Efficient Multi-View Clustering via Unified and Discrete Bipartite Graph Learning

Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 35; číslo 8; s. 11436 - 11447
Hlavní autoři: Fang, Si-Guo, Huang, Dong, Cai, Xiao-Sha, Wang, Chang-Dong, He, Chaobo, Tang, Yong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.08.2024
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via <inline-formula> <tex-math notation="LaTeX">\boldsymbol {u} </tex-math></inline-formula>nified and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {d} </tex-math></inline-formula>iscrete <inline-formula> <tex-math notation="LaTeX">\boldsymbol {b} </tex-math></inline-formula>ipartite <inline-formula> <tex-math notation="LaTeX">\boldsymbol {g} </tex-math></inline-formula>raph <inline-formula> <tex-math notation="LaTeX">\boldsymbol {l} </tex-math></inline-formula>earning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL .
AbstractList Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via <inline-formula> <tex-math notation="LaTeX">\boldsymbol {u} </tex-math></inline-formula>nified and <inline-formula> <tex-math notation="LaTeX">\boldsymbol {d} </tex-math></inline-formula>iscrete <inline-formula> <tex-math notation="LaTeX">\boldsymbol {b} </tex-math></inline-formula>ipartite <inline-formula> <tex-math notation="LaTeX">\boldsymbol {g} </tex-math></inline-formula>raph <inline-formula> <tex-math notation="LaTeX">\boldsymbol {l} </tex-math></inline-formula>earning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL .
Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the k -means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via u nified and d iscrete b ipartite g raph l earning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL.Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the k -means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via u nified and d iscrete b ipartite g raph l earning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL.
Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations. First, they often suffer from high computational complexity, which restricts their applications in large-scale scenarios. Second, they usually perform graph learning either at the single-view level or at the view-consensus level, but often neglect the possibility of the joint learning of single-view and consensus graphs. Third, many of them rely on the k -means for discretization of the spectral embeddings, which lack the ability to directly learn the graph with discrete cluster structure. In light of this, this article presents an efficient MVC approach via unified and discrete bipartite graph learning (UDBGL). Specifically, the anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views, upon which the bipartite graph fusion is leveraged to learn a view-consensus bipartite graph with adaptive weight learning. Furthermore, the Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures (with a specific number of connected components). By simultaneously formulating the view-specific bipartite graph learning, the view-consensus bipartite graph learning, and the discrete cluster structure learning into a unified objective function, an efficient minimization algorithm is then designed to tackle this optimization problem and directly achieve a discrete clustering solution without requiring additional partitioning, which notably has linear time complexity in data size. Experiments on a variety of multi-view datasets demonstrate the robustness and efficiency of our UDBGL approach. The code is available at https://github.com/huangdonghere/UDBGL.
Author Wang, Chang-Dong
Huang, Dong
Tang, Yong
Fang, Si-Guo
Cai, Xiao-Sha
He, Chaobo
Author_xml – sequence: 1
  givenname: Si-Guo
  orcidid: 0009-0008-4411-3062
  surname: Fang
  fullname: Fang, Si-Guo
  email: siguofang@hotmail.com
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 2
  givenname: Dong
  orcidid: 0000-0003-3923-8828
  surname: Huang
  fullname: Huang, Dong
  email: huangdonghere@gmail.com
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 3
  givenname: Xiao-Sha
  surname: Cai
  fullname: Cai, Xiao-Sha
  email: xiaoshacai@hotmail.com
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Chang-Dong
  orcidid: 0000-0001-5972-559X
  surname: Wang
  fullname: Wang, Chang-Dong
  email: changdongwang@hotmail.com
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Chaobo
  orcidid: 0000-0002-6651-1175
  surname: He
  fullname: He, Chaobo
  email: hechaobo@foxmail.com
  organization: School of Computer Science, South China Normal University, Guangzhou, China
– sequence: 6
  givenname: Yong
  orcidid: 0000-0002-9812-0742
  surname: Tang
  fullname: Tang, Yong
  email: ytang@m.scnu.edu.cn
  organization: School of Computer Science, South China Normal University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37030820$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1PHDEMhqMKVD7KH0AIzbGXWRInJJkjbIEiLVRVoeotymY8NGg2syQZUP99Q3dBFQd8sQ_vY9nPDtkIQ0BC9hmdMEabo5vr69mPCVDgEw6SCUk_kG1gEmrgWm-8zurXFtlL6Z6WkvRYiuYj2eKKcqqBbpPvZ13nnceQq6uxz77-6fGpmvZjyhh9uKseva1ug-88tpUNbfXFJxcxY3XqlzZmX6aLaJe_qxnaGArxiWx2tk-4t-675Pb87Gb6tZ59u7icnsxqx0HkGizVrlFAW6ed0y0F5phFhkLNZSs1zttjBZaVzwRtmAJpXafYXICmHWjLd8nn1d5lHB5GTNksymnY9zbgMCYDqtGKcSGgRA_X0XG-wNYso1_Y-Me8aCgBvQq4OKQUsTPOZ5v9EHK0vjeMmmfp5p908yzdrKUXFN6gL9vfhQ5WkEfE_4DyqOCS_wXg1ovz
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s10462_024_10785_4
crossref_primary_10_1016_j_patcog_2025_112415
crossref_primary_10_1109_LSP_2025_3560529
crossref_primary_10_1016_j_eswa_2024_125831
crossref_primary_10_1016_j_neucom_2025_131497
crossref_primary_10_1007_s00530_025_01815_4
crossref_primary_10_1109_TNNLS_2025_3558613
crossref_primary_10_1109_TMM_2024_3521754
crossref_primary_10_1109_TPAMI_2025_3566169
crossref_primary_10_1109_JIOT_2024_3511261
crossref_primary_10_1109_TNNLS_2024_3349405
crossref_primary_10_1007_s00500_023_08723_7
crossref_primary_10_1109_TNNLS_2024_3413750
crossref_primary_10_1109_TNSE_2024_3485646
crossref_primary_10_1109_TKDE_2025_3591500
crossref_primary_10_1016_j_neucom_2023_126320
crossref_primary_10_1109_TBDATA_2023_3325045
crossref_primary_10_1109_TNNLS_2025_3545465
crossref_primary_10_1016_j_knosys_2025_113119
crossref_primary_10_1109_TCYB_2024_3446764
crossref_primary_10_1109_TNNLS_2024_3443074
crossref_primary_10_1109_TAI_2024_3413694
crossref_primary_10_1016_j_neunet_2024_106696
crossref_primary_10_1109_TETCI_2024_3502459
crossref_primary_10_1016_j_eswa_2025_127943
crossref_primary_10_1016_j_patcog_2025_111811
crossref_primary_10_1016_j_neucom_2025_131441
crossref_primary_10_1016_j_inffus_2023_102025
crossref_primary_10_1016_j_inffus_2025_103511
crossref_primary_10_1016_j_inffus_2025_103654
crossref_primary_10_1038_s41598_025_00895_6
crossref_primary_10_1109_TETCI_2023_3306233
crossref_primary_10_1007_s40305_025_00613_z
crossref_primary_10_1109_TNNLS_2025_3546660
crossref_primary_10_1109_TKDE_2025_3569777
crossref_primary_10_1109_TNNLS_2025_3525766
crossref_primary_10_1109_TAI_2024_3373720
crossref_primary_10_1109_LSP_2023_3298284
crossref_primary_10_1109_TCSVT_2024_3399596
crossref_primary_10_1111_tgis_70073
crossref_primary_10_1111_tgis_13113
crossref_primary_10_1016_j_neunet_2025_108003
crossref_primary_10_1109_TKDE_2025_3557718
crossref_primary_10_1007_s11063_023_11287_0
Cites_doi 10.1609/aaai.v31i1.10909
10.1016/j.inffus.2022.10.020
10.1109/CVPR.2015.7298657
10.1609/aaai.v29i1.9598
10.1609/aaai.v34i04.5867
10.1109/TIP.2018.2877335
10.1016/j.inffus.2019.09.005
10.1109/TMM.2018.2889560
10.1109/ICCV.2015.482
10.1109/ICDM.2019.00148
10.1145/3474085.3475516
10.1109/TIP.2021.3131941
10.1109/MSP.2010.939739
10.1109/TCYB.2021.3113520
10.1109/TPAMI.2020.3011148
10.1609/aaai.v36i6.20652
10.1145/3534931
10.1609/aaai.v33i01.3301118
10.1609/aaai.v36i7.20710
10.1109/tnnls.2022.3189763
10.1109/tnnls.2022.3192445
10.1016/j.neunet.2019.10.010
10.1016/j.knosys.2019.105126
10.1073/pnas.35.11.652
10.1109/TKDE.2019.2903410
10.1109/TSMC.2018.2876202
10.1109/tkde.2023.3236698
10.1109/TKDE.2019.2903810
10.1109/TKDE.2020.3021649
10.1016/j.patcog.2023.109470
10.1609/aaai.v36i7.20723
10.1109/CVPR.2017.461
10.1609/aaai.v34i04.5756
10.24963/ijcai.2017/357
10.1109/TAI.2021.3065894
10.1109/TCYB.2021.3061660
10.1007/s11222-007-9033-z
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3261460
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 11447
ExternalDocumentID 37030820
10_1109_TNNLS_2023_3261460
10091436
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSFC
  grantid: 61976097; 62276277; 62077045; U1811263
  funderid: 10.13039/501100001809
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022B1515120059
  funderid: 10.13039/501100021171
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2021A1515012203
  funderid: 10.13039/501100003453
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c324t-2a08c9720dc8cc8d021c1ae1e47b6d68ebd572a11464091726acf71b4280f28a3
IEDL.DBID RIE
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967339900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 16:52:53 EDT 2025
Thu Jul 24 03:25:39 EDT 2025
Tue Nov 18 22:33:42 EST 2025
Sat Nov 29 01:40:25 EST 2025
Wed Aug 27 02:35:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-2a08c9720dc8cc8d021c1ae1e47b6d68ebd572a11464091726acf71b4280f28a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9812-0742
0000-0001-5972-559X
0009-0008-4411-3062
0000-0002-6651-1175
0000-0003-3923-8828
PMID 37030820
PQID 2798713442
PQPubID 23479
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2023_3261460
crossref_primary_10_1109_TNNLS_2023_3261460
ieee_primary_10091436
pubmed_primary_37030820
proquest_miscellaneous_2798713442
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref2
Liu (ref40)
ref1
ref17
ref39
ref16
ref38
ref18
Bertsekas (ref37) 1982
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
Liu (ref33)
ref21
Huang (ref36)
ref43
ref28
ref27
ref29
ref8
Nie (ref19); 30
ref9
ref4
Nie (ref7)
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1609/aaai.v31i1.10909
– volume-title: Proc. Int. Joint Conf. Artif. Intell. (IJCAI)
  ident: ref36
  article-title: A new simplex sparse learning model to measure data similarity for clustering
– ident: ref38
  doi: 10.1016/j.inffus.2022.10.020
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref19
  article-title: Learning a structured optimal bipartite graph for co-clustering
– ident: ref16
  doi: 10.1109/CVPR.2015.7298657
– volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref33
  article-title: Large graph construction for scalable semi-supervised learning
– ident: ref18
  doi: 10.1609/aaai.v29i1.9598
– ident: ref27
  doi: 10.1609/aaai.v34i04.5867
– ident: ref3
  doi: 10.1109/TIP.2018.2877335
– ident: ref39
  doi: 10.1016/j.inffus.2019.09.005
– start-page: 1881
  volume-title: Proc. Int. Joint Conf. Artif. Intell. (IJCAI)
  ident: ref7
  article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification
– ident: ref14
  doi: 10.1109/TMM.2018.2889560
– start-page: 6850
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref40
  article-title: One pass late fusion multi-view clustering
– ident: ref10
  doi: 10.1109/ICCV.2015.482
– ident: ref9
  doi: 10.1109/ICDM.2019.00148
– ident: ref25
  doi: 10.1145/3474085.3475516
– ident: ref26
  doi: 10.1109/TIP.2021.3131941
– ident: ref12
  doi: 10.1109/MSP.2010.939739
– ident: ref24
  doi: 10.1109/TCYB.2021.3113520
– ident: ref22
  doi: 10.1109/TPAMI.2020.3011148
– ident: ref32
  doi: 10.1609/aaai.v36i6.20652
– ident: ref28
  doi: 10.1145/3534931
– ident: ref20
  doi: 10.1609/aaai.v33i01.3301118
– ident: ref6
  doi: 10.1609/aaai.v36i7.20710
– ident: ref8
  doi: 10.1109/tnnls.2022.3189763
– ident: ref5
  doi: 10.1109/tnnls.2022.3192445
– ident: ref15
  doi: 10.1016/j.neunet.2019.10.010
– ident: ref13
  doi: 10.1016/j.knosys.2019.105126
– ident: ref35
  doi: 10.1073/pnas.35.11.652
– ident: ref29
  doi: 10.1109/TKDE.2019.2903410
– ident: ref41
  doi: 10.1109/TSMC.2018.2876202
– ident: ref30
  doi: 10.1109/tkde.2023.3236698
– ident: ref4
  doi: 10.1109/TKDE.2019.2903810
– ident: ref21
  doi: 10.1109/TKDE.2020.3021649
– ident: ref42
  doi: 10.1016/j.patcog.2023.109470
– ident: ref43
  doi: 10.1609/aaai.v36i7.20723
– ident: ref11
  doi: 10.1109/CVPR.2017.461
– ident: ref17
  doi: 10.1609/aaai.v34i04.5756
– ident: ref2
  doi: 10.24963/ijcai.2017/357
– ident: ref1
  doi: 10.1109/TAI.2021.3065894
– ident: ref23
  doi: 10.1109/TCYB.2021.3061660
– ident: ref34
  doi: 10.1007/s11222-007-9033-z
– volume-title: Computer Science and Applied Mathematics
  year: 1982
  ident: ref37
  article-title: Constrained optimization and Lagrange multiplier methods
SSID ssj0000605649
Score 2.6909633
Snippet Although previous graph-based multi-view clustering (MVC) algorithms have gained significant progress, most of them are still faced with three limitations....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11436
SubjectTerms Bipartite graph
Bipartite graph learning
Clustering algorithms
data clustering
Fuses
Laplace equations
large-scale clustering
Linear programming
linear time
multi-view clustering (MVC)
Optimization
Partitioning algorithms
Title Efficient Multi-View Clustering via Unified and Discrete Bipartite Graph Learning
URI https://ieeexplore.ieee.org/document/10091436
https://www.ncbi.nlm.nih.gov/pubmed/37030820
https://www.proquest.com/docview/2798713442
Volume 35
WOSCitedRecordID wos000967339900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1EMvpVBolwJyJW6Vt4mT9eNYKJQDWhWVVnuLHHtcRUJZxD74-x07yao9gNSbD7YT-Rt7Pj--GYDTYNDLXAaeo5K8rE3gpnTIM--sk9YXskP6Wk2nejYz33uxetLCIGJ6fIbjWEx3-X7uVvGojGY4ebeykFuwpZTsxFqbA5WMiLlMdFfkUnBRqNkgksnM59vp9PrHOOYKHxNhoeUhpoArVIrWkv3jk1KSlaf5ZvI7lzv_-cdv4HVPMNmXziJ24QW2e7AzJG9g_Vx-CzcXKXgENWdJhMt_NfjIzu9WMXIC-TO2biwjRhqIozLbeva1oRWGKDY7a-6jvVHpW4x2zfoQrb_34eflxe35Fe_zK3BHNGrJhc20M0oQLto57cndu9xijqWqpZcaaz9RwkbdMu0CielI64LKa9qxZEFoWxzAdjtv8T0wG9xEhGCI_ejSG28RpZIT4SamVkJkI8iHEa5cH3w85sC4q9ImJDNVAqiKAFU9QCP4tGlz34XeeLb2fhz-v2p2Iz-CjwOSFc2ceB1iW5yvFpVQRkclbSlG8K6DeNN6sIzDJ3r9AK_o42X3EvAItpcPKzyGl269bBYPJ2SeM32SzPMPXhDdcQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQYJLy6PQ5Wmk3pC3juPY8RFKSxFLBGKp9hY5fqBIVbZqd8vfZ-wkq3JoJW4-2Jblb-z5_PhmAPaD9k5mMtDMK0lFowPVwnrKnDVWGpfLHumZqqpysdDfB7F60sJ479PnMz-NxfSW75Z2Ha_KcIWjdxO5vAv3CiE46-VamysVhtRcJsLLM8kpz9VilMkwfTCvqtnPacwWPkXKghtETAKXqxSvhf3jlVKalZsZZ_I8xzv_OeZHsD1QTPKht4nHcMd3T2BnTN9AhtX8FH4cpfAR2JwkGS49bf0fcni2jrET0KORq9YQ5KQBWSoxnSOfWtxjkGSTj-15tDgsfY7xrskQpPX3Lvw6PpofntAhwwK1SKRWlBtWWq04IlNaWzp0-DYzPvNCNdLJ0jeuUNxE5TKeA5HrSGODyho8s7DAS5M_g61u2fk9ICbYgoegkf-UwmlnvJdKFtwWulGcswlk4wzXdgg_HrNgnNXpGMJ0nQCqI0D1ANAE3m_anPfBN26tvRun_1rNfuYn8G5Essa1Ex9ETOeX68uaK11GLa3gE3jeQ7xpPVrGixt6fQsPTubfZvXsS_X1JTzEgYj-X-Ar2FpdrP1ruG-vVu3lxZtkpH8B1Rjf0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Multi-View+Clustering+via+Unified+and+Discrete+Bipartite+Graph+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Fang%2C+Si-Guo&rft.au=Huang%2C+Dong&rft.au=Cai%2C+Xiao-Sha&rft.au=Wang%2C+Chang-Dong&rft.date=2024-08-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=35&rft.issue=8&rft.spage=11436&rft.epage=11447&rft_id=info:doi/10.1109%2FTNNLS.2023.3261460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2023_3261460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon