The Computational Solution of Generalized Inverse Eigenvalue Problem for Pseudo‐Jacobi Matrix

This paper is concerned with two generalized inverse eigenvalue problems for a kind of pseudo‐Jacobi matrix. From a non‐Hermite matrix, an r × r Jacobi matrix, two distinct real eigenvalues, and part of the corresponding eigenvectors, an n × n pseudo‐Jacobi matrix is constructed. Furthermore, an n ×...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of mathematics (Hidawi) Ročník 2024; číslo 1
Hlavní autori: Yi, Fuxia, Li, Enhua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cairo John Wiley & Sons, Inc 2024
Wiley
Predmet:
ISSN:2314-4629, 2314-4785
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper is concerned with two generalized inverse eigenvalue problems for a kind of pseudo‐Jacobi matrix. From a non‐Hermite matrix, an r × r Jacobi matrix, two distinct real eigenvalues, and part of the corresponding eigenvectors, an n × n pseudo‐Jacobi matrix is constructed. Furthermore, an n × n pseudo‐Jacobi matrix can be made by two different eigenpairs and a positive definite diagonal matrix. It is shown that a unique pseudo‐Jacobi matrix can be recovered from partial eigenpairs and certain special mixed eigendata. Two algorithms are provided for the reconstruction of such a pseudo‐Jacobi matrix, and illustrative numerical examples are presented to verify the proposed algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2314-4629
2314-4785
DOI:10.1155/2024/1214609