A Distributed Algorithm for Convex Constrained Optimization Under Noise

We present a novel distributed algorithm for convex constrained optimization problems that are subject to noise corruption and uncertainties. The proposed scheme can be classified as a distributed stochastic approximation method, where a unique feature here is that we allow for multiple noise terms...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 61; no. 9; pp. 2496 - 2511
Main Authors: Chatzipanagiotis, Nikolaos, Zavlanos, Michael M.
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a novel distributed algorithm for convex constrained optimization problems that are subject to noise corruption and uncertainties. The proposed scheme can be classified as a distributed stochastic approximation method, where a unique feature here is that we allow for multiple noise terms to appear in both the computation and communication stages of the distributed iterative process. Specifically, we consider problems that involve multiple agents optimizing a separable convex objective function subject to convex local constraints and linear coupling constraints. This is a richer class of problems compared to those that can be handled by existing distributed stochastic approximation methods which consider only consensus constraints and fewer sources of noise. The proposed algorithm utilizes the augmented Lagrangian (AL) framework, which has been widely used recently to solve deterministic optimization problems in a distributed way. We show that the proposed method generates sequences of primal and dual variables that converge to their respective optimal sets almost surely.
AbstractList We present a novel distributed algorithm for convex constrained optimization problems that are subject to noise corruption and uncertainties. The proposed scheme can be classified as a distributed stochastic approximation method, where a unique feature here is that we allow for multiple noise terms to appear in both the computation and communication stages of the distributed iterative process. Specifically, we consider problems that involve multiple agents optimizing a separable convex objective function subject to convex local constraints and linear coupling constraints. This is a richer class of problems compared to those that can be handled by existing distributed stochastic approximation methods which consider only consensus constraints and fewer sources of noise. The proposed algorithm utilizes the augmented Lagrangian (AL) framework, which has been widely used recently to solve deterministic optimization problems in a distributed way. We show that the proposed method generates sequences of primal and dual variables that converge to their respective optimal sets almost surely.
Author Zavlanos, Michael M.
Chatzipanagiotis, Nikolaos
Author_xml – sequence: 1
  givenname: Nikolaos
  surname: Chatzipanagiotis
  fullname: Chatzipanagiotis, Nikolaos
  email: n.chatzip@duke.edu
  organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA
– sequence: 2
  givenname: Michael M.
  surname: Zavlanos
  fullname: Zavlanos, Michael M.
  email: michael.zavlanos@duke.edu
  organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA
BookMark eNp90D1PwzAQBmALFYkW2JFYIrGwpPjsXD7GqnxKFV3aObKTC7hK42KnCPj1uLRiYGDxydLzWr53xAad7YixC-BjAF7cLCbTseCAY4E8KaQ4YkNAzGOBQg7YkHPI40Lk6Qkbeb8K1zRJYMgeJtGt8b0zettTHU3aF-tM_7qOGuuiqe3e6WM3glCmC2C-6c3afKne2C5adjW56NkaT2fsuFGtp_PDPGXL-7vF9DGezR-eppNZXEmR9DFUXOtUVkg1qAyFJlRYq5SDqiuVJCTCSQVvsNFZhg0WuuBSa51DUwM18pRd79_dOPu2Jd-Xa-MralvVkd36EnKJmKWAEOjVH7qyW9eF3wUVQJBSBJXuVeWs946asjL9z3q7ldsSeLnrtwz9lrt-y0O_Icj_BDfOrJX7_C9yuY8YIvrlmUQOAuU3BW6Hjw
CODEN IETAA9
CitedBy_id crossref_primary_10_1007_s10107_020_01487_0
crossref_primary_10_1016_j_automatica_2019_02_009
crossref_primary_10_1109_TAC_2019_2910946
crossref_primary_10_1109_TAC_2017_2747503
crossref_primary_10_1109_TAC_2023_3277312
crossref_primary_10_1109_TAC_2022_3151734
crossref_primary_10_1109_TAC_2017_2658438
crossref_primary_10_1109_TSTE_2021_3119657
crossref_primary_10_1007_s40305_023_00496_y
crossref_primary_10_1016_j_automatica_2020_109422
crossref_primary_10_1109_TRO_2016_2593041
crossref_primary_10_1109_TAC_2021_3126253
crossref_primary_10_1109_TAC_2021_3059427
crossref_primary_10_1109_TCYB_2021_3127278
crossref_primary_10_1109_TNSE_2023_3277708
crossref_primary_10_1016_j_automatica_2020_109218
crossref_primary_10_1016_j_arcontrol_2019_05_006
crossref_primary_10_1016_j_apenergy_2022_119641
crossref_primary_10_1016_j_sysconle_2023_105645
crossref_primary_10_1109_TAC_2018_2872195
crossref_primary_10_1109_TAC_2023_3342067
Cites_doi 10.1109/CDC.2010.5718026
10.1109/CDC.2003.1271742
10.1287/moor.20.3.634
10.1109/TAC.2012.2209984
10.1515/9781400841059
10.1109/TAC.2010.2076530
10.1007/BF01581204
10.1109/JSTSP.2011.2118740
10.1561/2200000016
10.1109/TSP.2011.2162831
10.1016/j.automatica.2015.03.001
10.1109/ISIC.1998.713704
10.1137/0312021
10.1109/TSP.2009.2016226
10.1007/978-93-86279-38-5
10.1109/ICASSP.2014.6855218
10.1016/j.automatica.2006.11.019
10.1109/TAC.2000.880982
10.1007/BF00934819
10.1007/978-1-4612-5110-1_10
10.1109/TAC.2013.2293221
10.1109/TAC.1983.1103184
10.1016/0898-1221(76)90003-1
10.1137/0804043
10.1137/0330046
10.1214/aoms/1177729392
10.1109/TSP.2013.2291221
10.1007/s10107-013-0686-4
10.1109/TAC.2010.2079650
10.1016/0167-6377(92)90046-6
10.1137/110844192
10.1109/TAC.1986.1104412
10.1137/0325070
10.1016/j.automatica.2011.09.043
10.1109/JSTSP.2013.2247023
10.1109/CDC.2014.7039496
10.1109/TIT.2013.2275131
10.1137/070708111
10.1109/ACC.2015.7170791
10.1007/s10957-010-9737-7
10.1007/s10107-014-0808-7
10.1214/aoms/1177729586
10.1137/070704277
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TAC.2015.2504932
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 2511
ExternalDocumentID 4164715301
10_1109_TAC_2015_2504932
7350125
Genre orig-research
GrantInformation_xml – fundername: ONR
  grantid: N000141410479
  funderid: 10.13039/100000006
– fundername: NSF CNS
  grantid: 1261828
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
F28
ID FETCH-LOGICAL-c324t-1c0bb63c5ed1a752be5a5da601adca44e2ca4e90f5fb775f59b903bbb81fd1ef3
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382686800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Sun Sep 28 08:21:29 EDT 2025
Mon Jun 30 10:23:54 EDT 2025
Tue Nov 18 22:24:33 EST 2025
Sat Nov 29 05:40:18 EST 2025
Wed Aug 27 02:52:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-1c0bb63c5ed1a752be5a5da601adca44e2ca4e90f5fb775f59b903bbb81fd1ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1815183532
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_1815183532
proquest_miscellaneous_1835576151
crossref_citationtrail_10_1109_TAC_2015_2504932
ieee_primary_7350125
crossref_primary_10_1109_TAC_2015_2504932
PublicationCentury 2000
PublicationDate 2016-Sept.
2016-9-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
johnson (ref51) 2013
fortin (ref43) 1983
ref52
ref10
ref17
ref16
ref19
kushner (ref26) 2003
ref18
eckstein (ref45) 0
bertsekas (ref1) 1997
ref46
ref48
ref47
ref42
ref41
ref44
ref49
borkar (ref27) 2008
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ouyang (ref39) 0; 28
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref38
lee (ref11) 0
ref24
berge (ref53) 1959
ref23
ref25
ref20
ref22
salimans (ref50) 0
ref28
ref29
ermoliev (ref21) 1983
ruszczy?ski (ref40) 2006
References_xml – ident: ref8
  doi: 10.1109/CDC.2010.5718026
– ident: ref48
  doi: 10.1109/CDC.2003.1271742
– ident: ref5
  doi: 10.1287/moor.20.3.634
– ident: ref35
  doi: 10.1109/TAC.2012.2209984
– year: 2006
  ident: ref40
  publication-title: Nonlinear Optimization
  doi: 10.1515/9781400841059
– ident: ref31
  doi: 10.1109/TAC.2010.2076530
– ident: ref3
  doi: 10.1007/BF01581204
– ident: ref32
  doi: 10.1109/JSTSP.2011.2118740
– start-page: 1
  year: 0
  ident: ref45
  article-title: An alternating direction method for linear programming.
  publication-title: MIT LIDS
– ident: ref4
  doi: 10.1561/2200000016
– ident: ref37
  doi: 10.1109/TSP.2011.2162831
– year: 1997
  ident: ref1
  publication-title: Parallel and Distributed Computation Numerical Methods
– ident: ref16
  doi: 10.1016/j.automatica.2015.03.001
– ident: ref47
  doi: 10.1109/ISIC.1998.713704
– ident: ref41
  doi: 10.1137/0312021
– ident: ref38
  doi: 10.1109/TSP.2009.2016226
– year: 2008
  ident: ref27
  publication-title: Stochastic Approximation A Dynamical Systems Viewpoint
  doi: 10.1007/978-93-86279-38-5
– ident: ref15
  doi: 10.1109/ICASSP.2014.6855218
– ident: ref49
  doi: 10.1016/j.automatica.2006.11.019
– volume: 28
  start-page: 80
  year: 0
  ident: ref39
  article-title: Stochastic alternating direction method of multipliers
  publication-title: Proc 30th Intl Conf Machine Learning (ICML-13)
– start-page: 1
  year: 0
  ident: ref50
  publication-title: On Using Control Variates With Stochastic Approximation for Variational Bayes and Its Connection to Stochastic Linear Regression
– start-page: 141
  year: 1983
  ident: ref21
  article-title: Stochastic quasigradient methods
  publication-title: Numer Tech Stoch Optim
– ident: ref23
  doi: 10.1109/TAC.2000.880982
– ident: ref46
  doi: 10.1007/BF00934819
– start-page: 6874
  year: 0
  ident: ref11
  article-title: Gossip-based random projection algorithm for distributed optimization: Error bound
  publication-title: Proc IEEE 52nd Annu Conf Decision Control (CDC'13)
– ident: ref52
  doi: 10.1007/978-1-4612-5110-1_10
– year: 1983
  ident: ref43
  publication-title: Augmented Lagrangian Methods Applications to the Numerical Solution of Boundary-Value Problems
– ident: ref9
  doi: 10.1109/TAC.2013.2293221
– ident: ref22
  doi: 10.1109/TAC.1983.1103184
– ident: ref42
  doi: 10.1016/0898-1221(76)90003-1
– ident: ref44
  doi: 10.1137/0804043
– ident: ref20
  doi: 10.1137/0330046
– ident: ref19
  doi: 10.1214/aoms/1177729392
– ident: ref13
  doi: 10.1109/TSP.2013.2291221
– ident: ref12
  doi: 10.1007/s10107-013-0686-4
– ident: ref33
  doi: 10.1109/TAC.2010.2079650
– start-page: 315
  year: 2013
  ident: ref51
  article-title: Accelerating stochastic gradient descent using predictive variance reduction
  publication-title: Adv Neural Inform Processing Syst
– year: 2003
  ident: ref26
  publication-title: Stochastic Approximation and Recursive Algorithms and Applications
– ident: ref6
  doi: 10.1016/0167-6377(92)90046-6
– ident: ref28
  doi: 10.1137/110844192
– ident: ref29
  doi: 10.1109/TAC.1986.1104412
– ident: ref30
  doi: 10.1137/0325070
– ident: ref25
  doi: 10.1016/j.automatica.2011.09.043
– ident: ref10
  doi: 10.1109/JSTSP.2013.2247023
– ident: ref14
  doi: 10.1109/CDC.2014.7039496
– ident: ref36
  doi: 10.1109/TIT.2013.2275131
– ident: ref2
  doi: 10.1137/070708111
– ident: ref17
  doi: 10.1109/ACC.2015.7170791
– ident: ref34
  doi: 10.1007/s10957-010-9737-7
– ident: ref7
  doi: 10.1007/s10107-014-0808-7
– ident: ref18
  doi: 10.1214/aoms/1177729586
– year: 1959
  ident: ref53
  publication-title: Espaces topologiques
– ident: ref24
  doi: 10.1137/070704277
SSID ssj0016441
Score 2.388272
Snippet We present a novel distributed algorithm for convex constrained optimization problems that are subject to noise corruption and uncertainties. The proposed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2496
SubjectTerms Algorithms
Approximation
Approximation algorithms
Approximation methods
Constraints
Convergence
Distributed algorithms
Distributed optimization
Economic models
Lagrange multiplier
Linear programming
Mathematical analysis
Mathematical models
multi-agent systems
Noise
noisy communications
Optimization
stochastic approximation
stochastic optimization
Stochasticity
Uncertainty
Title A Distributed Algorithm for Convex Constrained Optimization Under Noise
URI https://ieeexplore.ieee.org/document/7350125
https://www.proquest.com/docview/1815183532
https://www.proquest.com/docview/1835576151
Volume 61
WOSCitedRecordID wos000382686800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcGiLBz34qmK1SgQvgrFpks0mx1KtHqR6qOIt7G5mtaCN9CF-vjubNCiK4CUJ7Gyymc28Mi-AE6YFRkGWuELEkRvKQNmSty4yDCPNUHCbxf9ww4fD-PExuavBWZULg4g2-AzP6dL68rNcLehXWYeTF8xndahzzotcrcpjQHK94LqGgP24ckl6SWfU61MMFzuncl1J4H8TQbanyg9GbKXLYON_69qE9VKLdHrFtm9BDSfbsPaltmATrnrOBRXFpX5WmDm9l6d8Op4_vzpGS3X6FGv-QaeZ7RFhAG4N73gtkzId2w3JGebjGe7A_eBy1L92y64JrjLK0dztKk_KKFAMs67gzJfIBMuEMbxEpkQYom-OmHiaack50yyRiRdIKeOuzrqog11oTPIJ7oGjgwxFqI1JhkGIIZMYclSxr7gZMa_cgs4SkakqS4rTql9Sa1p4SWpQnxLq0xL1LTitZrwV5TT-gG0Sqiu4EsstaC_3Ki3pbZYaPYUZ5sRo1nE1bCiF3B9igvmCYIxuxUmD2__9zgewap4fFRFkbWjMpws8hBX1Ph_Ppkf2c_sE1MPTPQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8NQVpG0PfHUThQFB4mXS0ubDjpPHqmMUUQoP3dS3yHbOUKltUD-m_Xx8ThZtGprESxLJ5-hyzp3vfF8An7iRmMRF5kuZJj5TsXYlb33kyBLDUQqXxX81FpNJOptlP1tw1uTCIKILPsMePTpfflHqHR2V9QV5wSK-B084Y1FYZWs1PgPa2Su5a1k4ShunZJD1p4MhRXHxHhXsyuLo3ibkuqo8EMVuf7l4_n-YvYBntR7pDaqFfwktXL2CwzvVBTvwZeCdU1lc6miFhTdY_CrX8-3vpWf1VG9I0eY3dNu4LhEW4IeVHss6LdNz_ZC8STnf4BFcXnyeDkd-3TfB11Y92vqhDpRKYs2xCKXgkUIueSGt6SULLRnDyF4xCww3SghueKayIFZKpaEpQjTxMbRX5Qpfg2fiAiUz1ijDmCHjCplAnUZa2BH7yV3o3xIy13VRccJ6kTvjIshyS_qcSJ_XpO_CaTPjT1VQ4xHYDpG6gaup3IWT27XKa47b5FZT4VY8cZr1sRm2vEIOELnCckcwVrsSpMO9-febP8D-aPp9nI-_Tr69hQOLS1LFk51Ae7ve4Tt4qq-38836vfv1_gL5AdaE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Algorithm+for+Convex+Constrained+Optimization+Under+Noise&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Chatzipanagiotis%2C+Nikolaos&rft.au=Zavlanos%2C+Michael+M.&rft.date=2016-09-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=61&rft.issue=9&rft.spage=2496&rft.epage=2511&rft_id=info:doi/10.1109%2FTAC.2015.2504932&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2015_2504932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon