Efficient Multi-View Clustering via Unified and Discrete Bipartite Graph Learning
Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually p...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 35; číslo 8; s. 11436 - 11447 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.08.2024
|
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via <inline-formula> <tex-math notation="LaTeX">\boldsymbol {u} </tex-math></inline-formula>nified and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {d} </tex-math></inline-formula>iscrete <inline-formula> <tex-math notation="LaTeX">\boldsymbol {b} </tex-math></inline-formula>ipartite <inline-formula> <tex-math notation="LaTeX">\boldsymbol {g} </tex-math></inline-formula>raph <inline-formula> <tex-math notation="LaTeX">\boldsymbol {l} </tex-math></inline-formula>earning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL . |
|---|---|
| AbstractList | Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via <inline-formula> <tex-math notation="LaTeX">\boldsymbol {u} </tex-math></inline-formula>nified and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {d} </tex-math></inline-formula>iscrete <inline-formula> <tex-math notation="LaTeX">\boldsymbol {b} </tex-math></inline-formula>ipartite <inline-formula> <tex-math notation="LaTeX">\boldsymbol {g} </tex-math></inline-formula>raph <inline-formula> <tex-math notation="LaTeX">\boldsymbol {l} </tex-math></inline-formula>earning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL . Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the k -means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via u nified and d iscrete b ipartite g raph l earning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL.Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the k -means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via u nified and d iscrete b ipartite g raph l earning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL. Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the k -means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via unified and discrete bipartite graph learning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL. |
| Author | Wang, Chang-Dong Huang, Dong Tang, Yong Fang, Si-Guo Cai, Xiao-Sha He, Chaobo |
| Author_xml | – sequence: 1 givenname: Si-Guo orcidid: 0009-0008-4411-3062 surname: Fang fullname: Fang, Si-Guo email: siguofang@hotmail.com organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China – sequence: 2 givenname: Dong orcidid: 0000-0003-3923-8828 surname: Huang fullname: Huang, Dong email: huangdonghere@gmail.com organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China – sequence: 3 givenname: Xiao-Sha surname: Cai fullname: Cai, Xiao-Sha email: xiaoshacai@hotmail.com organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 4 givenname: Chang-Dong orcidid: 0000-0001-5972-559X surname: Wang fullname: Wang, Chang-Dong email: changdongwang@hotmail.com organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 5 givenname: Chaobo orcidid: 0000-0002-6651-1175 surname: He fullname: He, Chaobo email: hechaobo@foxmail.com organization: School of Computer Science, South China Normal University, Guangzhou, China – sequence: 6 givenname: Yong orcidid: 0000-0002-9812-0742 surname: Tang fullname: Tang, Yong email: ytang@m.scnu.edu.cn organization: School of Computer Science, South China Normal University, Guangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37030820$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1PHDEMhqMKVD7KH0AIzbGXWRInJJkjbIEiLVRVoeotymY8NGg2syQZUP99Q3dBFQd8sQ_vY9nPDtkIQ0BC9hmdMEabo5vr69mPCVDgEw6SCUk_kG1gEmrgWm-8zurXFtlL6Z6WkvRYiuYj2eKKcqqBbpPvZ13nnceQq6uxz77-6fGpmvZjyhh9uKseva1ug-88tpUNbfXFJxcxY3XqlzZmX6aLaJe_qxnaGArxiWx2tk-4t-675Pb87Gb6tZ59u7icnsxqx0HkGizVrlFAW6ed0y0F5phFhkLNZSs1zttjBZaVzwRtmAJpXafYXICmHWjLd8nn1d5lHB5GTNksymnY9zbgMCYDqtGKcSGgRA_X0XG-wNYso1_Y-Me8aCgBvQq4OKQUsTPOZ5v9EHK0vjeMmmfp5p908yzdrKUXFN6gL9vfhQ5WkEfE_4DyqOCS_wXg1ovz |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s10462_024_10785_4 crossref_primary_10_1016_j_patcog_2025_112415 crossref_primary_10_1109_LSP_2025_3560529 crossref_primary_10_1016_j_eswa_2024_125831 crossref_primary_10_1016_j_neucom_2025_131497 crossref_primary_10_1007_s00530_025_01815_4 crossref_primary_10_1109_TNNLS_2025_3558613 crossref_primary_10_1109_TMM_2024_3521754 crossref_primary_10_1109_TPAMI_2025_3566169 crossref_primary_10_1109_JIOT_2024_3511261 crossref_primary_10_1109_TNNLS_2024_3349405 crossref_primary_10_1007_s00500_023_08723_7 crossref_primary_10_1109_TNNLS_2024_3413750 crossref_primary_10_1109_TNSE_2024_3485646 crossref_primary_10_1109_TKDE_2025_3591500 crossref_primary_10_1016_j_neucom_2023_126320 crossref_primary_10_1109_TBDATA_2023_3325045 crossref_primary_10_1109_TNNLS_2025_3545465 crossref_primary_10_1016_j_knosys_2025_113119 crossref_primary_10_1109_TCYB_2024_3446764 crossref_primary_10_1109_TNNLS_2024_3443074 crossref_primary_10_1109_TAI_2024_3413694 crossref_primary_10_1016_j_neunet_2024_106696 crossref_primary_10_1109_TETCI_2024_3502459 crossref_primary_10_1016_j_eswa_2025_127943 crossref_primary_10_1016_j_patcog_2025_111811 crossref_primary_10_1016_j_neucom_2025_131441 crossref_primary_10_1016_j_inffus_2023_102025 crossref_primary_10_1016_j_inffus_2025_103511 crossref_primary_10_1016_j_inffus_2025_103654 crossref_primary_10_1038_s41598_025_00895_6 crossref_primary_10_1109_TETCI_2023_3306233 crossref_primary_10_1007_s40305_025_00613_z crossref_primary_10_1109_TNNLS_2025_3546660 crossref_primary_10_1109_TKDE_2025_3569777 crossref_primary_10_1109_TNNLS_2025_3525766 crossref_primary_10_1109_TAI_2024_3373720 crossref_primary_10_1109_LSP_2023_3298284 crossref_primary_10_1109_TCSVT_2024_3399596 crossref_primary_10_1111_tgis_70073 crossref_primary_10_1111_tgis_13113 crossref_primary_10_1016_j_neunet_2025_108003 crossref_primary_10_1109_TKDE_2025_3557718 crossref_primary_10_1007_s11063_023_11287_0 |
| Cites_doi | 10.1609/aaai.v31i1.10909 10.1016/j.inffus.2022.10.020 10.1109/CVPR.2015.7298657 10.1609/aaai.v29i1.9598 10.1609/aaai.v34i04.5867 10.1109/TIP.2018.2877335 10.1016/j.inffus.2019.09.005 10.1109/TMM.2018.2889560 10.1109/ICCV.2015.482 10.1109/ICDM.2019.00148 10.1145/3474085.3475516 10.1109/TIP.2021.3131941 10.1109/MSP.2010.939739 10.1109/TCYB.2021.3113520 10.1109/TPAMI.2020.3011148 10.1609/aaai.v36i6.20652 10.1145/3534931 10.1609/aaai.v33i01.3301118 10.1609/aaai.v36i7.20710 10.1109/tnnls.2022.3189763 10.1109/tnnls.2022.3192445 10.1016/j.neunet.2019.10.010 10.1016/j.knosys.2019.105126 10.1073/pnas.35.11.652 10.1109/TKDE.2019.2903410 10.1109/TSMC.2018.2876202 10.1109/tkde.2023.3236698 10.1109/TKDE.2019.2903810 10.1109/TKDE.2020.3021649 10.1016/j.patcog.2023.109470 10.1609/aaai.v36i7.20723 10.1109/CVPR.2017.461 10.1609/aaai.v34i04.5756 10.24963/ijcai.2017/357 10.1109/TAI.2021.3065894 10.1109/TCYB.2021.3061660 10.1007/s11222-007-9033-z |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNNLS.2023.3261460 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 11447 |
| ExternalDocumentID | 37030820 10_1109_TNNLS_2023_3261460 10091436 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: NSFC grantid: 61976097; 62276277; 62077045; U1811263 funderid: 10.13039/501100001809 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2022B1515120059 funderid: 10.13039/501100021171 – fundername: Natural Science Foundation of Guangdong Province grantid: 2021A1515012203 funderid: 10.13039/501100003453 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c324t-2a08c9720dc8cc8d021c1ae1e47b6d68ebd572a11464091726acf71b4280f28a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 127 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967339900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Thu Oct 02 16:52:53 EDT 2025 Thu Jul 24 03:25:39 EDT 2025 Tue Nov 18 22:33:42 EST 2025 Sat Nov 29 01:40:25 EST 2025 Wed Aug 27 02:35:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-2a08c9720dc8cc8d021c1ae1e47b6d68ebd572a11464091726acf71b4280f28a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9812-0742 0000-0001-5972-559X 0009-0008-4411-3062 0000-0002-6651-1175 0000-0003-3923-8828 |
| PMID | 37030820 |
| PQID | 2798713442 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2023_3261460 crossref_primary_10_1109_TNNLS_2023_3261460 ieee_primary_10091436 pubmed_primary_37030820 proquest_miscellaneous_2798713442 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 Liu (ref40) ref1 ref17 ref39 ref16 ref38 ref18 Bertsekas (ref37) 1982 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 Liu (ref33) ref21 Huang (ref36) ref43 ref28 ref27 ref29 ref8 Nie (ref19); 30 ref9 ref4 Nie (ref7) ref3 ref6 ref5 |
| References_xml | – ident: ref31 doi: 10.1609/aaai.v31i1.10909 – volume-title: Proc. Int. Joint Conf. Artif. Intell. (IJCAI) ident: ref36 article-title: A new simplex sparse learning model to measure data similarity for clustering – ident: ref38 doi: 10.1016/j.inffus.2022.10.020 – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) ident: ref19 article-title: Learning a structured optimal bipartite graph for co-clustering – ident: ref16 doi: 10.1109/CVPR.2015.7298657 – volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref33 article-title: Large graph construction for scalable semi-supervised learning – ident: ref18 doi: 10.1609/aaai.v29i1.9598 – ident: ref27 doi: 10.1609/aaai.v34i04.5867 – ident: ref3 doi: 10.1109/TIP.2018.2877335 – ident: ref39 doi: 10.1016/j.inffus.2019.09.005 – start-page: 1881 volume-title: Proc. Int. Joint Conf. Artif. Intell. (IJCAI) ident: ref7 article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification – ident: ref14 doi: 10.1109/TMM.2018.2889560 – start-page: 6850 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref40 article-title: One pass late fusion multi-view clustering – ident: ref10 doi: 10.1109/ICCV.2015.482 – ident: ref9 doi: 10.1109/ICDM.2019.00148 – ident: ref25 doi: 10.1145/3474085.3475516 – ident: ref26 doi: 10.1109/TIP.2021.3131941 – ident: ref12 doi: 10.1109/MSP.2010.939739 – ident: ref24 doi: 10.1109/TCYB.2021.3113520 – ident: ref22 doi: 10.1109/TPAMI.2020.3011148 – ident: ref32 doi: 10.1609/aaai.v36i6.20652 – ident: ref28 doi: 10.1145/3534931 – ident: ref20 doi: 10.1609/aaai.v33i01.3301118 – ident: ref6 doi: 10.1609/aaai.v36i7.20710 – ident: ref8 doi: 10.1109/tnnls.2022.3189763 – ident: ref5 doi: 10.1109/tnnls.2022.3192445 – ident: ref15 doi: 10.1016/j.neunet.2019.10.010 – ident: ref13 doi: 10.1016/j.knosys.2019.105126 – ident: ref35 doi: 10.1073/pnas.35.11.652 – ident: ref29 doi: 10.1109/TKDE.2019.2903410 – ident: ref41 doi: 10.1109/TSMC.2018.2876202 – ident: ref30 doi: 10.1109/tkde.2023.3236698 – ident: ref4 doi: 10.1109/TKDE.2019.2903810 – ident: ref21 doi: 10.1109/TKDE.2020.3021649 – ident: ref42 doi: 10.1016/j.patcog.2023.109470 – ident: ref43 doi: 10.1609/aaai.v36i7.20723 – ident: ref11 doi: 10.1109/CVPR.2017.461 – ident: ref17 doi: 10.1609/aaai.v34i04.5756 – ident: ref2 doi: 10.24963/ijcai.2017/357 – ident: ref1 doi: 10.1109/TAI.2021.3065894 – ident: ref23 doi: 10.1109/TCYB.2021.3061660 – ident: ref34 doi: 10.1007/s11222-007-9033-z – volume-title: Computer Science and Applied Mathematics year: 1982 ident: ref37 article-title: Constrained optimization and Lagrange multiplier methods |
| SSID | ssj0000605649 |
| Score | 2.6909633 |
| Snippet | Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11436 |
| SubjectTerms | Bipartite graph Bipartite graph learning Clustering algorithms data clustering Fuses Laplace equations large-scale clustering Linear programming linear time multi-view clustering (MVC) Optimization Partitioning algorithms |
| Title | Efficient Multi-View Clustering via Unified and Discrete Bipartite Graph Learning |
| URI | https://ieeexplore.ieee.org/document/10091436 https://www.ncbi.nlm.nih.gov/pubmed/37030820 https://www.proquest.com/docview/2798713442 |
| Volume | 35 |
| WOSCitedRecordID | wos000967339900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1EMvpVBolwJyJW6Vt4mT9eNYKJQDWhWVVnuLHHtcRUJZxD74-x07yao9gNSbD7YT-Rt7Pj--GYDTYNDLXAaeo5K8rE3gpnTIM--sk9YXskP6Wk2nejYz33uxetLCIGJ6fIbjWEx3-X7uVvGojGY4ebeykFuwpZTsxFqbA5WMiLlMdFfkUnBRqNkgksnM59vp9PrHOOYKHxNhoeUhpoArVIrWkv3jk1KSlaf5ZvI7lzv_-cdv4HVPMNmXziJ24QW2e7AzJG9g_Vx-CzcXKXgENWdJhMt_NfjIzu9WMXIC-TO2biwjRhqIozLbeva1oRWGKDY7a-6jvVHpW4x2zfoQrb_34eflxe35Fe_zK3BHNGrJhc20M0oQLto57cndu9xijqWqpZcaaz9RwkbdMu0CielI64LKa9qxZEFoWxzAdjtv8T0wG9xEhGCI_ejSG28RpZIT4SamVkJkI8iHEa5cH3w85sC4q9ImJDNVAqiKAFU9QCP4tGlz34XeeLb2fhz-v2p2Iz-CjwOSFc2ceB1iW5yvFpVQRkclbSlG8K6DeNN6sIzDJ3r9AK_o42X3EvAItpcPKzyGl269bBYPJ2SeM32SzPMPXhDdcQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQYJLy6PQ5Wmk3pC3juPY8RFKSxFLBGKp9hY5fqBIVbZqd8vfZ-wkq3JoJW4-2Jblb-z5_PhmAPaD9k5mMtDMK0lFowPVwnrKnDVWGpfLHumZqqpysdDfB7F60sJ479PnMz-NxfSW75Z2Ha_KcIWjdxO5vAv3CiE46-VamysVhtRcJsLLM8kpz9VilMkwfTCvqtnPacwWPkXKghtETAKXqxSvhf3jlVKalZsZZ_I8xzv_OeZHsD1QTPKht4nHcMd3T2BnTN9AhtX8FH4cpfAR2JwkGS49bf0fcni2jrET0KORq9YQ5KQBWSoxnSOfWtxjkGSTj-15tDgsfY7xrskQpPX3Lvw6PpofntAhwwK1SKRWlBtWWq04IlNaWzp0-DYzPvNCNdLJ0jeuUNxE5TKeA5HrSGODyho8s7DAS5M_g61u2fk9ICbYgoegkf-UwmlnvJdKFtwWulGcswlk4wzXdgg_HrNgnNXpGMJ0nQCqI0D1ANAE3m_anPfBN26tvRun_1rNfuYn8G5Essa1Ex9ETOeX68uaK11GLa3gE3jeQ7xpPVrGixt6fQsPTubfZvXsS_X1JTzEgYj-X-Ar2FpdrP1ruG-vVu3lxZtkpH8B1Rjf0A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Multi-View+Clustering+via+Unified+and+Discrete+Bipartite+Graph+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Fang%2C+Si-Guo&rft.au=Huang%2C+Dong&rft.au=Cai%2C+Xiao-Sha&rft.au=Wang%2C+Chang-Dong&rft.date=2024-08-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=8&rft.spage=11436&rft.epage=11447&rft_id=info:doi/10.1109%2FTNNLS.2023.3261460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2023_3261460 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |