The Computational Solution of Generalized Inverse Eigenvalue Problem for Pseudo‐Jacobi Matrix
This paper is concerned with two generalized inverse eigenvalue problems for a kind of pseudo‐Jacobi matrix. From a non‐Hermite matrix, an r × r Jacobi matrix, two distinct real eigenvalues, and part of the corresponding eigenvectors, an n × n pseudo‐Jacobi matrix is constructed. Furthermore, an n ×...
Uloženo v:
| Vydáno v: | Journal of mathematics (Hidawi) Ročník 2024; číslo 1 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cairo
John Wiley & Sons, Inc
2024
Wiley |
| Témata: | |
| ISSN: | 2314-4629, 2314-4785 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper is concerned with two generalized inverse eigenvalue problems for a kind of pseudo‐Jacobi matrix. From a non‐Hermite matrix, an
r
×
r
Jacobi matrix, two distinct real eigenvalues, and part of the corresponding eigenvectors, an
n
×
n
pseudo‐Jacobi matrix is constructed. Furthermore, an
n
×
n
pseudo‐Jacobi matrix can be made by two different eigenpairs and a positive definite diagonal matrix. It is shown that a unique pseudo‐Jacobi matrix can be recovered from partial eigenpairs and certain special mixed eigendata. Two algorithms are provided for the reconstruction of such a pseudo‐Jacobi matrix, and illustrative numerical examples are presented to verify the proposed algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2314-4629 2314-4785 |
| DOI: | 10.1155/2024/1214609 |