A Distributed Algorithm for Convex Constrained Optimization Under Noise
We present a novel distributed algorithm for convex constrained optimization problems that are subject to noise corruption and uncertainties. The proposed scheme can be classified as a distributed stochastic approximation method, where a unique feature here is that we allow for multiple noise terms...
Saved in:
| Published in: | IEEE transactions on automatic control Vol. 61; no. 9; pp. 2496 - 2511 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9286, 1558-2523 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present a novel distributed algorithm for convex constrained optimization problems that are subject to noise corruption and uncertainties. The proposed scheme can be classified as a distributed stochastic approximation method, where a unique feature here is that we allow for multiple noise terms to appear in both the computation and communication stages of the distributed iterative process. Specifically, we consider problems that involve multiple agents optimizing a separable convex objective function subject to convex local constraints and linear coupling constraints. This is a richer class of problems compared to those that can be handled by existing distributed stochastic approximation methods which consider only consensus constraints and fewer sources of noise. The proposed algorithm utilizes the augmented Lagrangian (AL) framework, which has been widely used recently to solve deterministic optimization problems in a distributed way. We show that the proposed method generates sequences of primal and dual variables that converge to their respective optimal sets almost surely. |
|---|---|
| AbstractList | We present a novel distributed algorithm for convex constrained optimization problems that are subject to noise corruption and uncertainties. The proposed scheme can be classified as a distributed stochastic approximation method, where a unique feature here is that we allow for multiple noise terms to appear in both the computation and communication stages of the distributed iterative process. Specifically, we consider problems that involve multiple agents optimizing a separable convex objective function subject to convex local constraints and linear coupling constraints. This is a richer class of problems compared to those that can be handled by existing distributed stochastic approximation methods which consider only consensus constraints and fewer sources of noise. The proposed algorithm utilizes the augmented Lagrangian (AL) framework, which has been widely used recently to solve deterministic optimization problems in a distributed way. We show that the proposed method generates sequences of primal and dual variables that converge to their respective optimal sets almost surely. |
| Author | Zavlanos, Michael M. Chatzipanagiotis, Nikolaos |
| Author_xml | – sequence: 1 givenname: Nikolaos surname: Chatzipanagiotis fullname: Chatzipanagiotis, Nikolaos email: n.chatzip@duke.edu organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA – sequence: 2 givenname: Michael M. surname: Zavlanos fullname: Zavlanos, Michael M. email: michael.zavlanos@duke.edu organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA |
| BookMark | eNp90D1PwzAQBmALFYkW2JFYIrGwpPjsXD7GqnxKFV3aObKTC7hK42KnCPj1uLRiYGDxydLzWr53xAad7YixC-BjAF7cLCbTseCAY4E8KaQ4YkNAzGOBQg7YkHPI40Lk6Qkbeb8K1zRJYMgeJtGt8b0zettTHU3aF-tM_7qOGuuiqe3e6WM3glCmC2C-6c3afKne2C5adjW56NkaT2fsuFGtp_PDPGXL-7vF9DGezR-eppNZXEmR9DFUXOtUVkg1qAyFJlRYq5SDqiuVJCTCSQVvsNFZhg0WuuBSa51DUwM18pRd79_dOPu2Jd-Xa-MralvVkd36EnKJmKWAEOjVH7qyW9eF3wUVQJBSBJXuVeWs946asjL9z3q7ldsSeLnrtwz9lrt-y0O_Icj_BDfOrJX7_C9yuY8YIvrlmUQOAuU3BW6Hjw |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1007_s10107_020_01487_0 crossref_primary_10_1016_j_automatica_2019_02_009 crossref_primary_10_1109_TAC_2019_2910946 crossref_primary_10_1109_TAC_2017_2747503 crossref_primary_10_1109_TAC_2023_3277312 crossref_primary_10_1109_TAC_2022_3151734 crossref_primary_10_1109_TAC_2017_2658438 crossref_primary_10_1109_TSTE_2021_3119657 crossref_primary_10_1007_s40305_023_00496_y crossref_primary_10_1016_j_automatica_2020_109422 crossref_primary_10_1109_TRO_2016_2593041 crossref_primary_10_1109_TAC_2021_3126253 crossref_primary_10_1109_TAC_2021_3059427 crossref_primary_10_1109_TCYB_2021_3127278 crossref_primary_10_1109_TNSE_2023_3277708 crossref_primary_10_1016_j_automatica_2020_109218 crossref_primary_10_1016_j_arcontrol_2019_05_006 crossref_primary_10_1016_j_apenergy_2022_119641 crossref_primary_10_1016_j_sysconle_2023_105645 crossref_primary_10_1109_TAC_2018_2872195 crossref_primary_10_1109_TAC_2023_3342067 |
| Cites_doi | 10.1109/CDC.2010.5718026 10.1109/CDC.2003.1271742 10.1287/moor.20.3.634 10.1109/TAC.2012.2209984 10.1515/9781400841059 10.1109/TAC.2010.2076530 10.1007/BF01581204 10.1109/JSTSP.2011.2118740 10.1561/2200000016 10.1109/TSP.2011.2162831 10.1016/j.automatica.2015.03.001 10.1109/ISIC.1998.713704 10.1137/0312021 10.1109/TSP.2009.2016226 10.1007/978-93-86279-38-5 10.1109/ICASSP.2014.6855218 10.1016/j.automatica.2006.11.019 10.1109/TAC.2000.880982 10.1007/BF00934819 10.1007/978-1-4612-5110-1_10 10.1109/TAC.2013.2293221 10.1109/TAC.1983.1103184 10.1016/0898-1221(76)90003-1 10.1137/0804043 10.1137/0330046 10.1214/aoms/1177729392 10.1109/TSP.2013.2291221 10.1007/s10107-013-0686-4 10.1109/TAC.2010.2079650 10.1016/0167-6377(92)90046-6 10.1137/110844192 10.1109/TAC.1986.1104412 10.1137/0325070 10.1016/j.automatica.2011.09.043 10.1109/JSTSP.2013.2247023 10.1109/CDC.2014.7039496 10.1109/TIT.2013.2275131 10.1137/070708111 10.1109/ACC.2015.7170791 10.1007/s10957-010-9737-7 10.1007/s10107-014-0808-7 10.1214/aoms/1177729586 10.1137/070704277 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
| DOI | 10.1109/TAC.2015.2504932 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 2511 |
| ExternalDocumentID | 4164715301 10_1109_TAC_2015_2504932 7350125 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: ONR grantid: N000141410479 funderid: 10.13039/100000006 – fundername: NSF CNS grantid: 1261828 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D RIG F28 |
| ID | FETCH-LOGICAL-c324t-1c0bb63c5ed1a752be5a5da601adca44e2ca4e90f5fb775f59b903bbb81fd1ef3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382686800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9286 |
| IngestDate | Sun Sep 28 08:21:29 EDT 2025 Mon Jun 30 10:23:54 EDT 2025 Tue Nov 18 22:24:33 EST 2025 Sat Nov 29 05:40:18 EST 2025 Wed Aug 27 02:52:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-1c0bb63c5ed1a752be5a5da601adca44e2ca4e90f5fb775f59b903bbb81fd1ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1815183532 |
| PQPubID | 85475 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_1815183532 proquest_miscellaneous_1835576151 crossref_citationtrail_10_1109_TAC_2015_2504932 ieee_primary_7350125 crossref_primary_10_1109_TAC_2015_2504932 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Sept. 2016-9-00 20160901 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 johnson (ref51) 2013 fortin (ref43) 1983 ref52 ref10 ref17 ref16 ref19 kushner (ref26) 2003 ref18 eckstein (ref45) 0 bertsekas (ref1) 1997 ref46 ref48 ref47 ref42 ref41 ref44 ref49 borkar (ref27) 2008 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ouyang (ref39) 0; 28 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref38 lee (ref11) 0 ref24 berge (ref53) 1959 ref23 ref25 ref20 ref22 salimans (ref50) 0 ref28 ref29 ermoliev (ref21) 1983 ruszczy?ski (ref40) 2006 |
| References_xml | – ident: ref8 doi: 10.1109/CDC.2010.5718026 – ident: ref48 doi: 10.1109/CDC.2003.1271742 – ident: ref5 doi: 10.1287/moor.20.3.634 – ident: ref35 doi: 10.1109/TAC.2012.2209984 – year: 2006 ident: ref40 publication-title: Nonlinear Optimization doi: 10.1515/9781400841059 – ident: ref31 doi: 10.1109/TAC.2010.2076530 – ident: ref3 doi: 10.1007/BF01581204 – ident: ref32 doi: 10.1109/JSTSP.2011.2118740 – start-page: 1 year: 0 ident: ref45 article-title: An alternating direction method for linear programming. publication-title: MIT LIDS – ident: ref4 doi: 10.1561/2200000016 – ident: ref37 doi: 10.1109/TSP.2011.2162831 – year: 1997 ident: ref1 publication-title: Parallel and Distributed Computation Numerical Methods – ident: ref16 doi: 10.1016/j.automatica.2015.03.001 – ident: ref47 doi: 10.1109/ISIC.1998.713704 – ident: ref41 doi: 10.1137/0312021 – ident: ref38 doi: 10.1109/TSP.2009.2016226 – year: 2008 ident: ref27 publication-title: Stochastic Approximation A Dynamical Systems Viewpoint doi: 10.1007/978-93-86279-38-5 – ident: ref15 doi: 10.1109/ICASSP.2014.6855218 – ident: ref49 doi: 10.1016/j.automatica.2006.11.019 – volume: 28 start-page: 80 year: 0 ident: ref39 article-title: Stochastic alternating direction method of multipliers publication-title: Proc 30th Intl Conf Machine Learning (ICML-13) – start-page: 1 year: 0 ident: ref50 publication-title: On Using Control Variates With Stochastic Approximation for Variational Bayes and Its Connection to Stochastic Linear Regression – start-page: 141 year: 1983 ident: ref21 article-title: Stochastic quasigradient methods publication-title: Numer Tech Stoch Optim – ident: ref23 doi: 10.1109/TAC.2000.880982 – ident: ref46 doi: 10.1007/BF00934819 – start-page: 6874 year: 0 ident: ref11 article-title: Gossip-based random projection algorithm for distributed optimization: Error bound publication-title: Proc IEEE 52nd Annu Conf Decision Control (CDC'13) – ident: ref52 doi: 10.1007/978-1-4612-5110-1_10 – year: 1983 ident: ref43 publication-title: Augmented Lagrangian Methods Applications to the Numerical Solution of Boundary-Value Problems – ident: ref9 doi: 10.1109/TAC.2013.2293221 – ident: ref22 doi: 10.1109/TAC.1983.1103184 – ident: ref42 doi: 10.1016/0898-1221(76)90003-1 – ident: ref44 doi: 10.1137/0804043 – ident: ref20 doi: 10.1137/0330046 – ident: ref19 doi: 10.1214/aoms/1177729392 – ident: ref13 doi: 10.1109/TSP.2013.2291221 – ident: ref12 doi: 10.1007/s10107-013-0686-4 – ident: ref33 doi: 10.1109/TAC.2010.2079650 – start-page: 315 year: 2013 ident: ref51 article-title: Accelerating stochastic gradient descent using predictive variance reduction publication-title: Adv Neural Inform Processing Syst – year: 2003 ident: ref26 publication-title: Stochastic Approximation and Recursive Algorithms and Applications – ident: ref6 doi: 10.1016/0167-6377(92)90046-6 – ident: ref28 doi: 10.1137/110844192 – ident: ref29 doi: 10.1109/TAC.1986.1104412 – ident: ref30 doi: 10.1137/0325070 – ident: ref25 doi: 10.1016/j.automatica.2011.09.043 – ident: ref10 doi: 10.1109/JSTSP.2013.2247023 – ident: ref14 doi: 10.1109/CDC.2014.7039496 – ident: ref36 doi: 10.1109/TIT.2013.2275131 – ident: ref2 doi: 10.1137/070708111 – ident: ref17 doi: 10.1109/ACC.2015.7170791 – ident: ref34 doi: 10.1007/s10957-010-9737-7 – ident: ref7 doi: 10.1007/s10107-014-0808-7 – ident: ref18 doi: 10.1214/aoms/1177729586 – year: 1959 ident: ref53 publication-title: Espaces topologiques – ident: ref24 doi: 10.1137/070704277 |
| SSID | ssj0016441 |
| Score | 2.388272 |
| Snippet | We present a novel distributed algorithm for convex constrained optimization problems that are subject to noise corruption and uncertainties. The proposed... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2496 |
| SubjectTerms | Algorithms Approximation Approximation algorithms Approximation methods Constraints Convergence Distributed algorithms Distributed optimization Economic models Lagrange multiplier Linear programming Mathematical analysis Mathematical models multi-agent systems Noise noisy communications Optimization stochastic approximation stochastic optimization Stochasticity Uncertainty |
| Title | A Distributed Algorithm for Convex Constrained Optimization Under Noise |
| URI | https://ieeexplore.ieee.org/document/7350125 https://www.proquest.com/docview/1815183532 https://www.proquest.com/docview/1835576151 |
| Volume | 61 |
| WOSCitedRecordID | wos000382686800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcGiLBz34qmK1SgQvgrFpks0mx1KtHqR6qOIt7G5mtaCN9CF-vjubNCiK4CUJ7Gyymc28Mi-AE6YFRkGWuELEkRvKQNmSty4yDCPNUHCbxf9ww4fD-PExuavBWZULg4g2-AzP6dL68rNcLehXWYeTF8xndahzzotcrcpjQHK94LqGgP24ckl6SWfU61MMFzuncl1J4H8TQbanyg9GbKXLYON_69qE9VKLdHrFtm9BDSfbsPaltmATrnrOBRXFpX5WmDm9l6d8Op4_vzpGS3X6FGv-QaeZ7RFhAG4N73gtkzId2w3JGebjGe7A_eBy1L92y64JrjLK0dztKk_KKFAMs67gzJfIBMuEMbxEpkQYom-OmHiaack50yyRiRdIKeOuzrqog11oTPIJ7oGjgwxFqI1JhkGIIZMYclSxr7gZMa_cgs4SkakqS4rTql9Sa1p4SWpQnxLq0xL1LTitZrwV5TT-gG0Sqiu4EsstaC_3Ki3pbZYaPYUZ5sRo1nE1bCiF3B9igvmCYIxuxUmD2__9zgewap4fFRFkbWjMpws8hBX1Ph_Ppkf2c_sE1MPTPQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8NQVpG0PfHUThQFB4mXS0ubDjpPHqmMUUQoP3dS3yHbOUKltUD-m_Xx8ThZtGprESxLJ5-hyzp3vfF8An7iRmMRF5kuZJj5TsXYlb33kyBLDUQqXxX81FpNJOptlP1tw1uTCIKILPsMePTpfflHqHR2V9QV5wSK-B084Y1FYZWs1PgPa2Su5a1k4ShunZJD1p4MhRXHxHhXsyuLo3ibkuqo8EMVuf7l4_n-YvYBntR7pDaqFfwktXL2CwzvVBTvwZeCdU1lc6miFhTdY_CrX8-3vpWf1VG9I0eY3dNu4LhEW4IeVHss6LdNz_ZC8STnf4BFcXnyeDkd-3TfB11Y92vqhDpRKYs2xCKXgkUIueSGt6SULLRnDyF4xCww3SghueKayIFZKpaEpQjTxMbRX5Qpfg2fiAiUz1ijDmCHjCplAnUZa2BH7yV3o3xIy13VRccJ6kTvjIshyS_qcSJ_XpO_CaTPjT1VQ4xHYDpG6gaup3IWT27XKa47b5FZT4VY8cZr1sRm2vEIOELnCckcwVrsSpMO9-febP8D-aPp9nI-_Tr69hQOLS1LFk51Ae7ve4Tt4qq-38836vfv1_gL5AdaE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distributed+Algorithm+for+Convex+Constrained+Optimization+Under+Noise&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Chatzipanagiotis%2C+Nikolaos&rft.au=Zavlanos%2C+Michael+M.&rft.date=2016-09-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=61&rft.issue=9&rft.spage=2496&rft.epage=2511&rft_id=info:doi/10.1109%2FTAC.2015.2504932&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2015_2504932 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |