CL-NOTEARS: Continuous Optimization Algorithm Based on Curriculum Learning Framework

Causal structure learning plays a crucial role in the current field of artificial intelligence, yet existing causal structure learning methods are susceptible to interference from data sample noise and often become trapped in local optima. To address these challenges, this paper introduces a continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 12; H. 17; S. 2640
Hauptverfasser: Liu, Kaiyue, Liu, Lihua, Xiao, Kaiming, Li, Xuan, Zhang, Hang, Zhou, Yun, Huang, Hongbin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2024
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Causal structure learning plays a crucial role in the current field of artificial intelligence, yet existing causal structure learning methods are susceptible to interference from data sample noise and often become trapped in local optima. To address these challenges, this paper introduces a continuous optimization algorithm based on the curriculum learning framework: CL-NOTEARS. The model utilizes the curriculum loss function during training as a priority evaluation metric for curriculum selection and formulates the sample learning sequence of the model through task-level curricula, thereby enhancing the model’s learning performance. A curriculum-based sample prioritization strategy is employed that dynamically adjusts the training sequence based on variations in loss function values across different samples throughout the training process. The results demonstrate a significant reduction in the impact of sample noise in the data, leading to improved model training performance.
AbstractList Causal structure learning plays a crucial role in the current field of artificial intelligence, yet existing causal structure learning methods are susceptible to interference from data sample noise and often become trapped in local optima. To address these challenges, this paper introduces a continuous optimization algorithm based on the curriculum learning framework: CL-NOTEARS. The model utilizes the curriculum loss function during training as a priority evaluation metric for curriculum selection and formulates the sample learning sequence of the model through task-level curricula, thereby enhancing the model’s learning performance. A curriculum-based sample prioritization strategy is employed that dynamically adjusts the training sequence based on variations in loss function values across different samples throughout the training process. The results demonstrate a significant reduction in the impact of sample noise in the data, leading to improved model training performance.
Author Li, Xuan
Huang, Hongbin
Zhou, Yun
Xiao, Kaiming
Liu, Kaiyue
Zhang, Hang
Liu, Lihua
Author_xml – sequence: 1
  givenname: Kaiyue
  orcidid: 0009-0008-2190-1082
  surname: Liu
  fullname: Liu, Kaiyue
– sequence: 2
  givenname: Lihua
  orcidid: 0000-0002-5774-951X
  surname: Liu
  fullname: Liu, Lihua
– sequence: 3
  givenname: Kaiming
  orcidid: 0000-0002-3172-7072
  surname: Xiao
  fullname: Xiao, Kaiming
– sequence: 4
  givenname: Xuan
  surname: Li
  fullname: Li, Xuan
– sequence: 5
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
– sequence: 6
  givenname: Yun
  orcidid: 0000-0001-7328-0275
  surname: Zhou
  fullname: Zhou, Yun
– sequence: 7
  givenname: Hongbin
  orcidid: 0000-0002-5179-3640
  surname: Huang
  fullname: Huang, Hongbin
BookMark eNpNUU1Lw0AQXaSCtfbmDwh4NbpfaRJvNbRaCBa0npfpfrRbk2zdJIj-elcr0jnMDG8e7w28czRoXKMRuiT4hrEc39bQbQklKZ1wfIKGlNI0TsNhcLSfoXHb7nConLCM50O0Ksr4abmaTZ9f7qLCNZ1tete30XLf2dp-QWddE02rjfO229bRPbRaRQEqeu-t7Ku-jkoNvrHNJpp7qPWH828X6NRA1erx3xyh1_lsVTzG5fJhUUzLWDLKu5gqpWCSUCwxzUPLQGI90RlXyVqmcg3MKCKBrEmaMchNoBDQJuFUU0ilYiO0OOgqBzux97YG_ykcWPELOL8R4DsrKy2wSjJJuckk4RwHKw5rZkhqmDFGUR20rg5ae-_ee912Yud634T3BSOY4yQnkzywrg8s6V3bem3-XQkWPzGI4xjYN3yAfMI
Cites_doi 10.1007/BF00994016
10.1109/BHI50953.2021.9508538
10.1007/s10208-022-09581-9
10.1007/s11859-015-1084-y
10.1007/s11227-021-04097-5
10.1007/s10115-009-0239-6
10.1214/aos/1176344136
10.1109/TMM.2021.3136717
10.1109/BIBM47256.2019.8983151
10.1145/1273496.1273604
10.7551/mitpress/1754.001.0001
10.1007/BF00356088
10.1145/1553374.1553380
10.1016/j.patrec.2011.03.003
10.1017/S0266466603004109
10.1109/TCBB.2016.2591526
10.1126/science.1173299
10.1137/1.9781611977172.48
10.1093/biomet/ast043
10.1051/ijmqe/2023009
10.2331/fishsci.60.411
10.1016/j.ins.2016.01.090
10.1126/science.1105809
10.1137/0916069
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12172640
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_0d58c24f8c144008a4ab3f17f3fffd2e
10_3390_math12172640
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c324t-2ddda6520c0290c08ac0e6e84d5bc7cba3fd1ca1b1783a9f0c01aef542e2a7cd3
IEDL.DBID K7-
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001311036100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:38:25 EDT 2025
Fri Jul 25 11:59:51 EDT 2025
Sat Nov 29 07:10:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-2ddda6520c0290c08ac0e6e84d5bc7cba3fd1ca1b1783a9f0c01aef542e2a7cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5179-3640
0000-0001-7328-0275
0009-0008-2190-1082
0000-0002-3172-7072
0000-0002-5774-951X
OpenAccessLink https://www.proquest.com/docview/3104059169?pq-origsite=%requestingapplication%
PQID 3104059169
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_0d58c24f8c144008a4ab3f17f3fffd2e
proquest_journals_3104059169
crossref_primary_10_3390_math12172640
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chickering (ref_8) 1996; 112
Schwarz (ref_26) 1978; 6
Wan (ref_4) 2022; 78
Peng (ref_34) 2011; 32
Gong (ref_37) 2017; 1
(ref_38) 2013; 41
Shimizu (ref_47) 2006; 7
Algarni (ref_5) 2022; 2022
ref_14
ref_12
ref_11
ref_33
ref_10
ref_32
Gheisari (ref_27) 2016; 348
Hiramatsu (ref_24) 1994; 60
Wang (ref_28) 2010; 24
ref_30
Xu (ref_6) 2023; 14
Dy (ref_36) 2018; Volume 80
Qin (ref_7) 2023; 25
ref_39
ref_15
Chickering (ref_31) 2003; 3
Byrd (ref_41) 1995; 16
(ref_43) 2009; 325
Neuberg (ref_9) 2003; 19
Squires (ref_1) 2023; 23
Sachs (ref_48) 2005; 308
Le (ref_20) 2016; 16
Daly (ref_29) 2009; 35
ref_25
Chaudhuri (ref_13) 2019; Volume 97
ref_45
ref_22
Spirtes (ref_17) 1991; 64
ref_21
Loh (ref_40) 2014; 15
ref_42
Li (ref_18) 2015; 20
Chickering (ref_23) 1995; 20
ref_3
ref_2
Tsamardinos (ref_16) 2003; 2
Wang (ref_35) 2022; 44
Colombo (ref_19) 2014; 15
Peters (ref_46) 2013; 101
Shimizu (ref_44) 2011; 12
References_xml – volume: 15
  start-page: 3741
  year: 2014
  ident: ref_19
  article-title: Order-Independent Constraint-Based Causal Structure Learning
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 197
  year: 1995
  ident: ref_23
  article-title: Learning Bayesian networks: The combination of knowledge and statistical data
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994016
– ident: ref_32
– ident: ref_11
– volume: 1
  start-page: 111
  year: 2017
  ident: ref_37
  article-title: Why Curriculum Learning & Self-Paced Learning Work in Big/Noisy Data: A Theoretical Perspective
  publication-title: Big Data Inf. Anal.
– ident: ref_3
  doi: 10.1109/BHI50953.2021.9508538
– volume: 3
  start-page: 507
  year: 2003
  ident: ref_31
  article-title: Optimal structure identification with greedy search
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 1781
  year: 2023
  ident: ref_1
  article-title: Causal Structure Learning: A Combinatorial Perspective
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-022-09581-9
– volume: 20
  start-page: 214
  year: 2015
  ident: ref_18
  article-title: From probability to causality
  publication-title: Wuhan Univ. J. Nat. Sci.
  doi: 10.1007/s11859-015-1084-y
– volume: 44
  start-page: 4555
  year: 2022
  ident: ref_35
  article-title: A Survey on Curriculum Learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_39
– volume: 78
  start-page: 6503
  year: 2022
  ident: ref_4
  article-title: Financial causal sentence recognition based on BERT-CNN text classification
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04097-5
– volume: 24
  start-page: 269
  year: 2010
  ident: ref_28
  article-title: A heuristic method for learning Bayesian networks using discrete particle swarm optimization
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-009-0239-6
– volume: 6
  start-page: 461
  year: 1978
  ident: ref_26
  article-title: Estimating the Dimension of a Model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– ident: ref_42
– volume: 25
  start-page: 1033
  year: 2023
  ident: ref_7
  article-title: Causal Interventional Training for Image Recognition
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3136717
– ident: ref_30
  doi: 10.1109/BIBM47256.2019.8983151
– ident: ref_21
  doi: 10.1145/1273496.1273604
– volume: 41
  start-page: 536
  year: 2013
  ident: ref_38
  article-title: ℓ0 -penalized maximum likelihood for sparse directed acyclic graphs
  publication-title: Ann. Stat.
– volume: Volume 97
  start-page: 7154
  year: 2019
  ident: ref_13
  article-title: DAG-GNN: DAG Structure Learning with Graph Neural Networks
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– ident: ref_10
  doi: 10.7551/mitpress/1754.001.0001
– volume: 15
  start-page: 3065
  year: 2014
  ident: ref_40
  article-title: High-dimensional learning of linear causal networks via inverse covariance estimation
  publication-title: J. Mach. Learn. Res.
– ident: ref_25
– volume: 112
  start-page: 121
  year: 1996
  ident: ref_8
  article-title: Learning Bayesian networks is NP-complete
  publication-title: Learn. Data Artif. Intell. Stat. V
– ident: ref_33
– ident: ref_2
– volume: 2
  start-page: 376
  year: 2003
  ident: ref_16
  article-title: Algorithms for Large Scale Markov Blanket Discovery
  publication-title: FLAIRS
– volume: 64
  start-page: 1
  year: 1991
  ident: ref_17
  article-title: From probability to causality
  publication-title: Philos. Stud.
  doi: 10.1007/BF00356088
– ident: ref_12
– ident: ref_14
  doi: 10.1145/1553374.1553380
– volume: 32
  start-page: 1154
  year: 2011
  ident: ref_34
  article-title: An entropy weighting mixture model for subspace clustering of high-dimensional data
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.03.003
– volume: 19
  start-page: 675
  year: 2003
  ident: ref_9
  article-title: CAUSALITY: MODELS, REASONING, AND INFERENCE, by Judea Pearl, Cambridge University Press, 2000
  publication-title: Econom. Theory
  doi: 10.1017/S0266466603004109
– ident: ref_15
– volume: 16
  start-page: 1483
  year: 2016
  ident: ref_20
  article-title: A fast PC algorithm for high dimensional causal discovery with multi-core PCs
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2016.2591526
– volume: 325
  start-page: 412
  year: 2009
  ident: ref_43
  article-title: Scale-Free Networks: A Decade and Beyond
  publication-title: Science
  doi: 10.1126/science.1173299
– volume: Volume 80
  start-page: 5238
  year: 2018
  ident: ref_36
  article-title: Curriculum Learning by Transfer Learning: Theory and Experiments with Deep Networks
  publication-title: Proceedings of the 35th International Conference on Machine Learning
– volume: 2022
  start-page: 4688327
  year: 2022
  ident: ref_5
  article-title: Hybrid Model for Detection of Cervical Cancer Using Causal Analysis and Machine Learning Techniques
  publication-title: Comput. Math. Methods Med.
– ident: ref_45
  doi: 10.1137/1.9781611977172.48
– volume: 35
  start-page: 391
  year: 2009
  ident: ref_29
  article-title: Learning Bayesian network equivalence classes with Ant Colony optimization
  publication-title: J. Artif. Int. Res.
– volume: 12
  start-page: 1225
  year: 2011
  ident: ref_44
  article-title: DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model
  publication-title: J. Mach. Learn. Res.
– volume: 101
  start-page: 219
  year: 2013
  ident: ref_46
  article-title: Identifiability of Gaussian structural equation models with equal error variances
  publication-title: Biometrika
  doi: 10.1093/biomet/ast043
– volume: 7
  start-page: 2003
  year: 2006
  ident: ref_47
  article-title: A Linear Non-Gaussian Acyclic Model for Causal Discovery
  publication-title: J. Mach. Learn. Res.
– ident: ref_22
– volume: 14
  start-page: 10
  year: 2023
  ident: ref_6
  article-title: Improved Bayesian network-based for fault diagnosis of air conditioner system
  publication-title: Int. J. Metrol. Qual. Eng.
  doi: 10.1051/ijmqe/2023009
– volume: 60
  start-page: 411
  year: 1994
  ident: ref_24
  article-title: Introduction of Suitable Stock-recruitment Relationship by a Comparison of Statistical Models
  publication-title: Fish. Sci.
  doi: 10.2331/fishsci.60.411
– volume: 348
  start-page: 272
  year: 2016
  ident: ref_27
  article-title: BNC-PSO: Structure learning of Bayesian networks by Particle Swarm Optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.090
– volume: 308
  start-page: 523
  year: 2005
  ident: ref_48
  article-title: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data
  publication-title: Science
  doi: 10.1126/science.1105809
– volume: 16
  start-page: 1190
  year: 1995
  ident: ref_41
  article-title: A Limited Memory Algorithm for Bound Constrained Optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
SSID ssj0000913849
Score 2.2663152
Snippet Causal structure learning plays a crucial role in the current field of artificial intelligence, yet existing causal structure learning methods are susceptible...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2640
SubjectTerms Accuracy
Algorithms
Artificial intelligence
casual structure
Continuity (mathematics)
continuous optimization
Curricula
curriculum learning
Decision making
Gaussian cluster
Heuristic
Learning
Machine learning
Methods
Optimization
Optimization algorithms
Performance evaluation
Random variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RSFgjzAGDWO87DZ2qoVA7QIitQtcs52W4mmqA9-P-ckrSIxsLBksBwl-i6--86-fEfIvUZKDzKMPWNi18JMK08JiDyjZZIloULaD0WziWQwEOOxfK21-nI1YaU8cAlcy9eRgCC0AtwxpC9UqDJuWWK5tVYHxnlfZD21ZKrwwZJxEcqy0p1jXt9C_jdlrhtT7PY5ajGokOr_5YmL8NI_IccVL6Tt8n1OyZ7Jz8jRy05UdXVORt1nbzAc9dpv74_UqUrN8g3m7XSIq35e_U5J25-TBeb70zntYHzSFIe6u10-WqmpTmh_W5N1QT76vVH3yauaIniA3GftBVprFUeBD34g8SIU-CY2ItRRBglkilvNQLGMJYIraXEKU8ZGYWAClYDml2Q_X-TmitAEFDeAkPiahTgx43hXnPkRCMYglg3ysIUp_Sq1L1LMGRycaR3OBuk4DHdznGJ1MYB2TCs7pn_ZsUGaWwuk1TJapcg9kVAig5XX__GMG3IYICcpS8SaZH-93JhbcgDf69lqeVd8QT8HoM1k
  priority: 102
  providerName: Directory of Open Access Journals
Title CL-NOTEARS: Continuous Optimization Algorithm Based on Curriculum Learning Framework
URI https://www.proquest.com/docview/3104059169
https://doaj.org/article/0d58c24f8c144008a4ab3f17f3fffd2e
Volume 12
WOSCitedRecordID wos001311036100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB2Vtgc4QCkgAiXyAY5W194Pe3upkigRVWkatUEqp5V3bKeVaNImKUd-e8cbJ1RC4sLFB9u7sjz2-M14_AbgsyVIj2VWcOeKkMLMGm405tzZUtUqMwT7sUk2oYZDfXVVjqLDbRHDKtc6sVHUdobBR35IMISwBYGZ8vjunoesUeF2NabQeAY7QkoR1vmp4hsfS-C81Fm5indPybo_JBR4LUJOpiJ4O56cRA1h_1_6uDlkBq_-d3h78DLCS9ZZrYfXsOWm-_DibMPNungD4943Pjwf9zsXl0cskFPdTB_I_GfnpDxu46tM1vk5ob8vr29Zl445y6iqt3EWskjKOmGDdWjXW_g-6I97X3nMrcCRINSSS2utKXKZYCJLKrTBxBVOZzavUWFtUm8FGlELpVNTeuoijPN5Jp00Cm36Drans6l7D0yhSR3SnCZWZNSxTumrok5y1EJgUbbgy3qeq7sVhUZFpkeQR_VUHi3oBiFs-gTi66ZiNp9UcR9Vic01ysxrDLfSNOzM1KkXyqfeeytdCw7W8qniblxUf4Tz4d_NH-G5JNCyiiE7gO3l_MF9gl38tbxZzNuw0-0PRxftxm5vN0utHWJFL0P5u0_to5Oz0Y9H6j7gxA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9lLe6UMAHeowa20lsV0Jou3TVardbBIvUW-r4sa1Ed9vNLog_xW_sOI-lEhK3Hrjk4DhRnBmNP4_H3wfw3iKkNyrJIueyIGFmdaSlSSNnlShEohH2m0psQoxG8vRUfV6D3-1ZmFBW2cbEKlDbmQk58l2EIYgtEMyoj1fXUVCNCrurrYRG7RYD9-snLtnKD0ef0L47jPUPxr3DqFEViAyCh0XErLU6S1lsYqbwIrWJXeZkYtPCCFNo7i01mhZUSK6Vxy5UO58mzDEtjOX43ntwP-FSBK7-gYhWOZ3AsSkTVdfXc67iXUSd5zRoQGUhu3Jr5qsEAv6K_9Wk1n_8v_2OJ7DZwGfSrf39Kay56TPYOF5xz5bPYdwbRqOT8UH3y9c9Esi3LqbL2bIkJxgcL5tTp6T7fYKjWZxfkn2cxi3Bpt4qGUoa0tkJ6belay_g250M6yWsT2dTtwVEGM2dQRvGlibYseD4VFbEqZGUmkx1YKe1a35VU4TkuLQK9s9v278D-8Hoqz6B2LtqmM0neRMn8tim0rDESxN23fGzE11wT4Xn3nvLXAe2W3_Im2hT5n-c4dW_b7-Dh4fj42E-PBoNXsMjhgCtrpfbhvXFfOnewAPzY3FRzt9Wjk3g7K5d5wYAwzp2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VghA9lLcaKOADPVpZ2_uwKyGUpo2oUtIKgtTb1utHWokmbTYB8df4dR3vI1RC4tYDlz14Z1fr9eeZz-PxDMB7i5TeqDilzqWhhJnVVEuTUGdVVmSxRtpvqmIT2WgkT0_VyRr8bs_ChLDKVidWitrOTPCRd5GGILdAMqO6vgmLONkffLy6pqGCVNhpbctp1BAZul8_cflWfjjcx7He4XxwMO5_ok2FAWqQSCwot9bqNOGRibjCi9QmcqmTsU0Kk5lCC2-Z0axgmRRaeRRh2vkk5o7rzFiB770H99EKJ2GODTO68u-EfJsyVnWsvRAq6iIDPWehHlQaPC23rGBVLOAvW1AZuMHj__nXPIHNhlaTXj0PnsKamz6Djc-rnLTlcxj3j-joeHzQ-_J1l4SkXBfT5WxZkmNUmpfNaVTS-z7B3izOL8kemndLsKm_cpKSJhnthAzakLYX8O1OuvUS1qezqdsCkhktnMHxjCyLUbAQ-FRaRImRjJlUdWCnHeP8qk4dkuOSK2Ahv42FDuwFAKxkQsLvqmE2n-SN_sgjm0jDYy9N2I3Hz451ITzLvPDeW-46sN1iI2-0UJn_Acarf99-Bw8RMfnR4Wj4Gh5x5G11GN02rC_mS_cGHpgfi4ty_rbCOIGzu0bODQv2QzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CL-NOTEARS%3A+Continuous+Optimization+Algorithm+Based+on+Curriculum+Learning+Framework&rft.jtitle=Mathematics+%28Basel%29&rft.au=Liu%2C+Kaiyue&rft.au=Liu%2C+Lihua&rft.au=Xiao%2C+Kaiming&rft.au=Li%2C+Xuan&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=17&rft.spage=2640&rft_id=info:doi/10.3390%2Fmath12172640&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon