Assessment of flame stability through a convolutional denoising autoencoder and statistical analysis

Flame stability assessment is essential for optimizing combustion operation and improving combustion quality. However, an accurate and reliable assessment of stability is difficult, heavily relying on prior expert knowledge and massive labeled data. This study proposes a novel method for flame stabi...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame Vol. 258; p. 113069
Main Authors: Han, Zhezhe, Tang, Xiaoyu, Hossain, Md. Moinul, Xu, Chuanlong
Format: Journal Article
Language:English
Published: Elsevier Inc 01.12.2023
Subjects:
ISSN:0010-2180
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Flame stability assessment is essential for optimizing combustion operation and improving combustion quality. However, an accurate and reliable assessment of stability is difficult, heavily relying on prior expert knowledge and massive labeled data. This study proposes a novel method for flame stability assessment through flame images and deep learning techniques. In this method, the deep image features are extracted by an unsupervised convolutional denoising autoencoder (CDAE), and then quantitatively analyzed by a stability index. In particular, the CDAE introduces a new loss function composed of denoising coding constraints and reconstruction similarity to improve its training efficiency. The stability index is established based on clustering analysis and statistical analysis of the deep image features, with a numerical interval of [0, 1]. The effectiveness of the proposed method is verified by the flame images obtained from ethylene-air diffusion combustion conditions. Results show that the proposed method extracts representative flame features accurately and quantifies the flame stability with strong robustness and generalization ability.
AbstractList Flame stability assessment is essential for optimizing combustion operation and improving combustion quality. However, an accurate and reliable assessment of stability is difficult, heavily relying on prior expert knowledge and massive labeled data. This study proposes a novel method for flame stability assessment through flame images and deep learning techniques. In this method, the deep image features are extracted by an unsupervised convolutional denoising autoencoder (CDAE), and then quantitatively analyzed by a stability index. In particular, the CDAE introduces a new loss function composed of denoising coding constraints and reconstruction similarity to improve its training efficiency. The stability index is established based on clustering analysis and statistical analysis of the deep image features, with a numerical interval of [0, 1]. The effectiveness of the proposed method is verified by the flame images obtained from ethylene-air diffusion combustion conditions. Results show that the proposed method extracts representative flame features accurately and quantifies the flame stability with strong robustness and generalization ability.
ArticleNumber 113069
Author Tang, Xiaoyu
Hossain, Md. Moinul
Xu, Chuanlong
Han, Zhezhe
Author_xml – sequence: 1
  givenname: Zhezhe
  surname: Han
  fullname: Han, Zhezhe
  organization: School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing, 211167, PR China
– sequence: 2
  givenname: Xiaoyu
  surname: Tang
  fullname: Tang, Xiaoyu
  organization: School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing, 211167, PR China
– sequence: 3
  givenname: Md. Moinul
  orcidid: 0000-0003-4184-2397
  surname: Hossain
  fullname: Hossain, Md. Moinul
  organization: School of Engineering, University of Kent, Canterbury, Kent, CT2 7NT, UK
– sequence: 4
  givenname: Chuanlong
  surname: Xu
  fullname: Xu, Chuanlong
  email: chuanlongxu@seu.edu.cn
  organization: School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
BookMark eNqNkD1PwzAQhj0UibbwHyz2BDt2k5SJqnxKlVhgtpzzpXWV2Mh2KvXfk1IGxMR00ul9Xt09MzJx3iEhN5zlnPHydp-D75shprbTPeYFK0TOuWDlckKmjHGWFbxml2QW454xVkkhpsSsYsQYe3SJ-pZ-ozQm3djOpiNNu-CH7Y5qCt4dfDck653uqEHnbbRuS_WQPDrwBgPVzpzYZGOyMKb0GD1GG6_IRau7iNc_c04-nh7f1y_Z5u35db3aZCAKmTKpdQmlkU1bIBRmWQEuJNRttYC6rKAqAFitZSWhqmvDUGDDagalHHelWHIxJ_fnXgg-xoCtAns6x7sUtO0UZ-pkSu3Vb1PqZEqdTY0Vd38qPoPtdTj-D344wzg-ebAYVAQ7ykFjA0JSxtv_1HwBohWURQ
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110574
crossref_primary_10_1016_j_combustflame_2023_113215
crossref_primary_10_1016_j_fuel_2025_135518
crossref_primary_10_1016_j_ast_2025_110243
crossref_primary_10_1016_j_proci_2024_105730
crossref_primary_10_23919_CHAIN_2025_000009
Cites_doi 10.1016/j.fuel.2013.05.077
10.1016/j.paerosci.2018.01.002
10.1109/TIM.2015.2444262
10.1016/j.energy.2017.05.012
10.1016/j.combustflame.2020.05.024
10.1016/j.jprocont.2011.01.006
10.1016/j.apenergy.2021.117509
10.1016/j.apenergy.2011.12.080
10.1016/j.pecs.2022.101010
10.1016/j.apenergy.2018.06.007
10.1016/j.egyai.2021.100128
10.1016/j.combustflame.2019.02.019
10.1016/j.actaastro.2019.03.072
10.1016/j.fuel.2017.01.115
10.1016/j.fuproc.2016.10.013
10.3390/en12132585
10.1016/j.fuel.2021.121300
10.1016/j.pecs.2009.11.005
10.1016/j.combustflame.2008.06.010
10.1016/j.aei.2017.02.005
10.1016/j.fuel.2020.117486
10.1016/j.fuel.2019.115827
10.1016/j.apenergy.2012.01.059
10.1364/OE.24.001118
10.1016/S0010-2180(02)00484-4
10.1016/j.pecs.2021.100967
10.1080/00102202.2013.798316
10.1016/j.energy.2020.118656
10.1021/acs.energyfuels.7b00576
10.1016/j.chemolab.2019.03.008
10.1016/j.apenergy.2009.11.008
10.1016/j.energy.2019.06.051
ContentType Journal Article
Copyright 2023 The Combustion Institute
Copyright_xml – notice: 2023 The Combustion Institute
DBID AAYXX
CITATION
DOI 10.1016/j.combustflame.2023.113069
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_combustflame_2023_113069
S0010218023004443
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABDEX
ABDMP
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c324t-4aa6c6d4bf2ec2d97ce54c8f75c867c72cc08a474c788d0e3eb080c64a4763913
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001106640100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-2180
IngestDate Sat Nov 29 07:32:46 EST 2025
Tue Nov 18 21:22:14 EST 2025
Tue Dec 03 03:44:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flame image
Statistical analysis
Flame stability
Convolutional denoising autoencoder
Stability index
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-4aa6c6d4bf2ec2d97ce54c8f75c867c72cc08a474c788d0e3eb080c64a4763913
ORCID 0000-0003-4184-2397
ParticipantIDs crossref_citationtrail_10_1016_j_combustflame_2023_113069
crossref_primary_10_1016_j_combustflame_2023_113069
elsevier_sciencedirect_doi_10_1016_j_combustflame_2023_113069
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Combustion and flame
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Malik, Coussement, Echekki, Parente (bib0015) 2023; 244
Qin, Liu, Zhou, Wang, Cao (bib0026) 2019; 12
Xu, Zhao, Hu, Zhang, Wang (bib0036) 2017; 196
Ihme, Chung, Mishra (bib0039) 2022; 91
Zhou, Zhang, Han, Lin (bib0019) 2020; 109
Sun, Xu, Zhang, Hossain, Wang (bib0035) 2016; 24
Katzer, Babul, Klatt, Krautz (bib0013) 2017; 156
Lin, Jørgensen (bib0010) 2011; 21
Sbarbaro, Farias, Zawadsky (bib0017) 2003; 132
Lapeyre, Misdariis, Cazard, Veynante, Poinsot (bib0029) 2019; 203
Akintayo, Lore, Sarkar, Sarkar (bib0025) 2016
Lyu, Chen, Song (bib0024) 2019; 189
Wan, Hartl, Vervisch, Domingo, Barlow (bib0008) 2020; 219
Wang, Yu, Zhu, Zhang (bib0014) 2020; 270
Wang, Song, Chen (bib0021) 2017; 131
Bai, Yang, Liu, Liu, Yu (bib0032) 2021; 302
Golgiyaz, Talu, Onat (bib0018) 2019; 255
Chen, Hsu, Chen, Cheng (bib0034) 2010; 87
Zhao, Lu, Zhao, Li, Wang (bib0003) 2018; 97
Hernandez, Ballester (bib0005) 2008; 155
Zhou, Song, Ji, Wei (bib0007) 2022; 7
Lu, Wang, Zhou (bib0022) 2017; 32
Han, Hossain, Wang, Li, Xu (bib0023) 2019; 259
Han, Li, Zhang, Hossain, Xu (bib0028) 2020; 289
Sun, Lu, Zhou, Yan (bib0033) 2013; 185
Han, Xie, Hossain, Xu (bib0027) 2023; 333
Sun, Lu, Zhou, Yan, Liu (bib0006) 2015; 64
González-Cencerrado, Gil, Peña (bib0004) 2013; 113
Zhu, Cai, Wu, Cheng, Huang (bib0030) 2019; 159
Tang, Zhang (bib0037) 2019; 182
Chen, Yan, Zhang (bib0012) 2020; 211
Lyu, Jia, Yang, Hu, Zhang (bib0031) 2021; 303
Ballester, Garcia-Armingol (bib0011) 2010; 36
Ögren, Tóth, Garami, Sepman, Wiinikka (bib0009) 2018; 226
Liu, Fan, Chen (bib0020) 2017; 31
Najafi, Mokhov, Levinsky (bib0001) 2022; 244
Aliramezani, Koch, Shahbakhti (bib0002) 2022; 88
Chen, Chang, Cheng, Hsu (bib0016) 2012; 94
González-Cencerrado, Peña, Gil (bib0038) 2012; 94
Malik (10.1016/j.combustflame.2023.113069_bib0015) 2023; 244
Ballester (10.1016/j.combustflame.2023.113069_bib0011) 2010; 36
Lyu (10.1016/j.combustflame.2023.113069_bib0031) 2021; 303
González-Cencerrado (10.1016/j.combustflame.2023.113069_bib0004) 2013; 113
Chen (10.1016/j.combustflame.2023.113069_bib0016) 2012; 94
Tang (10.1016/j.combustflame.2023.113069_bib0037) 2019; 182
Wang (10.1016/j.combustflame.2023.113069_bib0021) 2017; 131
Lyu (10.1016/j.combustflame.2023.113069_bib0024) 2019; 189
Wang (10.1016/j.combustflame.2023.113069_bib0014) 2020; 270
Liu (10.1016/j.combustflame.2023.113069_bib0020) 2017; 31
Zhou (10.1016/j.combustflame.2023.113069_bib0007) 2022; 7
Han (10.1016/j.combustflame.2023.113069_bib0023) 2019; 259
Zhao (10.1016/j.combustflame.2023.113069_bib0003) 2018; 97
Sun (10.1016/j.combustflame.2023.113069_bib0006) 2015; 64
Wan (10.1016/j.combustflame.2023.113069_bib0008) 2020; 219
Golgiyaz (10.1016/j.combustflame.2023.113069_bib0018) 2019; 255
Xu (10.1016/j.combustflame.2023.113069_bib0036) 2017; 196
Lin (10.1016/j.combustflame.2023.113069_bib0010) 2011; 21
Chen (10.1016/j.combustflame.2023.113069_bib0012) 2020; 211
Zhou (10.1016/j.combustflame.2023.113069_bib0019) 2020; 109
Zhu (10.1016/j.combustflame.2023.113069_bib0030) 2019; 159
Akintayo (10.1016/j.combustflame.2023.113069_bib0025) 2016
Najafi (10.1016/j.combustflame.2023.113069_bib0001) 2022; 244
Sbarbaro (10.1016/j.combustflame.2023.113069_bib0017) 2003; 132
Lapeyre (10.1016/j.combustflame.2023.113069_bib0029) 2019; 203
Han (10.1016/j.combustflame.2023.113069_bib0027) 2023; 333
Bai (10.1016/j.combustflame.2023.113069_bib0032) 2021; 302
Qin (10.1016/j.combustflame.2023.113069_bib0026) 2019; 12
Sun (10.1016/j.combustflame.2023.113069_bib0033) 2013; 185
Chen (10.1016/j.combustflame.2023.113069_bib0034) 2010; 87
Han (10.1016/j.combustflame.2023.113069_bib0028) 2020; 289
Sun (10.1016/j.combustflame.2023.113069_bib0035) 2016; 24
Aliramezani (10.1016/j.combustflame.2023.113069_bib0002) 2022; 88
Lu (10.1016/j.combustflame.2023.113069_bib0022) 2017; 32
Katzer (10.1016/j.combustflame.2023.113069_bib0013) 2017; 156
Hernandez (10.1016/j.combustflame.2023.113069_bib0005) 2008; 155
Ögren (10.1016/j.combustflame.2023.113069_bib0009) 2018; 226
González-Cencerrado (10.1016/j.combustflame.2023.113069_bib0038) 2012; 94
Ihme (10.1016/j.combustflame.2023.113069_bib0039) 2022; 91
References_xml – volume: 36
  start-page: 375
  year: 2010
  end-page: 411
  ident: bib0011
  article-title: Diagnostic techniques for the monitoring and control of practical flames
  publication-title: Prog. Energy Combust. Sci.
– volume: 32
  start-page: 139
  year: 2017
  end-page: 151
  ident: bib0022
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv. Eng. Inform.
– volume: 244
  year: 2023
  ident: bib0015
  article-title: Principal component analysis based combustion model in the context of a lifted methane/air flame: sensitivity to the manifold parameters and subgrid closure
  publication-title: Combust. Flame
– volume: 333
  year: 2023
  ident: bib0027
  article-title: A hybrid deep neural network model for NOx emission prediction of heavy oil-fired boiler flames
  publication-title: Fuel
– volume: 302
  year: 2021
  ident: bib0032
  article-title: Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers
  publication-title: Appl. Energy
– volume: 87
  start-page: 2169
  year: 2010
  end-page: 2179
  ident: bib0034
  article-title: Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images
  publication-title: Appl. Energy
– volume: 196
  start-page: 550
  year: 2017
  end-page: 563
  ident: bib0036
  article-title: Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement
  publication-title: Fuel
– volume: 255
  year: 2019
  ident: bib0018
  article-title: Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image
  publication-title: Fuel
– volume: 289
  year: 2020
  ident: bib0028
  article-title: Prediction of combustion state through a semi-supervised learning model and flame imaging
  publication-title: Fuel
– volume: 88
  year: 2022
  ident: bib0002
  article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: a review and future directions
  publication-title: Prog. Energy Combust. Sci.
– volume: 12
  start-page: 2585
  year: 2019
  ident: bib0026
  article-title: An Unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden markov model
  publication-title: Energies
– volume: 91
  year: 2022
  ident: bib0039
  article-title: Combustion machine learning: principles, progress and prospects
  publication-title: Prog. Energy Combust. Sci.
– volume: 226
  start-page: 450
  year: 2018
  end-page: 460
  ident: bib0009
  article-title: Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors
  publication-title: Appl. Energy
– volume: 24
  start-page: 1118
  year: 2016
  end-page: 1132
  ident: bib0035
  article-title: Three-dimensional temperature field measurement of flame using a single light field camera
  publication-title: Opt. Express
– volume: 156
  start-page: 138
  year: 2017
  end-page: 155
  ident: bib0013
  article-title: Quantitative and qualitative relationship between swirl burner operating conditions and pulverized coal flame length
  publication-title: Fuel Process. Technol.
– volume: 159
  start-page: 349
  year: 2019
  end-page: 357
  ident: bib0030
  article-title: Convolutional neural network based combustion mode classification for condition monitoring in the supersonic combustor
  publication-title: Acta Astronaut.
– year: 2016
  ident: bib0025
  article-title: Early detection of combustion instabilities using deep convolutional selective autoencoders on hi-speed flame video
  publication-title: Int. J. Prognost. Health Monitor.
– volume: 259
  year: 2019
  ident: bib0023
  article-title: Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network
  publication-title: Appl. Energy
– volume: 189
  start-page: 8
  year: 2019
  end-page: 17
  ident: bib0024
  article-title: Image-based process monitoring using deep learning framework
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 94
  start-page: 375
  year: 2012
  end-page: 384
  ident: bib0038
  article-title: Coal flame characterization using digital image processing in a semi-industrial scale PF swirl burner
  publication-title: Appl. Energy
– volume: 244
  year: 2022
  ident: bib0001
  article-title: Investigation of the stability, radiation, and structure of laminar coflow diffusion flames of CH4/NH3 mixtures
  publication-title: Combust. Flame
– volume: 303
  year: 2021
  ident: bib0031
  article-title: A comprehensive investigation of LSTM-CNN deep learning model for fast detection of combustion instability
  publication-title: Fuel
– volume: 182
  start-page: 37
  year: 2019
  end-page: 47
  ident: bib0037
  article-title: The multi-objective optimization of combustion system operations based on deep data-driven models
  publication-title: Energy
– volume: 109
  year: 2020
  ident: bib0019
  article-title: Monitoring combustion instabilities of stratified swirl flames by feature extractions of time-averaged flame images using deep learning method
  publication-title: Aerosp. Sci. Technol.
– volume: 270
  year: 2020
  ident: bib0014
  article-title: Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology
  publication-title: Fuel
– volume: 113
  start-page: 798
  year: 2013
  end-page: 809
  ident: bib0004
  article-title: Characterization of PF flames under different swirl conditions based on visualization systems
  publication-title: Fuel
– volume: 203
  start-page: 255
  year: 2019
  end-page: 264
  ident: bib0029
  article-title: Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates
  publication-title: Combust. Flame
– volume: 21
  start-page: 547
  year: 2011
  end-page: 553
  ident: bib0010
  article-title: Soft sensor design by multivariate fusion of image features and process measurements
  publication-title: J. Process Control
– volume: 155
  start-page: 509
  year: 2008
  end-page: 528
  ident: bib0005
  article-title: Flame imaging as a diagnostic tool for industrial combustion
  publication-title: Combust. Flame
– volume: 64
  start-page: 3323
  year: 2015
  end-page: 3333
  ident: bib0006
  article-title: Quantitative assessment of flame stability through image processing and spectral analysis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 132
  start-page: 591
  year: 2003
  end-page: 595
  ident: bib0017
  article-title: Real-time monitoring and characterization of flames by principal-component analysis
  publication-title: Combust. Flame
– volume: 185
  start-page: 1400
  year: 2013
  end-page: 1413
  ident: bib0033
  article-title: Condition monitoring of combustion processes through flame imaging and kernel principal component analysis
  publication-title: Combust. Sci. Technol.
– volume: 211
  year: 2020
  ident: bib0012
  article-title: Burning condition recognition of rotary kiln based on spatiotemporal features of flame video
  publication-title: Energy
– volume: 131
  start-page: 106
  year: 2017
  end-page: 112
  ident: bib0021
  article-title: Deep learning based monitoring of furnace combustion state and measurement of heat release rate
  publication-title: Energy
– volume: 94
  start-page: 13
  year: 2012
  end-page: 21
  ident: bib0016
  article-title: Design of image-based control loops for industrial combustion processes
  publication-title: Appl. Energy
– volume: 219
  start-page: 268
  year: 2020
  end-page: 274
  ident: bib0008
  article-title: Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements
  publication-title: Combust. Flame
– volume: 7
  year: 2022
  ident: bib0007
  article-title: Machine learning for combustion
  publication-title: Energy AI
– volume: 31
  start-page: 8776
  year: 2017
  end-page: 8783
  ident: bib0020
  article-title: Flame images for oxygen content prediction of combustion systems using DBN
  publication-title: Energy Fuels
– volume: 97
  start-page: 35
  year: 2018
  end-page: 60
  ident: bib0003
  article-title: A review of active control approaches in stabilizing combustion systems in aerospace industry
  publication-title: Progr. Aerosp. Sci.
– volume: 113
  start-page: 798
  year: 2013
  ident: 10.1016/j.combustflame.2023.113069_bib0004
  article-title: Characterization of PF flames under different swirl conditions based on visualization systems
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.05.077
– volume: 97
  start-page: 35
  year: 2018
  ident: 10.1016/j.combustflame.2023.113069_bib0003
  article-title: A review of active control approaches in stabilizing combustion systems in aerospace industry
  publication-title: Progr. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2018.01.002
– volume: 64
  start-page: 3323
  issue: 12
  year: 2015
  ident: 10.1016/j.combustflame.2023.113069_bib0006
  article-title: Quantitative assessment of flame stability through image processing and spectral analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2444262
– volume: 131
  start-page: 106
  year: 2017
  ident: 10.1016/j.combustflame.2023.113069_bib0021
  article-title: Deep learning based monitoring of furnace combustion state and measurement of heat release rate
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.012
– volume: 219
  start-page: 268
  year: 2020
  ident: 10.1016/j.combustflame.2023.113069_bib0008
  article-title: Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.05.024
– volume: 244
  year: 2022
  ident: 10.1016/j.combustflame.2023.113069_bib0001
  article-title: Investigation of the stability, radiation, and structure of laminar coflow diffusion flames of CH4/NH3 mixtures
  publication-title: Combust. Flame
– volume: 259
  year: 2019
  ident: 10.1016/j.combustflame.2023.113069_bib0023
  article-title: Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network
  publication-title: Appl. Energy
– volume: 21
  start-page: 547
  issue: 4
  year: 2011
  ident: 10.1016/j.combustflame.2023.113069_bib0010
  article-title: Soft sensor design by multivariate fusion of image features and process measurements
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2011.01.006
– volume: 302
  year: 2021
  ident: 10.1016/j.combustflame.2023.113069_bib0032
  article-title: Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117509
– volume: 94
  start-page: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.combustflame.2023.113069_bib0016
  article-title: Design of image-based control loops for industrial combustion processes
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.12.080
– volume: 289
  issue: 4
  year: 2020
  ident: 10.1016/j.combustflame.2023.113069_bib0028
  article-title: Prediction of combustion state through a semi-supervised learning model and flame imaging
  publication-title: Fuel
– volume: 91
  year: 2022
  ident: 10.1016/j.combustflame.2023.113069_bib0039
  article-title: Combustion machine learning: principles, progress and prospects
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2022.101010
– volume: 226
  start-page: 450
  year: 2018
  ident: 10.1016/j.combustflame.2023.113069_bib0009
  article-title: Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.007
– volume: 7
  year: 2022
  ident: 10.1016/j.combustflame.2023.113069_bib0007
  article-title: Machine learning for combustion
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100128
– volume: 203
  start-page: 255
  year: 2019
  ident: 10.1016/j.combustflame.2023.113069_bib0029
  article-title: Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.02.019
– volume: 159
  start-page: 349
  year: 2019
  ident: 10.1016/j.combustflame.2023.113069_bib0030
  article-title: Convolutional neural network based combustion mode classification for condition monitoring in the supersonic combustor
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2019.03.072
– volume: 196
  start-page: 550
  year: 2017
  ident: 10.1016/j.combustflame.2023.113069_bib0036
  article-title: Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.01.115
– volume: 156
  start-page: 138
  year: 2017
  ident: 10.1016/j.combustflame.2023.113069_bib0013
  article-title: Quantitative and qualitative relationship between swirl burner operating conditions and pulverized coal flame length
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.10.013
– volume: 12
  start-page: 2585
  year: 2019
  ident: 10.1016/j.combustflame.2023.113069_bib0026
  article-title: An Unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden markov model
  publication-title: Energies
  doi: 10.3390/en12132585
– volume: 303
  year: 2021
  ident: 10.1016/j.combustflame.2023.113069_bib0031
  article-title: A comprehensive investigation of LSTM-CNN deep learning model for fast detection of combustion instability
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121300
– volume: 36
  start-page: 375
  issue: 4
  year: 2010
  ident: 10.1016/j.combustflame.2023.113069_bib0011
  article-title: Diagnostic techniques for the monitoring and control of practical flames
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2009.11.005
– volume: 155
  start-page: 509
  issue: 3
  year: 2008
  ident: 10.1016/j.combustflame.2023.113069_bib0005
  article-title: Flame imaging as a diagnostic tool for industrial combustion
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2008.06.010
– volume: 109
  year: 2020
  ident: 10.1016/j.combustflame.2023.113069_bib0019
  article-title: Monitoring combustion instabilities of stratified swirl flames by feature extractions of time-averaged flame images using deep learning method
  publication-title: Aerosp. Sci. Technol.
– volume: 32
  start-page: 139
  year: 2017
  ident: 10.1016/j.combustflame.2023.113069_bib0022
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2017.02.005
– volume: 270
  year: 2020
  ident: 10.1016/j.combustflame.2023.113069_bib0014
  article-title: Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117486
– volume: 255
  year: 2019
  ident: 10.1016/j.combustflame.2023.113069_bib0018
  article-title: Artificial neural network regression model to predict flue gas temperature and emissions with the spectral norm of flame image
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115827
– year: 2016
  ident: 10.1016/j.combustflame.2023.113069_bib0025
  article-title: Early detection of combustion instabilities using deep convolutional selective autoencoders on hi-speed flame video
  publication-title: Int. J. Prognost. Health Monitor.
– volume: 94
  start-page: 375
  year: 2012
  ident: 10.1016/j.combustflame.2023.113069_bib0038
  article-title: Coal flame characterization using digital image processing in a semi-industrial scale PF swirl burner
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.01.059
– volume: 244
  year: 2023
  ident: 10.1016/j.combustflame.2023.113069_bib0015
  article-title: Principal component analysis based combustion model in the context of a lifted methane/air flame: sensitivity to the manifold parameters and subgrid closure
  publication-title: Combust. Flame
– volume: 333
  issue: 2
  year: 2023
  ident: 10.1016/j.combustflame.2023.113069_bib0027
  article-title: A hybrid deep neural network model for NOx emission prediction of heavy oil-fired boiler flames
  publication-title: Fuel
– volume: 24
  start-page: 1118
  issue: 2
  year: 2016
  ident: 10.1016/j.combustflame.2023.113069_bib0035
  article-title: Three-dimensional temperature field measurement of flame using a single light field camera
  publication-title: Opt. Express
  doi: 10.1364/OE.24.001118
– volume: 132
  start-page: 591
  issue: 3
  year: 2003
  ident: 10.1016/j.combustflame.2023.113069_bib0017
  article-title: Real-time monitoring and characterization of flames by principal-component analysis
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(02)00484-4
– volume: 88
  year: 2022
  ident: 10.1016/j.combustflame.2023.113069_bib0002
  article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: a review and future directions
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2021.100967
– volume: 185
  start-page: 1400
  issue: 9
  year: 2013
  ident: 10.1016/j.combustflame.2023.113069_bib0033
  article-title: Condition monitoring of combustion processes through flame imaging and kernel principal component analysis
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2013.798316
– volume: 211
  year: 2020
  ident: 10.1016/j.combustflame.2023.113069_bib0012
  article-title: Burning condition recognition of rotary kiln based on spatiotemporal features of flame video
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118656
– volume: 31
  start-page: 8776
  issue: 8
  year: 2017
  ident: 10.1016/j.combustflame.2023.113069_bib0020
  article-title: Flame images for oxygen content prediction of combustion systems using DBN
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.7b00576
– volume: 189
  start-page: 8
  year: 2019
  ident: 10.1016/j.combustflame.2023.113069_bib0024
  article-title: Image-based process monitoring using deep learning framework
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.03.008
– volume: 87
  start-page: 2169
  issue: 7
  year: 2010
  ident: 10.1016/j.combustflame.2023.113069_bib0034
  article-title: Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.11.008
– volume: 182
  start-page: 37
  year: 2019
  ident: 10.1016/j.combustflame.2023.113069_bib0037
  article-title: The multi-objective optimization of combustion system operations based on deep data-driven models
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.051
SSID ssj0007433
Score 2.4614406
Snippet Flame stability assessment is essential for optimizing combustion operation and improving combustion quality. However, an accurate and reliable assessment of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113069
SubjectTerms Convolutional denoising autoencoder
Flame image
Flame stability
Stability index
Statistical analysis
Title Assessment of flame stability through a convolutional denoising autoencoder and statistical analysis
URI https://dx.doi.org/10.1016/j.combustflame.2023.113069
Volume 258
WOSCitedRecordID wos001106640100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0010-2180
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007433
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9UwFA66CW4PolNxTiUPvna0aZqkDz5cxkRFh-BVii8lSVN2x2jHdjs2_3pPfjS3mwpXxJdSQtO0OV9PviSn30HodZsyYhrZJAUry4SqkidKMZrItoDBgklSOiWmbx_50ZGoqvJz2MG_cOkEeNeJq6vy7L-aGsrA2PbX2b8wd7wpFMA5GB2OYHY4rmX4WdTatESwBYtbEVkvx30d8_JIF28eHsRu1JiuX7h1Azkse6tuaUUm3Kq63ay_WAZVAS9hMqW04FGUTQkWwppdgyu_5pza92Pz4zgWzsMSdbWQ_fUQL4XRWnpBg0_NPviaRbeKWawGHxowyO60D2NtWKog-a2wj_gPzY0QTzsrTYBopFOfTLye-y_-3S81nFjz2Fdzr7Rvm7K5aVKf9OWWfvYXJ5vnhO6cOF5-F20SXpTgAjdn7w-rD3HgBjLlAxLCA40atS4c8E8t_p7PTDjK_CF6ECYXeOZB8QjdMd0Oun8w5vTbQdsT-cnHqFlBBfctdo3iCBUcoIIlvgEVHKGCJ1DBYHs8gQoeofIEfX17OD94l4SsG4kGcr1MqJRMs4aqlhhNmpJrU1AtWl5owbjmROtUSMqp5kI0qcmNglmHZhTKgO5m-VO00fWdeYZwpvOi1VyrnAFZypQwGZyrRguaEcnkLirHvqt1kKS3mVFO6zH28KSe9ntt-732_b6L8lj3zAuzrFXrzWiiOlBMTx1rQNga9Z__Y_09tLX6MF6gjeX5YF6ie_oSrHP-KgDyJ7mqrwU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+flame+stability+through+a+convolutional+denoising+autoencoder+and+statistical+analysis&rft.jtitle=Combustion+and+flame&rft.au=Han%2C+Zhezhe&rft.au=Tang%2C+Xiaoyu&rft.au=Hossain%2C+Md.+Moinul&rft.au=Xu%2C+Chuanlong&rft.date=2023-12-01&rft.pub=Elsevier+Inc&rft.issn=0010-2180&rft.volume=258&rft_id=info:doi/10.1016%2Fj.combustflame.2023.113069&rft.externalDocID=S0010218023004443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon