Robust Tracking Control of Networked Control Systems: Application to a Networked DC Motor

This paper investigates robust H 2 and H ∞ step tracking control methods for networked control systems subject to random time delays modeled by Markov chains. To make full use of the delay information, the proposed two-mode dependent output feedback controller depends on both sensor-to-controller an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 60; no. 12; pp. 5864 - 5874
Main Authors: Shi, Yang, Huang, Ji, Yu, Bo
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0046, 1557-9948
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates robust H 2 and H ∞ step tracking control methods for networked control systems subject to random time delays modeled by Markov chains. To make full use of the delay information, the proposed two-mode dependent output feedback controller depends on both sensor-to-controller and controller-to-actuator delays. To actively compensate for the controller-to-actuator delays, we propose the "send all, apply one" scheme: Sending a sequence of control signals, then at the actuator/plant node, applying the appropriate control signal according to the actual controller-to-actuator delay. Using the augmentation method, the resulting closed-loop system can be formulated as a discrete-time Markovian jump linear system. The H 2 and H ∞ step tracking problems are tackled by solving a set of linear matrix inequalities with nonconvex constraints. Both numerical simulations and experiments on a networked dc motor system are conducted to illustrate the effectiveness of the proposed methods.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2012.2233692