergy.2021.117509 10.1016/j.apenergy.2011.12.080 10.1016/j.pecs.2022.101010 10.1016/j.apenergy.2018.06.007 10.1016/j.egyai.2021.100128 10.1016/j.combustflame.2019.02.019 10.1016/j.actaastro.2019.03.072 10.1016/j.fuel.2017.01.115 10.1016/j.fuproc.2016.10.013 10.3390/en12132585 10.1016/j.fuel.2021.121300 10.1016/j.pecs.2009.11.005 10.1016/j.combustflame.2008.06.010 10.1016/j.aei.2017.02.005 10.1016/j.fuel.2020.117486 10.1016/j.fuel.2019.115827 10.1016/j.apenergy.2012.01.059 10.1364/OE.24.001118 10.1016/S0010-2180(02)00484-4 10.1016/j.pecs.2021.100967 10.1080/00102202.2013.798316 10.1016/j.energy.2020.118656 10.1021/acs.energyfuels.7b00576 10.1016/j.chemolab.2019.03.008 10.1016/j.apenergy.2009.11.008 10.1016/j.energy.2019.06.051 |
| ContentType | Journal Article |
| Copyright | 2023 The Combustion Institute |
| Copyright_xml | – notice: 2023 The Combustion Institute |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.combustflame.2023.113069 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| ExternalDocumentID | 10_1016_j_combustflame_2023_113069 S0010218023004443 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO ABDEX ABDMP ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c324t-4aa6c6d4bf2ec2d97ce54c8f75c867c72cc08a474c788d0e3eb080c64a4763913 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001106640100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-2180 |
| IngestDate | Sat Nov 29 07:32:46 EST 2025 Tue Nov 18 21:22:14 EST 2025 Tue Dec 03 03:44:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Flame image Statistical analysis Flame stability Convolutional denoising autoencoder Stability index |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c324t-4aa6c6d4bf2ec2d97ce54c8f75c867c72cc08a474c788d0e3eb080c64a4763913 |
| ORCID | 0000-0003-4184-2397 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_combustflame_2023_113069 crossref_primary_10_1016_j_combustflame_2023_113069 elsevier_sciencedirect_doi_10_1016_j_combustflame_2023_113069 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Combustion and flame |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Malik, Coussement, Echekki, Parente (bib0015) 2023; 244 Qin, Liu, Zhou, Wang, Cao (bib0026) 2019; 12 Xu, Zhao, Hu, Zhang, Wang (bib0036) 2017; 196 Ihme, Chung, Mishra (bib0039) 2022; 91 Zhou, Zhang, Han, Lin (bib0019) 2020; 109 Sun, Xu, Zhang, Hossain, Wang (bib0035) 2016; 24 Katzer, Babul, Klatt, Krautz (bib0013) 2017; 156 Lin, Jørgensen (bib0010) 2011; 21 Sbarbaro, Farias, Zawadsky (bib0017) 2003; 132 Lapeyre, Misdariis, Cazard, Veynante, Poinsot (bib0029) 2019; 203 Akintayo, Lore, Sarkar, Sarkar (bib0025) 2016 Lyu, Chen, Song (bib0024) 2019; 189 Wan, Hartl, Vervisch, Domingo, Barlow (bib0008) 2020; 219 Wang, Yu, Zhu, Zhang (bib0014) 2020; 270 Wang, Song, Chen (bib0021) 2017; 131 Bai, Yang, Liu, Liu, Yu (bib0032) 2021; 302 Golgiyaz, Talu, Onat (bib0018) 2019; 255 Chen, Hsu, Chen, Cheng (bib0034) 2010; 87 Zhao, Lu, Zhao, Li, Wang (bib0003) 2018; 97 Hernandez, Ballester (bib0005) 2008; 155 Zhou, Song, Ji, Wei (bib0007) 2022; 7 Lu, Wang, Zhou (bib0022) 2017; 32 Han, Hossain, Wang, Li, Xu (bib0023) 2019; 259 Han, Li, Zhang, Hossain, Xu (bib0028) 2020; 289 Sun, Lu, Zhou, Yan (bib0033) 2013; 185 Han, Xie, Hossain, Xu (bib0027) 2023; 333 Sun, Lu, Zhou, Yan, Liu (bib0006) 2015; 64 González-Cencerrado, Gil, Peña (bib0004) 2013; 113 Zhu, Cai, Wu, Cheng, Huang (bib0030) 2019; 159 Tang, Zhang (bib0037) 2019; 182 Chen, Yan, Zhang (bib0012) 2020; 211 Lyu, Jia, Yang, Hu, Zhang (bib0031) 2021; 303 Ballester, Garcia-Armingol (bib0011) 2010; 36 Ögren, Tóth, Garami, Sepman, Wiinikka (bib0009) 2018; 226 Liu, Fan, Chen (bib0020) 2017; 31 Najafi, Mokhov, Levinsky (bib0001) 2022; 244 Aliramezani, Koch, Shahbakhti (bib0002) 2022; 88 Chen, Chang, Cheng, Hsu (bib0016) 2012; 94 González-Cencerrado, Peña, Gil (bib0038) 2012; 94 Malik (10.1016/j.combustflame.2023.113069_bib0015) 2023; 244 Ballester (10.1016/j.combustflame.2023.113069_bib0011) 2010; 36 Lyu (10.1016/j.combustflame.2023.113069_bib0031) 2021; 303 González-Cencerrado (10.1016/j.combustflame.2023.113069_bib0004) 2013; 113 Chen (10.1016/j.combustflame.2023.113069_bib0016) 2012; 94 Tang (10.1016/j.combustflame.2023.113069_bib0037) 2019; 182 Wang (10.1016/j.combustflame.2023.113069_bib0021) 2017; 131 Lyu (10.1016/j.combustflame.2023.113069_bib0024) 2019; 189 Wang (10.1016/j.combustflame.2023.113069_bib0014) 2020; 270 Liu (10.1016/j.combustflame.2023.113069_bib0020) 2017; 31 Zhou (10.1016/j.combustflame.2023.113069_bib0007) 2022; 7 Han (10.1016/j.combustflame.2023.113069_bib0023) 2019; 259 Zhao (10.1016/j.combustflame.2023.113069_bib0003) 2018; 97 Sun (10.1016/j.combustflame.2023.113069_bib0006) 2015; 64 Wan (10.1016/j.combustflame.2023.113069_bib0008) 2020; 219 Golgiyaz (10.1016/j.combustflame.2023.113069_bib0018) 2019; 255 Xu (10.1016/j.combustflame.2023.113069_bib0036) 2017; 196 Lin (10.1016/j.combustflame.2023.113069_bib0010) 2011; 21 Chen (10.1016/j.combustflame.2023.113069_bib0012) 2020; 211 Zhou (10.1016/j.combustflame.2023.113069_bib0019) 2020; 109 Zhu (10.1016/j.combustflame.2023.113069_bib0030) 2019; 159 Akintayo (10.1016/j.combustflame.2023.113069_bib0025) 2016 Najafi (10.1016/j.combustflame.2023.113069_bib0001) 2022; 244 Sbarbaro (10.1016/j.combustflame.2023.113069_bib0017) 2003; 132 Lapeyre (10.1016/j.combustflame.2023.113069_bib0029) 2019; 203 Han (10.1016/j.combustflame.2023.113069_bib0027) 2023; 333 Bai (10.1016/j.combustflame.2023.113069_bib0032) 2021; 302 Qin (10.1016/j.combustflame.2023.113069_bib0026) 2019; 12 Sun (10.1016/j.combustflame.2023.113069_bib0033) 2013; 185 Chen (10.1016/j.combustflame.2023.113069_bib0034) 2010; 87 Han (10.1016/j.combustflame.2023.113069_bib0028) 2020; 289 Sun (10.1016/j.combustflame.2023.113069_bib0035) 2016; 24 Aliramezani (10.1016/j.combustflame.2023.113069_bib0002) 2022; 88 Lu (10.1016/j.combustflame.2023.113069_bib0022) 2017; 32 Katzer (10.1016/j.combustflame.2023.113069_bib0013) 2017; 156 Hernandez (10.1016/j.combustflame.2023.113069_bib0005) 2008; 155 Ögren (10.1016/j.combustflame.2023.113069_bib0009) 2018; 226 González-Cencerrado (10.1016/j.combustflame.2023.113069_bib0038) 2012; 94 Ihme (10.1016/j.combustflame.2023.113069_bib0039) 2022; 91 |
| References_xml | – volume: 36 start-page: 375 year: 2010 end-page: 411 ident: bib0011 article-title: Diagnostic techniques for the monitoring and control of practical flames publication-title: Prog. Energy Combust. Sci. – volume: 32 start-page: 139 year: 2017 end-page: 151 ident: bib0022 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Adv. Eng. Inform. – volume: 244 year: 2023 ident: bib0015 article-title: Principal component analysis based combustion model in the context of a lifted methane/air flame: sensitivity to the manifold parameters and subgrid closure publication-title: Combust. Flame – volume: 333 year: 2023 ident: bib0027 article-title: A hybrid deep neural network model for NOx emission prediction of heavy oil-fired boiler flames publication-title: Fuel – volume: 302 year: 2021 ident: bib0032 article-title: Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers publication-title: Appl. Energy – volume: 87 start-page: 2169 year: 2010 end-page: 2179 ident: bib0034 article-title: Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images publication-title: Appl. Energy – volume: 196 start-page: 550 year: 2017 end-page: 563 ident: bib0036 article-title: Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement publication-title: Fuel – volume: 255 year: 2019 ident: bib0018 article-title: Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image publication-title: Fuel – volume: 289 year: 2020 ident: bib0028 article-title: Prediction of combustion state through a semi-supervised learning model and flame imaging publication-title: Fuel – volume: 88 year: 2022 ident: bib0002 article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: a review and future directions publication-title: Prog. Energy Combust. Sci. – volume: 12 start-page: 2585 year: 2019 ident: bib0026 article-title: An Unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden markov model publication-title: Energies – volume: 91 year: 2022 ident: bib0039 article-title: Combustion machine learning: principles, progress and prospects publication-title: Prog. Energy Combust. Sci. – volume: 226 start-page: 450 year: 2018 end-page: 460 ident: bib0009 article-title: Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors publication-title: Appl. Energy – volume: 24 start-page: 1118 year: 2016 end-page: 1132 ident: bib0035 article-title: Three-dimensional temperature field measurement of flame using a single light field camera publication-title: Opt. Express – volume: 156 start-page: 138 year: 2017 end-page: 155 ident: bib0013 article-title: Quantitative and qualitative relationship between swirl burner operating conditions and pulverized coal flame length publication-title: Fuel Process. Technol. – volume: 159 start-page: 349 year: 2019 end-page: 357 ident: bib0030 article-title: Convolutional neural network based combustion mode classification for condition monitoring in the supersonic combustor publication-title: Acta Astronaut. – year: 2016 ident: bib0025 article-title: Early detection of combustion instabilities using deep convolutional selective autoencoders on hi-speed flame video publication-title: Int. J. Prognost. Health Monitor. – volume: 259 year: 2019 ident: bib0023 article-title: Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network publication-title: Appl. Energy – volume: 189 start-page: 8 year: 2019 end-page: 17 ident: bib0024 article-title: Image-based process monitoring using deep learning framework publication-title: Chemometr. Intell. Lab. Syst. – volume: 94 start-page: 375 year: 2012 end-page: 384 ident: bib0038 article-title: Coal flame characterization using digital image processing in a semi-industrial scale PF swirl burner publication-title: Appl. Energy – volume: 244 year: 2022 ident: bib0001 article-title: Investigation of the stability, radiation, and structure of laminar coflow diffusion flames of CH4/NH3 mixtures publication-title: Combust. Flame – volume: 303 year: 2021 ident: bib0031 article-title: A comprehensive investigation of LSTM-CNN deep learning model for fast detection of combustion instability publication-title: Fuel – volume: 182 start-page: 37 year: 2019 end-page: 47 ident: bib0037 article-title: The multi-objective optimization of combustion system operations based on deep data-driven models publication-title: Energy – volume: 109 year: 2020 ident: bib0019 article-title: Monitoring combustion instabilities of stratified swirl flames by feature extractions of time-averaged flame images using deep learning method publication-title: Aerosp. Sci. Technol. – volume: 270 year: 2020 ident: bib0014 article-title: Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology publication-title: Fuel – volume: 113 start-page: 798 year: 2013 end-page: 809 ident: bib0004 article-title: Characterization of PF flames under different swirl conditions based on visualization systems publication-title: Fuel – volume: 203 start-page: 255 year: 2019 end-page: 264 ident: bib0029 article-title: Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates publication-title: Combust. Flame – volume: 21 start-page: 547 year: 2011 end-page: 553 ident: bib0010 article-title: Soft sensor design by multivariate fusion of image features and process measurements publication-title: J. Process Control – volume: 155 start-page: 509 year: 2008 end-page: 528 ident: bib0005 article-title: Flame imaging as a diagnostic tool for industrial combustion publication-title: Combust. Flame – volume: 64 start-page: 3323 year: 2015 end-page: 3333 ident: bib0006 article-title: Quantitative assessment of flame stability through image processing and spectral analysis publication-title: IEEE Trans. Instrum. Meas. – volume: 132 start-page: 591 year: 2003 end-page: 595 ident: bib0017 article-title: Real-time monitoring and characterization of flames by principal-component analysis publication-title: Combust. Flame – volume: 185 start-page: 1400 year: 2013 end-page: 1413 ident: bib0033 article-title: Condition monitoring of combustion processes through flame imaging and kernel principal component analysis publication-title: Combust. Sci. Technol. – volume: 211 year: 2020 ident: bib0012 article-title: Burning condition recognition of rotary kiln based on spatiotemporal features of flame video publication-title: Energy – volume: 131 start-page: 106 year: 2017 end-page: 112 ident: bib0021 article-title: Deep learning based monitoring of furnace combustion state and measurement of heat release rate publication-title: Energy – volume: 94 start-page: 13 year: 2012 end-page: 21 ident: bib0016 article-title: Design of image-based control loops for industrial combustion processes publication-title: Appl. Energy – volume: 219 start-page: 268 year: 2020 end-page: 274 ident: bib0008 article-title: Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements publication-title: Combust. Flame – volume: 7 year: 2022 ident: bib0007 article-title: Machine learning for combustion publication-title: Energy AI – volume: 31 start-page: 8776 year: 2017 end-page: 8783 ident: bib0020 article-title: Flame images for oxygen content prediction of combustion systems using DBN publication-title: Energy Fuels – volume: 97 start-page: 35 year: 2018 end-page: 60 ident: bib0003 article-title: A review of active control approaches in stabilizing combustion systems in aerospace industry publication-title: Progr. Aerosp. Sci. – volume: 113 start-page: 798 year: 2013 ident: 10.1016/j.combustflame.2023.113069_bib0004 article-title: Characterization of PF flames under different swirl conditions based on visualization systems publication-title: Fuel doi: 10.1016/j.fuel.2013.05.077 – volume: 97 start-page: 35 year: 2018 ident: 10.1016/j.combustflame.2023.113069_bib0003 article-title: A review of active control approaches in stabilizing combustion systems in aerospace industry publication-title: Progr. Aerosp. Sci. doi: 10.1016/j.paerosci.2018.01.002 – volume: 64 start-page: 3323 issue: 12 year: 2015 ident: 10.1016/j.combustflame.2023.113069_bib0006 article-title: Quantitative assessment of flame stability through image processing and spectral analysis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2444262 – volume: 131 start-page: 106 year: 2017 ident: 10.1016/j.combustflame.2023.113069_bib0021 article-title: Deep learning based monitoring of furnace combustion state and measurement of heat release rate publication-title: Energy doi: 10.1016/j.energy.2017.05.012 – volume: 219 start-page: 268 year: 2020 ident: 10.1016/j.combustflame.2023.113069_bib0008 article-title: Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.05.024 – volume: 244 year: 2022 ident: 10.1016/j.combustflame.2023.113069_bib0001 article-title: Investigation of the stability, radiation, and structure of laminar coflow diffusion flames of CH4/NH3 mixtures publication-title: Combust. Flame – volume: 259 year: 2019 ident: 10.1016/j.combustflame.2023.113069_bib0023 article-title: Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network publication-title: Appl. Energy – volume: 21 start-page: 547 issue: 4 year: 2011 ident: 10.1016/j.combustflame.2023.113069_bib0010 article-title: Soft sensor design by multivariate fusion of image features and process measurements publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.01.006 – volume: 302 year: 2021 ident: 10.1016/j.combustflame.2023.113069_bib0032 article-title: Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117509 – volume: 94 start-page: 13 issue: 2 year: 2012 ident: 10.1016/j.combustflame.2023.113069_bib0016 article-title: Design of image-based control loops for industrial combustion processes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.12.080 – volume: 289 issue: 4 year: 2020 ident: 10.1016/j.combustflame.2023.113069_bib0028 article-title: Prediction of combustion state through a semi-supervised learning model and flame imaging publication-title: Fuel – volume: 91 year: 2022 ident: 10.1016/j.combustflame.2023.113069_bib0039 article-title: Combustion machine learning: principles, progress and prospects publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2022.101010 – volume: 226 start-page: 450 year: 2018 ident: 10.1016/j.combustflame.2023.113069_bib0009 article-title: Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.007 – volume: 7 year: 2022 ident: 10.1016/j.combustflame.2023.113069_bib0007 article-title: Machine learning for combustion publication-title: Energy AI doi: 10.1016/j.egyai.2021.100128 – volume: 203 start-page: 255 year: 2019 ident: 10.1016/j.combustflame.2023.113069_bib0029 article-title: Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.02.019 – volume: 159 start-page: 349 year: 2019 ident: 10.1016/j.combustflame.2023.113069_bib0030 article-title: Convolutional neural network based combustion mode classification for condition monitoring in the supersonic combustor publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2019.03.072 – volume: 196 start-page: 550 year: 2017 ident: 10.1016/j.combustflame.2023.113069_bib0036 article-title: Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement publication-title: Fuel doi: 10.1016/j.fuel.2017.01.115 – volume: 156 start-page: 138 year: 2017 ident: 10.1016/j.combustflame.2023.113069_bib0013 article-title: Quantitative and qualitative relationship between swirl burner operating conditions and pulverized coal flame length publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.10.013 – volume: 12 start-page: 2585 year: 2019 ident: 10.1016/j.combustflame.2023.113069_bib0026 article-title: An Unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden markov model publication-title: Energies doi: 10.3390/en12132585 – volume: 303 year: 2021 ident: 10.1016/j.combustflame.2023.113069_bib0031 article-title: A comprehensive investigation of LSTM-CNN deep learning model for fast detection of combustion instability publication-title: Fuel doi: 10.1016/j.fuel.2021.121300 – volume: 36 start-page: 375 issue: 4 year: 2010 ident: 10.1016/j.combustflame.2023.113069_bib0011 article-title: Diagnostic techniques for the monitoring and control of practical flames publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2009.11.005 – volume: 155 start-page: 509 issue: 3 year: 2008 ident: 10.1016/j.combustflame.2023.113069_bib0005 article-title: Flame imaging as a diagnostic tool for industrial combustion publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.06.010 – volume: 109 year: 2020 ident: 10.1016/j.combustflame.2023.113069_bib0019 article-title: Monitoring combustion instabilities of stratified swirl flames by feature extractions of time-averaged flame images using deep learning method publication-title: Aerosp. Sci. Technol. – volume: 32 start-page: 139 year: 2017 ident: 10.1016/j.combustflame.2023.113069_bib0022 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2017.02.005 – volume: 270 year: 2020 ident: 10.1016/j.combustflame.2023.113069_bib0014 article-title: Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology publication-title: Fuel doi: 10.1016/j.fuel.2020.117486 – volume: 255 year: 2019 ident: 10.1016/j.combustflame.2023.113069_bib0018 article-title: Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image publication-title: Fuel doi: 10.1016/j.fuel.2019.115827 – year: 2016 ident: 10.1016/j.combustflame.2023.113069_bib0025 article-title: Early detection of combustion instabilities using deep convolutional selective autoencoders on hi-speed flame video publication-title: Int. J. Prognost. Health Monitor. – volume: 94 start-page: 375 year: 2012 ident: 10.1016/j.combustflame.2023.113069_bib0038 article-title: Coal flame characterization using digital image processing in a semi-industrial scale PF swirl burner publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.01.059 – volume: 244 year: 2023 ident: 10.1016/j.combustflame.2023.113069_bib0015 article-title: Principal component analysis based combustion model in the context of a lifted methane/air flame: sensitivity to the manifold parameters and subgrid closure publication-title: Combust. Flame – volume: 333 issue: 2 year: 2023 ident: 10.1016/j.combustflame.2023.113069_bib0027 article-title: A hybrid deep neural network model for NOx emission prediction of heavy oil-fired boiler flames publication-title: Fuel – volume: 24 start-page: 1118 issue: 2 year: 2016 ident: 10.1016/j.combustflame.2023.113069_bib0035 article-title: Three-dimensional temperature field measurement of flame using a single light field camera publication-title: Opt. Express doi: 10.1364/OE.24.001118 – volume: 132 start-page: 591 issue: 3 year: 2003 ident: 10.1016/j.combustflame.2023.113069_bib0017 article-title: Real-time monitoring and characterization of flames by principal-component analysis publication-title: Combust. Flame doi: 10.1016/S0010-2180(02)00484-4 – volume: 88 year: 2022 ident: 10.1016/j.combustflame.2023.113069_bib0002 article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: a review and future directions publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2021.100967 – volume: 185 start-page: 1400 issue: 9 year: 2013 ident: 10.1016/j.combustflame.2023.113069_bib0033 article-title: Condition monitoring of combustion processes through flame imaging and kernel principal component analysis publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2013.798316 – volume: 211 year: 2020 ident: 10.1016/j.combustflame.2023.113069_bib0012 article-title: Burning condition recognition of rotary kiln based on spatiotemporal features of flame video publication-title: Energy doi: 10.1016/j.energy.2020.118656 – volume: 31 start-page: 8776 issue: 8 year: 2017 ident: 10.1016/j.combustflame.2023.113069_bib0020 article-title: Flame images for oxygen content prediction of combustion systems using DBN publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b00576 – volume: 189 start-page: 8 year: 2019 ident: 10.1016/j.combustflame.2023.113069_bib0024 article-title: Image-based process monitoring using deep learning framework publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.03.008 – volume: 87 start-page: 2169 issue: 7 year: 2010 ident: 10.1016/j.combustflame.2023.113069_bib0034 article-title: Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.11.008 – volume: 182 start-page: 37 year: 2019 ident: 10.1016/j.combustflame.2023.113069_bib0037 article-title: The multi-objective optimization of combustion system operations based on deep data-driven models publication-title: Energy doi: 10.1016/j.energy.2019.06.051 |
| SSID | ssj0007433 |
| Score | 2.4614406 |
| Snippet | Flame stability assessment is essential for optimizing combustion operation and improving combustion quality. However, an accurate and reliable assessment of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113069 |
| SubjectTerms | Convolutional denoising autoencoder Flame image Flame stability Stability index Statistical analysis |
| Title | Assessment of flame stability through a convolutional denoising autoencoder and statistical analysis |
| URI | https://dx.doi.org/10.1016/j.combustflame.2023.113069 |
| Volume | 258 |
| WOSCitedRecordID | wos001106640100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0010-2180 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007433 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFgk4IChUlJd84JrVxvHazoHDqioCJCoOixRxiRzbUbdaJVXZVC1_on-540eclIdYkLhEKyu2k50vM5-dyTcIvWEQBIiA57tWc5HQtKJJDrwkSbUCd1gZQqraFZvgx8eiKPLPk8l1_y3MxZo3jbi8zM_-q6mhDYxtP539C3PHQaEBfoPR4Qhmh-NWhl9ErU1LBGuwuBWR9XLcV7Euj3T55uFC7Isa07Qrt28gu01r1S2tyITbVbcv679tgqqAlzAZU1rwKJUtCRbSmt2Eg19zTu3rifl-EhuXYYu6WMn2qounQrSWXtDgk56Cr1k1Q85i0fnUgE426zbE2rBVQbJR2kdwvwAK4BSzsfslXro9ONAUYqqv3fKTb_fbDKfWNPa23O1M7TTTodNtQe0fAl1MP-wz207L8VilHav0Y91Bu4TPc3CTu4sPR8XHGNyBcPmkhXAnvY6tSxn83ZX9mvOMeMzyEXoYFiB44YHzGE1Ms4fuHfZ1__bQg5FE5ROkBzjhtsZuUhzhhAOcsMS34IQjnPAIThjwgUdwwj2cnqIv746Wh--TUJkjUUDANwmVkimmaVUTo4jOuTJzqkTN50owrjhRaiYk5VRxIfTMZKaClYliFNqAEqfZPtpp2sY8Q1iLnBlml73aUJ0JYVhVMUOUFGlNWHaA8v6_K1WQrbfVU9bln614gLLY98yLt2zV621vojLQUE8vS0DiFv2f_9OsL9D94ZF5iXY25515he6qC7DJ-esAwxt3Pba- |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+flame+stability+through+a+convolutional+denoising+autoencoder+and+statistical+analysis&rft.jtitle=Combustion+and+flame&rft.au=Han%2C+Zhezhe&rft.au=Tang%2C+Xiaoyu&rft.au=Hossain%2C+Md.+Moinul&rft.au=Xu%2C+Chuanlong&rft.date=2023-12-01&rft.issn=0010-2180&rft.volume=258&rft.spage=113069&rft_id=info:doi/10.1016%2Fj.combustflame.2023.113069&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2023_113069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |