Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity

Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 35; číslo 11; s. 15182 - 15194
Hlavní autoři: Liu, Mianxin, Zhang, Han, Shi, Feng, Shen, Dinggang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.11.2024
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at " https://github.com/MianxinLiu/MAHGCN-code ."
AbstractList Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at "https://github.com/MianxinLiu/MAHGCN-code."
Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at "https://github.com/MianxinLiu/MAHGCN-code."Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at "https://github.com/MianxinLiu/MAHGCN-code."
Author Zhang, Han
Shen, Dinggang
Shi, Feng
Liu, Mianxin
Author_xml – sequence: 1
  givenname: Mianxin
  orcidid: 0000-0001-5171-778X
  surname: Liu
  fullname: Liu, Mianxin
  email: 16483073@life.hkbu.edu.hk
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
– sequence: 2
  givenname: Han
  orcidid: 0000-0002-6645-8810
  surname: Zhang
  fullname: Zhang, Han
  email: zhanghan2@shanghaitech.edu.cn
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
– sequence: 3
  givenname: Feng
  orcidid: 0000-0003-1522-9943
  surname: Shi
  fullname: Shi, Feng
  email: feng.shi@uii-ai.com
  organization: Department of Research and Development, Shanghai United Imaging Intelligence Company Ltd., Shanghai, China
– sequence: 4
  givenname: Dinggang
  orcidid: 0000-0002-7934-5698
  surname: Shen
  fullname: Shen, Dinggang
  email: Dinggang.Shen@gmail.com
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37339027$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha2KqlDKH0AIeckmqR-ZsWcJ4VUppIuC1J3l8dwBg2MH20OVVf96nSZUiEW98bV1viPdcz6jHR88IHRIyZhS0ny9nc9nP8aMMD7mTLKmph_QHqM1GzEu5c6_WfzcRQcpPZJyalLVk-YT2uWC84YwsYd-X1uIOpoHa7TDV1EvH_A0-JfghmyDL39zyL9CfMJng3UZtyt8M7hsU5EDPs1OJ0i4DxGfRW09PrcpxA5iGfS9D8kmfJesv8eXgzdbx-LvoTxebF59QR977RIcbO99dHd5cTu9Hs2-X32bns5GhrNJHlHRiF4y0TdcMEJ71jGhJZtwU4uuBSJoTyqp2w6MYLzqO8k7o6FrhJGmbQnfRycb32UMzwOkrBZlB3BOewhDUiVCyWsmq0mRHm-lQ7uATi2jXei4Uq-hFYHcCEwMKUXolbFZr5fLJQOnKFHritTfitS6IrWtqKDsHfrq_l_oaANZAHgD0KoSteB_AILAnuc
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s10278_025_01399_5
crossref_primary_10_1109_TIM_2025_3568941
crossref_primary_10_1016_j_neunet_2025_108110
crossref_primary_10_3390_brainsci14060610
crossref_primary_10_1016_j_neunet_2025_107927
crossref_primary_10_1002_widm_70012
crossref_primary_10_1109_TNSRE_2025_3543177
crossref_primary_10_3389_fnins_2025_1597777
crossref_primary_10_3390_diagnostics13233552
crossref_primary_10_1109_ACCESS_2024_3412961
crossref_primary_10_1109_TNSRE_2025_3590343
Cites_doi 10.1109/TMI.2019.2928790
10.1371/journal.pone.0215520
10.1016/j.neuroimage.2010.03.010
10.1002/hbm.20623
10.1016/j.neuroimage.2011.07.036
10.1002/hbm.23711
10.1212/01.wnl.0000249117.23318.e1
10.1007/978-3-030-60365-6_12
10.3389/fnagi.2021.605900
10.1016/j.neuroimage.2021.118546
10.3389/neuro.11.037.2009
10.1016/j.biopsych.2007.03.015
10.1093/nsr/nwab102
10.1109/tpami.2021.3081010
10.1073/pnas.2022288118
10.1016/j.neuroimage.2009.12.027
10.1109/TMI.2021.3051604
10.1109/ISBI.2019.8759531
10.3389/fnins.2019.00825
10.1016/j.dcn.2017.04.010
10.1016/j.media.2018.06.001
10.1007/978-3-030-87234-2_54
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2011.10.015
10.1203/PDR.0b013e3182130c54
10.1038/s41598-017-06509-0
10.1002/hbm.24428
10.1016/j.neuroimage.2016.11.006
10.1016/j.media.2020.101709
10.1016/j.clinph.2015.02.060
10.1103/PhysRevLett.123.038301
10.1016/j.neuroimage.2012.05.026
10.1007/978-3-319-24574-4_28
10.1016/j.biopsych.2020.02.016
10.3389/fnsys.2010.00013
10.1093/cercor/bhx179
10.1006/cbmr.1996.0014
10.3390/brainsci7090111
10.1016/j.jalz.2015.05.005
10.1152/jn.00338.2011
10.1016/j.neuroimage.2007.04.009
10.1016/j.nicl.2019.101929
10.1007/978-3-319-67389-9_42
10.1109/ICCV.2017.74
10.1109/ICASSP.2019.8683547
10.1016/j.jalz.2018.08.005
10.3174/ajnr.A3223
10.1038/mp.2013.78
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TNNLS.2023.3282961
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 15194
ExternalDocumentID 37339027
10_1109_TNNLS_2023_3282961
10155767
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62131015
  funderid: 10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality (STCSM)
  grantid: 21010502600
  funderid: 10.13039/501100003399
– fundername: National Key Scientific Instrument Development Program
  grantid: 82027808
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c324t-1797f827f937201f2d27a8243c67dbe071f058abdec7235fd83dcaed97c8cbb03
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022168200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 22:04:31 EDT 2025
Thu Jan 02 22:22:28 EST 2025
Sat Nov 29 01:40:26 EST 2025
Tue Nov 18 22:33:42 EST 2025
Wed Aug 27 03:01:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-1797f827f937201f2d27a8243c67dbe071f058abdec7235fd83dcaed97c8cbb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5171-778X
0000-0003-1522-9943
0000-0002-6645-8810
0000-0002-7934-5698
PMID 37339027
PQID 2828362854
PQPubID 23479
PageCount 13
ParticipantIDs ieee_primary_10155767
proquest_miscellaneous_2828362854
crossref_citationtrail_10_1109_TNNLS_2023_3282961
pubmed_primary_37339027
crossref_primary_10_1109_TNNLS_2023_3282961
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref56
ref15
ref14
Lee (ref25)
ref53
ref52
ref11
ref55
ref10
ref54
Ying (ref23)
ref17
ref16
ref18
LaMontagne (ref32) 2019; 2019
ref51
ref50
ref46
ref45
Kingma (ref42)
ref48
ref47
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
Kipf (ref38)
ref2
Li (ref22) 2020; 16
ref1
ref39
Paszke (ref41); 32
ref24
ref26
Betzel (ref19) 2015
ref20
ref21
ref28
ref27
ref29
References_xml – start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Represent.
  ident: ref38
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref44
  doi: 10.1109/TMI.2019.2928790
– ident: ref12
  doi: 10.1371/journal.pone.0215520
– volume: 16
  year: 2020
  ident: ref22
  article-title: BrainGNN: Interpretable brain graph neural network for fMRI analysis
  publication-title: bioRxiv
– start-page: 4805
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Hierarchical graph representation learning with differentiable pooling
– ident: ref27
  doi: 10.1016/j.neuroimage.2010.03.010
– ident: ref14
  doi: 10.1002/hbm.20623
– ident: ref26
  doi: 10.1016/j.neuroimage.2011.07.036
– ident: ref52
  doi: 10.1002/hbm.23711
– ident: ref48
  doi: 10.1212/01.wnl.0000249117.23318.e1
– ident: ref21
  doi: 10.1007/978-3-030-60365-6_12
– ident: ref8
  doi: 10.3389/fnagi.2021.605900
– ident: ref11
  doi: 10.1016/j.neuroimage.2021.118546
– ident: ref13
  doi: 10.3389/neuro.11.037.2009
– ident: ref53
  doi: 10.1016/j.biopsych.2007.03.015
– ident: ref18
  doi: 10.1093/nsr/nwab102
– ident: ref24
  doi: 10.1109/tpami.2021.3081010
– year: 2015
  ident: ref19
  article-title: Functional brain modules reconfigure at multiple scales across the human lifespan
  publication-title: arXiv:1510.08045
– ident: ref17
  doi: 10.1073/pnas.2022288118
– ident: ref15
  doi: 10.1016/j.neuroimage.2009.12.027
– ident: ref28
  doi: 10.1109/TMI.2021.3051604
– ident: ref9
  doi: 10.1109/ISBI.2019.8759531
– ident: ref36
  doi: 10.3389/fnins.2019.00825
– ident: ref51
  doi: 10.1016/j.dcn.2017.04.010
– ident: ref5
  doi: 10.1016/j.media.2018.06.001
– ident: ref30
  doi: 10.1007/978-3-030-87234-2_54
– volume: 32
  start-page: 8026
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref46
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: ref4
  doi: 10.1016/j.neuroimage.2011.10.015
– ident: ref50
  doi: 10.1203/PDR.0b013e3182130c54
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Represent.
  ident: ref42
  article-title: Adam: A method for stochastic optimization
– ident: ref20
  doi: 10.1038/s41598-017-06509-0
– ident: ref55
  doi: 10.1002/hbm.24428
– ident: ref10
  doi: 10.1016/j.neuroimage.2016.11.006
– ident: ref45
  doi: 10.1016/j.media.2020.101709
– ident: ref2
  doi: 10.1016/j.clinph.2015.02.060
– ident: ref16
  doi: 10.1103/PhysRevLett.123.038301
– ident: ref54
  doi: 10.1016/j.neuroimage.2012.05.026
– ident: ref39
  doi: 10.1007/978-3-319-24574-4_28
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref32
  article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease
  publication-title: medRxiv
– ident: ref1
  doi: 10.1016/j.biopsych.2020.02.016
– ident: ref35
  doi: 10.3389/fnsys.2010.00013
– ident: ref29
  doi: 10.1093/cercor/bhx179
– ident: ref34
  doi: 10.1006/cbmr.1996.0014
– ident: ref49
  doi: 10.3390/brainsci7090111
– ident: ref31
  doi: 10.1016/j.jalz.2015.05.005
– ident: ref37
  doi: 10.1152/jn.00338.2011
– ident: ref56
  doi: 10.1016/j.neuroimage.2007.04.009
– ident: ref7
  doi: 10.1016/j.nicl.2019.101929
– ident: ref43
  doi: 10.1007/978-3-319-67389-9_42
– ident: ref40
  doi: 10.1109/ICCV.2017.74
– ident: ref6
  doi: 10.1109/ICASSP.2019.8683547
– start-page: 6661
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref25
  article-title: Self-attention graph pooling
– ident: ref47
  doi: 10.1016/j.jalz.2018.08.005
– ident: ref3
  doi: 10.3174/ajnr.A3223
– ident: ref33
  doi: 10.1038/mp.2013.78
SSID ssj0000605649
Score 2.5774293
Snippet Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15182
SubjectTerms Aged
Alzheimer Disease - diagnosis
Alzheimer Disease - diagnostic imaging
Atlases as Topic
Brain - diagnostic imaging
Brain Diseases - diagnostic imaging
Brain disorder
brain multiscale hierarchy
Deep Learning
Feature extraction
Female
functional connectivity network (FCN)
Functional magnetic resonance imaging
graph convolutional neural network
Head
Humans
Image Processing, Computer-Assisted - methods
Imaging
Learning systems
Magnetic heads
Magnetic Resonance Imaging - methods
Male
Neural Networks, Computer
Neuroimaging
Neuroimaging - methods
Title Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity
URI https://ieeexplore.ieee.org/document/10155767
https://www.ncbi.nlm.nih.gov/pubmed/37339027
https://www.proquest.com/docview/2828362854
Volume 35
WOSCitedRecordID wos001022168200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPHjx_VhfRPAmu3aTbpIeVVw9SBFU2FvZvGBh6co-BE_-dWfSdvGi4C2UJC18k-abZGY-gEshkGPLYHCJd9FBwZ9k27iAgHgVqBaISUMs4vqk8lwPBtlznawec2G89zH4zHeoGe_y3cQu6KgMVzjufkqqVVhVSlbJWssDlQSJuYx0l3clb3OhBk2STJJdv-b500uHtMI7gi4PJUnECCXQ5SdBmR97UhRZ-Z1vxn2nv_XPL96GzZpgspvKInZgxZe7sNWIN7B6Le_B1-OIco-jFMqYPVDdanY3KT9qU8RneRUhzm4Xo_GcmU8Wk3Vn2N2zmzmybj9jSHnZLalMsKaMJzZi8N5oxmI4AuvjzlnPGKNqbKVXsQ9v_fvXu8d2rcbQtki65lTHVAXNEUIStukG7rgaap4KK5UzHqlKSHp6aJy3iotecFo4O_QuU1ZbYxJxAGvlpPRHwHo8EVrKjOJX06C9cTzVXmnXQ-dFp6YF3QaPwtalykkxY1xElyXJighnQXAWNZwtuFqOea8KdfzZe5_A-tGzwqkFFw3uBa4zujwZln6ymBXkmoqYb9qCw8oglqMbOzr-ZdYT2MCXp1UK4ymszacLfwbr9gNBm56jMQ_0eTTmb6_I7kw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSyMxEB_8An3x49Szd6fmwDdp3Sa7m-yjytWKveXACn1bmi8olO1hW8En_3VnsrvFFw_uLSxJCPwmm98kM_MDuBACOXbqNW7xLjoo-JNsa-sRECc91QLRsQ9FXAcyz9VolP2pk9VDLoxzLgSfuQ41w1u-nZklXZXhDsfTT6ZyHTaTOOZRla61ulKJkJqngfDybsrbXMhRkyYTZVfDPB88dkgtvCPo-TAlkRghBTr9JCnz4VQKMiufM85w8vT2_nPN-7BbU0x2XdnEAay58gvsNfINrN7Nh_DWn1D2cRBDmbI7qlzNbmflS22M-C2vYsTZzXIyXTD9ykK67hy7O3a9QN7t5gxJL7shnQnWFPLERgjfm8xZCEhgPTw76xlDXI2pFCuO4Kn3a3jbb9d6DG2DtGtBlUylVxxBJGmbrueWy7HisTCptNohWfFRosbaOiO5SLxVwpqxs5k0ymgdiWPYKGelOwGW8EioNM0ogjX2ymnLY-Wksgm6LyrWLeg2eBSmLlZOmhnTIjgtUVYEOAuCs6jhbMHlaszfqlTHP3sfEVgfelY4teBng3uBO42eT8almy3nBTmnImSctuBrZRCr0Y0dfftk1nPY7g9_D4rBff7wHXZwIXGV0PgDNhbPS3cKW-YFAXw-Cyb9Dpqj8Ks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Graph+Convolutional+Network+Built+by+Multiscale+Atlases+for+Brain+Disorder+Diagnosis+Using+Functional+Connectivity&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Mianxin&rft.au=Zhang%2C+Han&rft.au=Shi%2C+Feng&rft.au=Shen%2C+Dinggang&rft.date=2024-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=11&rft.spage=15182&rft_id=info:doi/10.1109%2FTNNLS.2023.3282961&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon