Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity
Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 35; číslo 11; s. 15182 - 15194 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.11.2024
|
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at " https://github.com/MianxinLiu/MAHGCN-code ." |
|---|---|
| AbstractList | Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at "https://github.com/MianxinLiu/MAHGCN-code." Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at "https://github.com/MianxinLiu/MAHGCN-code."Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at "https://github.com/MianxinLiu/MAHGCN-code." |
| Author | Zhang, Han Shen, Dinggang Shi, Feng Liu, Mianxin |
| Author_xml | – sequence: 1 givenname: Mianxin orcidid: 0000-0001-5171-778X surname: Liu fullname: Liu, Mianxin email: 16483073@life.hkbu.edu.hk organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China – sequence: 2 givenname: Han orcidid: 0000-0002-6645-8810 surname: Zhang fullname: Zhang, Han email: zhanghan2@shanghaitech.edu.cn organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China – sequence: 3 givenname: Feng orcidid: 0000-0003-1522-9943 surname: Shi fullname: Shi, Feng email: feng.shi@uii-ai.com organization: Department of Research and Development, Shanghai United Imaging Intelligence Company Ltd., Shanghai, China – sequence: 4 givenname: Dinggang orcidid: 0000-0002-7934-5698 surname: Shen fullname: Shen, Dinggang email: Dinggang.Shen@gmail.com organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37339027$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPGzEUha2KqlDKH0AIeckmqR-ZsWcJ4VUppIuC1J3l8dwBg2MH20OVVf96nSZUiEW98bV1viPdcz6jHR88IHRIyZhS0ny9nc9nP8aMMD7mTLKmph_QHqM1GzEu5c6_WfzcRQcpPZJyalLVk-YT2uWC84YwsYd-X1uIOpoHa7TDV1EvH_A0-JfghmyDL39zyL9CfMJng3UZtyt8M7hsU5EDPs1OJ0i4DxGfRW09PrcpxA5iGfS9D8kmfJesv8eXgzdbx-LvoTxebF59QR977RIcbO99dHd5cTu9Hs2-X32bns5GhrNJHlHRiF4y0TdcMEJ71jGhJZtwU4uuBSJoTyqp2w6MYLzqO8k7o6FrhJGmbQnfRycb32UMzwOkrBZlB3BOewhDUiVCyWsmq0mRHm-lQ7uATi2jXei4Uq-hFYHcCEwMKUXolbFZr5fLJQOnKFHritTfitS6IrWtqKDsHfrq_l_oaANZAHgD0KoSteB_AILAnuc |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s10278_025_01399_5 crossref_primary_10_1109_TIM_2025_3568941 crossref_primary_10_1016_j_neunet_2025_108110 crossref_primary_10_3390_brainsci14060610 crossref_primary_10_1016_j_neunet_2025_107927 crossref_primary_10_1002_widm_70012 crossref_primary_10_1109_TNSRE_2025_3543177 crossref_primary_10_3389_fnins_2025_1597777 crossref_primary_10_3390_diagnostics13233552 crossref_primary_10_1109_ACCESS_2024_3412961 crossref_primary_10_1109_TNSRE_2025_3590343 |
| Cites_doi | 10.1109/TMI.2019.2928790 10.1371/journal.pone.0215520 10.1016/j.neuroimage.2010.03.010 10.1002/hbm.20623 10.1016/j.neuroimage.2011.07.036 10.1002/hbm.23711 10.1212/01.wnl.0000249117.23318.e1 10.1007/978-3-030-60365-6_12 10.3389/fnagi.2021.605900 10.1016/j.neuroimage.2021.118546 10.3389/neuro.11.037.2009 10.1016/j.biopsych.2007.03.015 10.1093/nsr/nwab102 10.1109/tpami.2021.3081010 10.1073/pnas.2022288118 10.1016/j.neuroimage.2009.12.027 10.1109/TMI.2021.3051604 10.1109/ISBI.2019.8759531 10.3389/fnins.2019.00825 10.1016/j.dcn.2017.04.010 10.1016/j.media.2018.06.001 10.1007/978-3-030-87234-2_54 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2011.10.015 10.1203/PDR.0b013e3182130c54 10.1038/s41598-017-06509-0 10.1002/hbm.24428 10.1016/j.neuroimage.2016.11.006 10.1016/j.media.2020.101709 10.1016/j.clinph.2015.02.060 10.1103/PhysRevLett.123.038301 10.1016/j.neuroimage.2012.05.026 10.1007/978-3-319-24574-4_28 10.1016/j.biopsych.2020.02.016 10.3389/fnsys.2010.00013 10.1093/cercor/bhx179 10.1006/cbmr.1996.0014 10.3390/brainsci7090111 10.1016/j.jalz.2015.05.005 10.1152/jn.00338.2011 10.1016/j.neuroimage.2007.04.009 10.1016/j.nicl.2019.101929 10.1007/978-3-319-67389-9_42 10.1109/ICCV.2017.74 10.1109/ICASSP.2019.8683547 10.1016/j.jalz.2018.08.005 10.3174/ajnr.A3223 10.1038/mp.2013.78 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TNNLS.2023.3282961 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 15194 |
| ExternalDocumentID | 37339027 10_1109_TNNLS_2023_3282961 10155767 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62131015 funderid: 10.13039/501100001809 – fundername: Science and Technology Commission of Shanghai Municipality (STCSM) grantid: 21010502600 funderid: 10.13039/501100003399 – fundername: National Key Scientific Instrument Development Program grantid: 82027808 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c324t-1797f827f937201f2d27a8243c67dbe071f058abdec7235fd83dcaed97c8cbb03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022168200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 22:04:31 EDT 2025 Thu Jan 02 22:22:28 EST 2025 Sat Nov 29 01:40:26 EST 2025 Tue Nov 18 22:33:42 EST 2025 Wed Aug 27 03:01:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-1797f827f937201f2d27a8243c67dbe071f058abdec7235fd83dcaed97c8cbb03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5171-778X 0000-0003-1522-9943 0000-0002-6645-8810 0000-0002-7934-5698 |
| PMID | 37339027 |
| PQID | 2828362854 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10155767 proquest_miscellaneous_2828362854 crossref_citationtrail_10_1109_TNNLS_2023_3282961 pubmed_primary_37339027 crossref_primary_10_1109_TNNLS_2023_3282961 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref56 ref15 ref14 Lee (ref25) ref53 ref52 ref11 ref55 ref10 ref54 Ying (ref23) ref17 ref16 ref18 LaMontagne (ref32) 2019; 2019 ref51 ref50 ref46 ref45 Kingma (ref42) ref48 ref47 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 Kipf (ref38) ref2 Li (ref22) 2020; 16 ref1 ref39 Paszke (ref41); 32 ref24 ref26 Betzel (ref19) 2015 ref20 ref21 ref28 ref27 ref29 |
| References_xml | – start-page: 1 volume-title: Proc. 5th Int. Conf. Learn. Represent. ident: ref38 article-title: Semi-supervised classification with graph convolutional networks – ident: ref44 doi: 10.1109/TMI.2019.2928790 – ident: ref12 doi: 10.1371/journal.pone.0215520 – volume: 16 year: 2020 ident: ref22 article-title: BrainGNN: Interpretable brain graph neural network for fMRI analysis publication-title: bioRxiv – start-page: 4805 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref23 article-title: Hierarchical graph representation learning with differentiable pooling – ident: ref27 doi: 10.1016/j.neuroimage.2010.03.010 – ident: ref14 doi: 10.1002/hbm.20623 – ident: ref26 doi: 10.1016/j.neuroimage.2011.07.036 – ident: ref52 doi: 10.1002/hbm.23711 – ident: ref48 doi: 10.1212/01.wnl.0000249117.23318.e1 – ident: ref21 doi: 10.1007/978-3-030-60365-6_12 – ident: ref8 doi: 10.3389/fnagi.2021.605900 – ident: ref11 doi: 10.1016/j.neuroimage.2021.118546 – ident: ref13 doi: 10.3389/neuro.11.037.2009 – ident: ref53 doi: 10.1016/j.biopsych.2007.03.015 – ident: ref18 doi: 10.1093/nsr/nwab102 – ident: ref24 doi: 10.1109/tpami.2021.3081010 – year: 2015 ident: ref19 article-title: Functional brain modules reconfigure at multiple scales across the human lifespan publication-title: arXiv:1510.08045 – ident: ref17 doi: 10.1073/pnas.2022288118 – ident: ref15 doi: 10.1016/j.neuroimage.2009.12.027 – ident: ref28 doi: 10.1109/TMI.2021.3051604 – ident: ref9 doi: 10.1109/ISBI.2019.8759531 – ident: ref36 doi: 10.3389/fnins.2019.00825 – ident: ref51 doi: 10.1016/j.dcn.2017.04.010 – ident: ref5 doi: 10.1016/j.media.2018.06.001 – ident: ref30 doi: 10.1007/978-3-030-87234-2_54 – volume: 32 start-page: 8026 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: PyTorch: An imperative style, high-performance deep learning library – ident: ref46 doi: 10.1016/j.neuroimage.2011.09.015 – ident: ref4 doi: 10.1016/j.neuroimage.2011.10.015 – ident: ref50 doi: 10.1203/PDR.0b013e3182130c54 – start-page: 1 volume-title: Proc. 3rd Int. Conf. Learn. Represent. ident: ref42 article-title: Adam: A method for stochastic optimization – ident: ref20 doi: 10.1038/s41598-017-06509-0 – ident: ref55 doi: 10.1002/hbm.24428 – ident: ref10 doi: 10.1016/j.neuroimage.2016.11.006 – ident: ref45 doi: 10.1016/j.media.2020.101709 – ident: ref2 doi: 10.1016/j.clinph.2015.02.060 – ident: ref16 doi: 10.1103/PhysRevLett.123.038301 – ident: ref54 doi: 10.1016/j.neuroimage.2012.05.026 – ident: ref39 doi: 10.1007/978-3-319-24574-4_28 – volume: 2019 start-page: 1 year: 2019 ident: ref32 article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease publication-title: medRxiv – ident: ref1 doi: 10.1016/j.biopsych.2020.02.016 – ident: ref35 doi: 10.3389/fnsys.2010.00013 – ident: ref29 doi: 10.1093/cercor/bhx179 – ident: ref34 doi: 10.1006/cbmr.1996.0014 – ident: ref49 doi: 10.3390/brainsci7090111 – ident: ref31 doi: 10.1016/j.jalz.2015.05.005 – ident: ref37 doi: 10.1152/jn.00338.2011 – ident: ref56 doi: 10.1016/j.neuroimage.2007.04.009 – ident: ref7 doi: 10.1016/j.nicl.2019.101929 – ident: ref43 doi: 10.1007/978-3-319-67389-9_42 – ident: ref40 doi: 10.1109/ICCV.2017.74 – ident: ref6 doi: 10.1109/ICASSP.2019.8683547 – start-page: 6661 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref25 article-title: Self-attention graph pooling – ident: ref47 doi: 10.1016/j.jalz.2018.08.005 – ident: ref3 doi: 10.3174/ajnr.A3223 – ident: ref33 doi: 10.1038/mp.2013.78 |
| SSID | ssj0000605649 |
| Score | 2.5774293 |
| Snippet | Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 15182 |
| SubjectTerms | Aged Alzheimer Disease - diagnosis Alzheimer Disease - diagnostic imaging Atlases as Topic Brain - diagnostic imaging Brain Diseases - diagnostic imaging Brain disorder brain multiscale hierarchy Deep Learning Feature extraction Female functional connectivity network (FCN) Functional magnetic resonance imaging graph convolutional neural network Head Humans Image Processing, Computer-Assisted - methods Imaging Learning systems Magnetic heads Magnetic Resonance Imaging - methods Male Neural Networks, Computer Neuroimaging Neuroimaging - methods |
| Title | Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity |
| URI | https://ieeexplore.ieee.org/document/10155767 https://www.ncbi.nlm.nih.gov/pubmed/37339027 https://www.proquest.com/docview/2828362854 |
| Volume | 35 |
| WOSCitedRecordID | wos001022168200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPHjx_VhfRPAmu3aTbpIeVVw9SBFU2FvZvGBh6co-BE_-dWfSdvGi4C2UJC18k-abZGY-gEshkGPLYHCJd9FBwZ9k27iAgHgVqBaISUMs4vqk8lwPBtlznawec2G89zH4zHeoGe_y3cQu6KgMVzjufkqqVVhVSlbJWssDlQSJuYx0l3clb3OhBk2STJJdv-b500uHtMI7gi4PJUnECCXQ5SdBmR97UhRZ-Z1vxn2nv_XPL96GzZpgspvKInZgxZe7sNWIN7B6Le_B1-OIco-jFMqYPVDdanY3KT9qU8RneRUhzm4Xo_GcmU8Wk3Vn2N2zmzmybj9jSHnZLalMsKaMJzZi8N5oxmI4AuvjzlnPGKNqbKVXsQ9v_fvXu8d2rcbQtki65lTHVAXNEUIStukG7rgaap4KK5UzHqlKSHp6aJy3iotecFo4O_QuU1ZbYxJxAGvlpPRHwHo8EVrKjOJX06C9cTzVXmnXQ-dFp6YF3QaPwtalykkxY1xElyXJighnQXAWNZwtuFqOea8KdfzZe5_A-tGzwqkFFw3uBa4zujwZln6ymBXkmoqYb9qCw8oglqMbOzr-ZdYT2MCXp1UK4ymszacLfwbr9gNBm56jMQ_0eTTmb6_I7kw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSyMxEB_8An3x49Szd6fmwDdp3Sa7m-yjytWKveXACn1bmi8olO1hW8En_3VnsrvFFw_uLSxJCPwmm98kM_MDuBACOXbqNW7xLjoo-JNsa-sRECc91QLRsQ9FXAcyz9VolP2pk9VDLoxzLgSfuQ41w1u-nZklXZXhDsfTT6ZyHTaTOOZRla61ulKJkJqngfDybsrbXMhRkyYTZVfDPB88dkgtvCPo-TAlkRghBTr9JCnz4VQKMiufM85w8vT2_nPN-7BbU0x2XdnEAay58gvsNfINrN7Nh_DWn1D2cRBDmbI7qlzNbmflS22M-C2vYsTZzXIyXTD9ykK67hy7O3a9QN7t5gxJL7shnQnWFPLERgjfm8xZCEhgPTw76xlDXI2pFCuO4Kn3a3jbb9d6DG2DtGtBlUylVxxBJGmbrueWy7HisTCptNohWfFRosbaOiO5SLxVwpqxs5k0ymgdiWPYKGelOwGW8EioNM0ogjX2ymnLY-Wksgm6LyrWLeg2eBSmLlZOmhnTIjgtUVYEOAuCs6jhbMHlaszfqlTHP3sfEVgfelY4teBng3uBO42eT8almy3nBTmnImSctuBrZRCr0Y0dfftk1nPY7g9_D4rBff7wHXZwIXGV0PgDNhbPS3cKW-YFAXw-Cyb9Dpqj8Ks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Graph+Convolutional+Network+Built+by+Multiscale+Atlases+for+Brain+Disorder+Diagnosis+Using+Functional+Connectivity&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Mianxin&rft.au=Zhang%2C+Han&rft.au=Shi%2C+Feng&rft.au=Shen%2C+Dinggang&rft.date=2024-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=11&rft.spage=15182&rft_id=info:doi/10.1109%2FTNNLS.2023.3282961&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |